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Abstract: Rapid localization of injured survivors by rescue teams to prevent death is a major issue.
In this paper, a sensor system for human rescue including three different types of sensors, a CO2

sensor, a thermal camera, and a microphone, is proposed. The performance of this system in detecting
living victims under the rubble has been tested in a high-fidelity simulated disaster area. Results show
that the CO2 sensor is useful to effectively reduce the possible concerned area, while the thermal
camera can confirm the correct position of the victim. Moreover, it is believed that the use of
microphones in connection with other sensors would be of great benefit for the detection of casualties.
In this work, an algorithm to recognize voices or suspected human noise under rubble has also been
developed and tested.
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1. Introduction

During the 21st century, more than 522 significant earthquakes happened [1], with a death toll
of more than 430,000 worldwide [2]. The majority of deaths are caused by buildings collapsing and
trapping occupants under the rubble. In fact, if the casualty is an uninjured, healthy adult with a supply
of fresh air, then they can survive for about 72 h. Eighty percent of survivors can be rescued alive
within 48 h of a collapse, but after 72 h the survival rate reduces exponentially [3]. This time limit
can be much shorter due to air supply shortage, environmental temperature, the health condition
of the casualty, etc. Therefore, to reduce mortality after a natural disaster, the rapid detection of
survivors inside collapsed structures is of the utmost importance. The current searching method
is based on survivors’ testimony to establish the possible presence of casualties under the rubble.
Rescue operations are generally carried out in subsequent steps. First, the rescue team accesses the
area with dogs to search for casualties on the surface. Then, the rescue team uses video cameras to
check the situation under the rubble. Finally, the rescue team tries to verify the presence of people
trapped under the rubble [4]. However, the first objective of the rescue team is to assess two essential
characteristics of the searching area: the existence of a sufficient number of survival spaces, and the
stability of volume of the ruins [5]. This assessment is subjective and prone to change due to structural
instability and the unknown situation under the rubble. Accessing collapsed structures is extremely
dangerous for rescue teams because subsequent aftershocks might furthermore undermine the stability
of structures. Moreover, rescue workers are at great risk for the development of physical, cognitive,
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emotional, or behavioral symptoms of stress [6]. Hence, rapid localization of survivors under the
rubble, avoiding direct access and exploration of the affected area, is essential for rescue teams.

To reduce the risks of rescue operations and accelerate the localization of casualties,
several methods based on the use of sensor technologies have been proposed. Currently, rescue teams
use life detection systems mainly based on microphones, optical/thermal cameras, and Doppler
radar [7]. Audio signal analysis is an effective method to detect humans trapped under
rubble, and some systems are already commercially available, such as the Acoustic Life
Detector, which is based on audio signal processing to identify victims’ low-frequency sounds.
Moreover, several refined audio processing algorithms have been developed to detect human
presence [8–10]. However, microphones become less accurate in the case of high background noise such
as pneumatic drills, breakers, vehicles, wind, power cables, and water flows that can be present in a real
scenario. Another limitation of audio detection systems is that they cannot locate unconscious victims.

Cameras are also widely used in rescue operations. Cameras are often mounted on mobile
robots to explore dangerous and inaccessible areas because they are an efficient interface for human
rescue [11–14]. Some researchers proposed thermal cameras to detect trapped humans to overcome the
problems of limited visibility under the rubble [15,16]. However, even though cameras are an efficient
method to detect casualties, their effectiveness is limited by their inherent reduced angle of view,
the presence of obstacles, and the generally limited visibility under the rubble. In a real scenario,
rapid localization and accurate estimation of the person’s position are fundamental for an efficient
rescue operation, and images alone do not provide enough information.

Doppler radar has been widely used in disaster rescue operations due to its efficiency in detecting
motion behind obstacles [17]. In fact, frequency or phase shift in a reflected radar signal can be used to
detect motions of only a few millimeters such as heartbeat or breathing [18]. However, Doppler radar
requires accurate calibration and even small environmental changes due to aftershocks and structural
instability have a negative impact on the performance of this kind of system [19]. Moreover, due to its
narrow-angle view, this system is not suitable for wide disaster areas.

The use of gas sensors for human detection via analysis of changes in carbon dioxide (CO2)
and oxygen (O2) in the environment due to human breath has also been proved feasible [3].
However, this system and several other experimental sensor systems for life detection have only
been tested in controlled laboratory settings [20–25].

The objective of this study is to evaluate the performance of a system based on three different
sensors in detecting live human presence under the rubble in a high-fidelity simulated disaster area in
the open.

The system was composed of these three types of sensors:

1. Gas sensors (O2 and CO2) for the detection of human breath and quality of air.
2. Microphones for the detection of voices, human-produced sounds, or environmental noise.
3. Thermal vision camera for a direct view of the environment, localized temperature patterns.

The only a priori information during the experiment was that one person, and only one,
was present in the area.

The article follows this structure: Section 2 introduces the sensors being tested, the specific sound
recognition algorithm used, the data analysis method, and the experimental protocol. Sections 3 and 4
present the results and performance evaluation for each sensor. The last section summarizes the results
and proposes future work.

2. Materials and Methods

In this section, we describe the sensors being tested, the sound recognition algorithm, the data
analysis method, and the experimental protocol.
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2.1. Gas Sensors (CO2 and O2 Sensors)

The FIGARO TGS4161 CO2 sensor was chosen for its high sensitivity. This sensor can detect
CO2 in a range of 350~10,000 ppm. Moreover, this sensor exhibits a linear relationship between the
change in electromotive force and CO2 gas concentration on a logarithmic scale and shows excellent
durability against the effects of high humidity.

The FIGARO SK-25F O2 sensor was chosen. The advantage of this sensor is that it is not
influenced by other gases such as CO2, CO, and H2S that can be present in the environment. It shows
a good linearity up to 30% O2, inside the measurement range in the real disaster area, and has
chemical durability.

These two sensors were connected to a Waspmote motherboard from Libelium Comunicaciones
Distribuidas S.L. (Zaragoza, Spain). The motherboard transmits the data stream via USB to a PC for
data storage and analysis every 10 s. The CO2 sensor needs 10 min of warm-up time to stabilize its
data output. The O2 sensor does not need an initial warm-up. The Waspmote board was mounted
on a long telescopic pole and the pole was introduced in the gaps in the rubble for more than two
minutes, then the collected CO2 and O2 data were analyzed.

2.2. Thermal Vision Camera

The LEPTON thermal camera from FLIR (Wilsonville, OR, USA), which is a complete long-wave
infrared (LWIR) camera, was chosen. Its size is 8.5 × 11.7 × 5.6 mm (without socket). The lens
horizontal range is 56 degrees, the diagonal range is 71 degrees, and the resolution is 160 × 120 active
pixels. The images are sent in streaming to PC via LAN communication using a Hi-Bot Corp. TITech M4
Controller as grabber. Dedicated software visualized the image data automatically, adapting the
temperature range to a red–blue color map. The software also estimated the highest and lowest
temperature in the image (Figure 1).
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Figure 1. Three images from thermal camera from different directions.

The thermal camera was mounted on another telescopic pole; the pole was introduced in the gaps
in the rubble and manually rotated to check the surrounding environment under the rubble. In Figure 1,
a thermal image of an object with an outline similar to a human is shown. When a human-like thermal
outline is detected, the affected area is tested from different angles and directions to verify if it really is
a human victim.

2.3. Microphone

2.3.1. Hardware and Audio Signal Process

The low-energy Bluetooth SONY ECM-AW4 microphone was chosen. This is a non-directional
microphone with a frequency response in the range of 300–9000 Hz.



Sensors 2018, 18, 852 4 of 14

To discriminate human voice from environmental noise, six voice features, usually used for voice
detection, have been computed with MatLab.

Energy Entropy

Entropy is a measure of state unpredictability. The definition of entropy H of a discrete random
variable X with possible values xi and probability mass function P(X) is:

H(X) = −
n

∑
i=1

p(xi) log p(xi). (1)

Signal Energy

The energy Es of a continuous-time signal x(t) is defined as:

Es =
∫ ∞

−∞
|x(t)|2dt. (2)

Zero Crossing Rate

The rate of sign changes of a signal, a useful parameter of Voice Activity Detection (VAD) [26]:

ZCR =
1

T − 1

T−1

∑
t=1

1R<0(stst−1), (3)

where s is a voice single of length T and 1R<0 is an indicator function.

Spectral Roll-Off

The roll-off frequency is defined as the frequency under which a percentage (85% cutoff) of the
total energy of the signal spectrum is contained.

Rt

∑
n=1

Mt[n] = 0.85×
N

∑
n=1

Mt[n], (4)

where Mt[n] is the magnitude of the Fourier transform at frame t and frequency bin n, and Rt is
the frequency.

Spectral Centroid

The Spectral Centroid C is calculated as the weighted mean of the frequencies present in the
signal, determined using an FFT with their magnitudes as the weights [27]. If x(n) represents the
weighted frequency value, or magnitude, of bin number n, and f(n) represents the center frequency of
that bin, the Spectral Centroid C is:

C =
∑N−1

n=0 f (n)x(n)

∑N−1
n=0 x(n)

. (5)

Spectral Flux

Spectral Flux is a measure of how fast the power spectrum of the signal is changing, comparing the
power spectrum of one frame with the power spectrum of the previous frame:

Ft =
N

∑
n=1

(Nt[n]− Nt−1[n])
2, (6)

where Nt[n] and Nt−1[n] are the normalized magnitude of Fourier transform at frames t and t−1.
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The audio signal was divided into non-overlapping frames of 10 ms and for each frame the
above six features and their statistical deviation are calculated. In particular, for Energy Entropy,
Zero Crossing Rate, Spectral Roll-off, and Spectral Centroid, the Standard Deviation has been
computed, while for Signal Energy and Spectral Flux, the Standard Deviation by Mean Ratio has been
computed. These six statistical values are the final feature values that characterize the audio signal.

2.3.2. Human Voice Detection Algorithm

The human voice detection algorithm was based on Support Vector Machine (SVM) from MatLab
and consisted of a training phase and a classification phase. The Hard-margin SVM [28] classifies data
identifying the best hyperplane that divides all data points into two groups [29,30].

Training Phase

A database composed of 1588 samples of speech voice files, including male and female voices
speaking in several languages, and 1687 samples of environment noise files including different types
of environmental noise was created. All the sound samples were pre-processed with a bandpass
filter (50 Hz~3000 Hz). The six statistical audio features were computed for each sound sample,
and arranged in two matrices, a 6 × 1588 matrix for human voice samples and a 6 × 1687 matrix for
environmental noise samples. These matrices were used in the SVM based algorithm as training data.

Classification Phase

The flow chart of the classification phase is shown in Figure 2. Its fundamental steps are:
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Figure 2. SVM classification for human voice and environment noise.

1. Voice recording phase: the system records voice at 5-s intervals.
2. Recorded data are bandpass filtered (50 Hz~3000 Hz)
3. Data are filtered with a Wiener filter. The Wiener filter minimizes the Mean Square Error (MSE)

between the estimated random process and the desired operation. This filter is generally used to
remove noise from a recorded voice.

4. Short sounds and background noise are removed. First, an adaptive threshold to remove
background noise has been used. The reference level of environmental noise must be calculated.
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As the noise in the disaster area is high and highly variable, an adaptive background noise
reference has been defined according to the equation:

Re fnoise = αVolt + (1− α)Volt−1 (7)

where α is the smoothing factor of Re fnoise change, Volt is the average volume [dB] of current
5 s voice data, Volt−1 is the volume of previous 5 s voice data. It has been empirically found
that a = 30% yields the best performance. Then, if the volume of the sound sample is lower than
1.3 times Re fnoise, the algorithm identifies the sound sample as environmental noise and discards
it. Sound signals that are 1.3 times higher than Re fnoise are suspect sounds. Then, the algorithm
checks the length of this suspect sound. As human voice sound is assumed to last more than
300 ms, sounds shorter than 300 ms are removed. After removing short sounds, this suspect
sound is processed with SVM to identify possible human noise.

5. Segmentation. The 5-s audio signal, after removing short sounds and background noise, is broken
into shorter audio samples of 10 ms.

6. Audio statistical features, as described in Section 2.3.1, are computed for these shorter 10-ms
audio samples.

7. SVM Classification. Sounds are differentiated in human voice or noise.

2.4. Experiments

2.4.1. Experimental Environment

The tests were conducted at a site at the Singapore Civil Defence Force (SCDF) facilities, Singapore.
It is a high-fidelity disaster area meant to simulate collapsed buildings after a massive earthquake.
Figure 3 shows the test area, which is approximately 8 m × 24 m (192 m2) organized as a grid of
cells of 2 m × 2 m. This area is composed of two parts, a simulated two floors building partially
collapsed (rows 6–13), and a simulated total collapse (rows 1–5). In rows 6–13 there are some accessible
and stable paths for rescuing operations, while rows 1–5 represent a totally collapsed area with no
accessible rescue paths.
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2.4.2. Experimental Protocol

No environmental and structural information about the simulated disaster area was available
before starting the experiment. At least 30 min before starting the sensor-based rescue experiment,
a person entered the area and randomly hid inside the rubble, simulating an unconscious earthquake
casualty. The casualty position had to be estimated within a 2-h time limit, without directly accessing
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the rubble. However, tools could be inserted through the gaps to acquire data under the rubble.
After scanning the entire areas, the position of the casualty had to be estimated. The acceptable
identification area consisted of a square of 4 m × 4 m, a 4 cell square. The entire experimental session
lasted three days and consisted of three trials per day (a morning, an afternoon, and an evening trial),
or nine trials in total.

3. Results and Discussion

3.1. Experimental Results

In Table 1, the time needed to detect the casualty in each trial is shown, about one hour on average.
We successfully detected the casualty in eight out of nine trials performed. Being fast and precise in
casualty detection is a key factor because 80% of survivors are recovered alive if rescued within 48 h.

Table 1. Global results of the tests.

TEST Execution Time Result

Day 1 morning 1 h 35 min Success
Day 1 afternoon 56 min Success
Day 1 evening 1 h 25 min Success
Day 2 morning 33 min Success
Day 2 afternoon 50 min Success
Day 2 evening 1 h 12 min Failed
Day 3 morning 2 h 13 min Success
Day 3 afternoon 20 min Success
Day 3 evening 31 min Success

The results of each trial are shown Figures 4–6 and described and commented on in the rest of
this section. O2 is measured as concentration, while CO2 is in parts-per-million (ppm). Because the
CO2 sensor is not calibrated, the CO2 data do not represent the real concentration and the absolute
measured values in each trial vary widely depending on the time the measurement was taken and the
environment around the site. For this reason, relative variations of CO2 during trials were considered,
and further confirmation from a rescuer or other sensors was required to verify the presence of the
casualty in that specific area. The areas with relatively high levels of CO2 are indicated in yellow.
Areas manually checked with a thermal camera are circled in purple.

Figure 4 shows the results of the first day’s trials.
Day 1, morning trial: The gas sensor located several possible locations for the casualty. The reason

for those abnormal concentrations is that the person reached the center of the site through tunnels in
the test sites (C5, A5, A8, A10, and A11 are sections of the same tunnel). The thermal camera images
confirmed the presence of the casualty in the estimated area indicated by the red square, in the square
composed by cells B9, C9, B10, and C10.

Day 1, afternoon trial: The gas sensor identified an area with a peak CO2 concentration and the
thermal camera confirmed the presence of the casualty in the area indicated by the gas sensor data,
in the square composed by cells B7, C7, B8, and C8.

Day 1, evening trial: In this test, the casualty was located in the square composed by cells B11,
C11, B12, and C12, using only the thermal camera. The gas sensor did not work properly because
the affected area is a large area in which the wind could easily change the CO2 concentrations,
so the presence of a casualty did not significantly change the CO2 concentration in this situation.
This test was useful to analyze the factors that can lead to localization failures when using a gas sensor.
However, this kind of area can be easily searched by a rescue team or a rescue dog because it is near
the boundaries of the disaster area, outside the collapsed structure.
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Figure 5 shows the results of the second day trials.
Day 2, morning: Both the gas sensor and the thermal camera located the casualty. The C11, D12,

C12, D12 area is part of a corner in which the gas concentration was unusually high, and the camera
could be inserted through a hole in the rubble to verify the presence of the casualty.

Day 2, afternoon: Both the gas sensor and the thermal camera located the casualty in the square
composed by cells C6, D6, C7, and D7 that was beside a wall in a corridor where the gas sensors
and the camera could be placed. It is important to note that, in this case, the gas sensor detected
a high concentration of CO2 in the whole corridor, so the exact position of the casualty could only be
confirmed with a thermal camera.

Day 2, evening: This was the only trial in which the sensor system failed to locate the casualty.
A high concentration of CO2 was found in the area around B2, C2, B3, and C3, but the presence of
many obstacles obstructing the view made verification via thermal camera impossible. This area is
a maze of corridors in a semi-closed area with low air circulation, with the possible presence of grass
and animals that might raise the concentration of CO2. Moreover, the corridor in C2 was not reachable
by gas sensors on the telescopic pole.
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Figure 5. Day 2 results.

Figure 6 shows the results of the last day’s trials.
Day 3, morning: The gas sensor found a high CO2 concentration very close to the casualty.

However, the presence of many obstacles obstructing the view made verification via thermal camera
impossible, so the casualty was located in the square composed by cells B3, C3, B4, and C4 based only
on the gas sensor data.

Day 3, afternoon: The casualty was located very fast because the gas sensor measured a relatively
high level of CO2 in the square composed by cells B11, C11, B12, and C12 and the thermal camera
confirmed the presence of the casualty through a hole in the corridor.

Day 3, evening: The casualty was located in the square composed by cells B9, C9, B10, and C10
using only the thermal camera. The data from the gas sensor were corrupted because of hardware
problems on the gas sensor board.
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3.2. Evaluation of the Gas Sensor and Thermal Camera

O2 measurements were not useful to determine the presence of life under the rubble.
CO2 measurements were highly correlated with the possible position of the casualties;
however, the CO2 sensor failed to locate the casualty in three trials out of nine, one time due to
hardware problems and the other times due to environmental conditions. The thermal camera failed
to locate the casualty in two trials out of nine, confirming that, although visual analysis is useful,
a multi-sensor system is more robust due to sensor redundancy and complementarity. Figure 7 shows
the relationship between high casualty localization rate and high casualty presence exclusion rate
depending on the CO2 threshold. Areas with a high casualty localization rate indicate that the possible
presence of the casualty is high, while a high casualty presence exclusion rate indicates areas in
which the possibility of presence of the casualty can be reasonably excluded, and so do not need to
be cross-checked with the thermal camera. From these empirical data, a method can be devised to
estimate a reasonable CO2 absolute threshold, correlated with a high casualty localization rate but also
with a high casualty presence exclusion rate.
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The closest point to (100%, 100%) was found with a CO2 threshold of 27 ppm, leading to
a reduction of the possible casualty presence area to 44% of the total area and significantly shortening
the search and rescue operations. The sensitivity of the CO2 sensor is 75% and specificity is 53.1%,
as shown in Table 2.

Table 2. Evaluation of gas sensor system.

Predicted Condition Positive Predicted Condition Negative

Condition positive 6 2
Condition negative 38 43

3.3. Evaluation of Microphone and Audio Processing Algorithm

In all the experimental trials, the casualty was supposedly unconscious. Therefore, the person did
not speak or produce other sounds such as scratching during the whole trial. However, in real disaster
scenarios, there are cases in which the casualty is not unconscious and can produce sounds. For this
reason, an algorithm for the detection of sounds that might be related to the presence of a casualty was
designed and tested. The hardest problem was to make the algorithm less sensitive to background
noise. A disaster site is often a noisy environment, with people searching for victims, vehicles,
and various natural and artificial sounds. A dynamic threshold for the classification between a possible
sign of life and background noise, based on the average level of sound in the area, was proposed.
Of course, this method implies that in extremely noisy environments the detection of feeble sounds
will not be possible. However, in this way the system is more robust and automatically rejects sounds
that are not linked with the presence of casualties, reducing the number of sounds that must be
listened for to check the presence of casualty in a specific area. In particular, speech has characteristic
features that were used to separate it from other suspect noises. Figure 8 shows the results of the
Day 3 afternoon test, in which we spoke directly to the casualty after locating them to test the audio
recognition system. The microphone was placed on a telescopic pole and inserted in a hole in the
same corridor where the person was detected by using the gas sensor and the camera. Then, we asked
the casualty to perform three different tests: to not move and stay in silence while we talked outside,
to call for help at a low volume inaudible by the human ear from outside, and to simply scratch on
the ground. Audio detection results are shown in Figure 8. Moreover, we detected an unwanted
cough, confirming the presence of the casualty, in the area with a high level of CO2 during the Day 1
afternoon trial, and another suspect noise during the Day 2 afternoon trial, when the person moved
into the corridor.
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The result of audio detection performance evaluation is shown in Table 3. The proposed algorithm
can automatically differentiate the sound data and save it in different folders. In Table 3, the first row
α/β represents the correct sound identification rate, where β is the total number of automatically
classified sound files present in each category folder and α is the correctly classified number of sound
files, which were validated manually.

Table 3. Evaluation of microphone.

TEST Human Voice Suspect Noise Noise

Test Day 1 afternoon 87.5% 89.36% 100%
Test Day 2 afternoon 89.4% 91.21% 100%
Test Day 3 afternoon 90.6% 98.18% 100%

Average 89.36% 93.95% 100%

The correct voice recognition rate is 89.36% in a noisy environment. The correct classification rate for
human-related suspect noise, including scratching and coughing, is 93.85%. Therefore, using a microphone
in connection with other sensors would be beneficial for the detection of casualties.

4. Conclusions

In this study, a new sensor system for detecting human presence under rubble was proposed
and tested. The effectiveness of each sensor was evaluated and confirmed. A CO2 sensor can provide
useful information to locate a casualty, but an O2 sensor does not. A voice recognition algorithm based
on SVM was also tested and from the results obtained it was confirmed that using the microphone
would be of great benefit in the detection of casualties. This system has some limitations; for example,
the gas sensor is difficult to use in open spaces due to stronger airflow affecting the CO2 concentration.
A sensor system using only a thermal camera is not robust because some areas cannot be directly
accessed using a telescopic pole or directly observed due to the presence of obstacles.

In future work, a sensor system should be developed that includes multiple sensors, such as
microphones and gas sensors, to be distributed in the area by the rescue team to alert them if one
measures signs of a casualty under the rubble.

This kind of distributed sensor system can also be used in search and rescue operations with
robotic aids that can release such sensors in areas inaccessible to or very risky for human rescue teams.
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