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Abstract

The soil CO2 emission is recognized as one of the largest fluxes in the global

carbon cycle. Small errors in its estimation can result in large uncertainties and

have important consequences for climate model predictions. Monte Carlo

approach is efficient for estimating and reducing spatial scale sampling errors.

However, that has not been used in soil CO2 emission studies. Here, soil respi-

ration data from 51 PVC collars were measured within farmland cultivated by

maize covering 25 km2 during the growing season. Based on Monte Carlo

approach, optimal sample sizes of soil temperature, soil moisture, and soil CO2

emission were determined. And models of soil respiration can be effectively

assessed: Soil temperature model is the most effective model to increasing accu-

racy among three models. The study demonstrated that Monte Carlo approach

may improve soil respiration accuracy with limited sample size. That will be

valuable for reducing uncertainties of global carbon cycle.

Introduction

The total global emission of CO2 from soils is recognized

as one of the largest fluxes in the global carbon cycle (Sch-

lesinger and Andrews 2000; Piao et al. 2009; Bond-Lam-

berty and Thomson 2010) and plays a major role in

determining the atmospheric greenhouse effect (Field et al.

2007). This large annual emission dwarfs anthropogenic

CO2 production from fossil fuel and implies that any small

error in its estimation would result in large uncertainties

related to the effects of CO2 build-up in the atmosphere.

There is a need, therefore, to improve the accuracy of soil

CO2 emission estimates (Shi et al. 2012; Gomez-Casanovas

et al. 2013).

Actually, numerous studies regarding the uncertainties

of carbon flux estimates using eddy covariance (EC) have

been reported. Elbers et al. (2011) presented a method

for evaluating the factors of total uncertainty for estimat-

ing net ecosystem productivity (NEP) without considering

spatial variability. Richardson and Hollinger (2007) used

synthetic data sets, developed by assimilating data from a

range of FLUXNET sites, into a simple ecosystem model

to evaluate the relationship between gap length and

uncertainty in the net ecosystem exchange (NEE) of CO2.
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Oren et al. (2006) assessed spatial variability estimates in

the context of uncertainty in the annual NEE and com-

bined uncertainty from gap filling and instrument error

with the uncertainty caused by spatial variability. Hou

et al. (2013) evaluated the effects of the spatial hetero-

geneity of reservoir permeability on CO2 migration,

applying an uncertainty quantification framework. How-

ever, all above studies focus mainly on eddy covariance

(EC) methods (e.g., NEE, NEP, and ecosystem respira-

tion), and uncertainty in soil respiration estimation

remains far greater than that in other components of the

carbon cycle (Bond-Lamberty et al. 2004; Trumbore 2006;

Zhang et al. 2013). As with the ecosystem carbon cycle,

the uncertainty of soil respiration also contains measure-

ment error and flux calculation uncertainty, spatial vari-

ability uncertainty, statistical selection uncertainty, and

gap-filling uncertainty.

Methods for measuring soil CO2 efflux have undergone

a considerable evolution over the past 30 years, giving rise

to what is today considered state-of-the-art measuring sys-

tems that consist of automated chambers that use an infra-

red gas analyzer (Pumpanen et al. 2004; Subke et al. 2006;

Vargas et al. 2011; Jassal et al. 2012; Koskinen et al. 2014;

Maier and Schack-Kirchner 2014; Riederer et al. 2014).

These systems are often deployed as nonsteady state or

steady state. Static chamber systems also continue to play

an important role in assessing soil CO2 emissions because

they are relatively inexpensive and easy to deploy. These

measurement systems are generally considered to provide

the most reliable estimates we have of soil respiration. (Shi

et al. 2011; Maier and Schack-Kirchner 2014). Sources of

uncertainties in soil respiration stem from site characteri-

zation, site carbon capacity, injection rate, CO2 trapping

mechanisms, mineral precipitation dissolution kinetics,

and so on (Hou et al. 2013). In general, all sources of

uncertainty can be divided into two dimensions: time and

space. It is well recognized that static chambers have poor

temporal resolution and automated chambers have poor

spatial resolution in these dimensions.

To address the problem of temporal uncertainty, gap-

filling strategies have been applied effectively to estimate

the soil CO2 efflux, and the soil respiration estimating

model has been assessed according to time (Gomez-

Casanovas et al. 2013); however, the study only focused

on time-series sampling, and spatial uncertainty has not

been investigated. For spatial uncertainty, the inventory

method is limited by the quality and the spatiotemporal

representativeness of measured Rs data. Poor data can

result in infinite uncertainty on Rs estimates on a regional

scale (Yu et al. 2010). Furthermore, the process-based soil

respiration model has always been considered as the uni-

versal method for both temporal and spatial estimation of

soil respiration. This method can simulate the spatial

patterns and also predict the long-term dynamics of

ecosystem respiration (Cramer et al. 2001). However, the

process-based soil respiration model has a complicated

structure when connecting soil–plant–atmosphere pro-

cesses. It is thus difficult to evaluate the rationality of the

estimated results when considerably large uncertainty

exists in the spatial representativeness of model parameters

(Yu et al. 2010). Nevertheless, compared with the above

methods, the geostatistical model of soil respiration could

be a good method due to simple structure, sound parame-

terization method, and reasonable results (Raich and Pot-

ter 1995; Reichstein et al. 2003), but the application of

this method is built on the premise that relationships exist

between in situ soil respiration and environmental vari-

ables. However, in natural conditions, randomness is uni-

versal and authentic, especially for temporal variation.

Monte Carlo method complies with this natural ran-

domness and only relies on sufficient data and repeated

random sampling, without considering any premise.

These methods are most suited to calculation by a com-

puter and tend to be used when it is infeasible to com-

pute an exact result with a deterministic algorithm.

Additionally, the method is used to complement deriva-

tions (Doucet et al. 2000). Currently, the Monte Carlo

sampling technique is an efficient method for estimating

and then reducing spatial-scale sampling error. It has

been applied for estimating transpiration (E) of forest

stands (Kumagai et al. 2005a) and for examining how

errors in E would be generated from different parameter

values acquired with an equation regressed with limited

data (Kumagai et al. 2005b; Kume et al. 2010). However,

the Monte Carlo sampling technique has not been used

in other similar fields, for example, soil CO2 emission

estimation. The technique may eventually play an irre-

placeable role in this estimation.

In this study, we aimed to define an optimal and effec-

tive sampling design to determine 10s km-scale soil CO2

emission estimates calculated from soil respiration rate

measurements, examine how sample sizes for soil tempera-

ture and soil moisture impact these 10s km-scale soil CO2

emission estimates, determine whether the estimation

errors due to sample sizes change with the variations in

region area, and then build a standard Monte Carlo sam-

pling procedure for producing defensible estimates of soil

CO2 emission. Based on the assumption that the 10s km-

scale soil CO2 emission was accurately determined from

point measurements, the impact of point-to-point varia-

tions in soil temperature and soil moisture on the 10s km-

scale soil CO2 emission will also be determined using a

Monte Carlo analysis of the original data sets. This analysis

predicted how many samples are required to account for

point-to-point variations and evaluated the applicability of

three general soil CO2 emission estimating models.
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Materials and Methods

Study site

The study site is located in the Zhangye oasis (1,400–
1,600 m a.s.l.), Gansu Province, China, which is the core

part of the middle reaches of the Heihe River. The cli-

mate is temperate, with a mean annual temperature of

7.6°C, mean annual precipitation of 117 mm, and mean

annual potential evaporation of 2390 mm (Wang et al.

2013). The main crops cultivated in this area are maize

and wheat. Almost all farmland in this area is irrigated

with the water diverted from the Heihe River. The field

observations used in this study were derived from the

Heihe Watershed Allied Telemetry Experimental Research

(HiWATER) project. HiWATER is a comprehensive eco-

hydrological experiment under the framework of the

Heihe Plan and is based on the diverse needs of interdis-

ciplinary research and existing observational infrastruc-

tures in the basin (Li et al. 2013).

A permanent observation plot was set up in the farm-

land, which is located within 38.8369°-38.9055°N,
100.332°-100.410°E, covering an area of 5.0 9 5.0 km2

and is cultivated with maize (Zea mays L.) during the

experimental period. Fifty-one custom-designed polyvinyl

chloride (PVC) collars were placed in the observation

plot for measurements of CO2 efflux from the soil. The

plot was equally divided into four 2.5 9 2.5 km2 sub-

plots. Different numbers of PVC collars (observation

points) were evenly established in each subplot. Detailed

information of the different plot layouts is shown in

Table S1.

Measurement of soil CO2 efflux, soil
temperature, and moisture

Soil respiration was measured using an automated soil

CO2 flux system (LI-8100; LI-COR, Lincoln, NE, USA)

equipped with a portable chamber (Model 8100-103). A

PVC collar (20.3 cm in diameter and 10 cm in height)

was inserted into the soil among the maize seedlings to a

depth of 2.5 cm at each sampling point approximately

2 weeks before the first measurement. Small litter was left

in the collar, and large items were removed. All collars

were left at the site for the entire study period.

The soil respiration data from the 51 PVC collars were

measured once every 6 days over the whole period of

maize growth from 6 June to 19 September 2012. The

maize in the study site was harvested at approximately

this time. Based on the preliminary experiment in 2011

(continuous measurement of soil respiration), the suitable

diurnal measurement time was determined: Measure-

ments were taken between 8:30 and 12:00 local time on

each sampling day. Preliminary experiment in detail was

described in Appendix S1.

Temporal soil temperature and moisture near each col-

lar were measured at the same time as soil respiration

measurements. Soil temperature was measured at a depth

of 10 cm using a handle thermocouple probe, while the

soil volumetric water content was measured at 0–10 cm

depth, using a time-domain reflectometry moisture meter

(TDR200; Spectrum, Aurora, IL, USA).

Similarly, continuous soil temperature and moisture

near each collar were also measured throughout the entire

study period. Soil temperature was measured at 10 cm

depth by thermorecorders (TR-52; T&D, Matsumoto,

Japan), and soil moisture was measured at 10 cm by a soil

moisture sensor (SMB-M005; Decagon Devices, Pullman,

WA, USA). The continuous measurements were performed

at 30-s intervals, and 30-min averages were recorded.

Scaling for growing seasonal soil CO2 efflux

Soil respiration data from the complete growing season

were fitted to soil temperature and water content with

exponential and power functions given in equations (1)

and (2) to describe the dependence of soil respiration on

soil temperature and soil water content.

R ¼ a� ebT (1)

R ¼ a�Wb (2)

where R, T, and W are soil respiration, soil temperature,

and soil volumetric water content, respectively, and a and

b are constant coefficients. An equation with two vari-

ables was established to describe the interactive effects of

soil temperature and water content on soil respiration (Li

et al. 2008a):

R ¼ a� Tb �Wc (3)

where a, b, and c are constant coefficients.

A soil CO2 emission of 51 points over the growing sea-

son was calculated by integrating the CO2 efflux for the

period from 16 June to 19 September 2012 using the

observed ecosystem-specific response equations: (1), (2),

and (3). Applicability of this method has been demon-

strated by some studies (Wang et al. 2010b; Shi et al.

2014). Equations (1), (2), and (3) were abbreviated as R:

T, R:W, and R:T&W, respectively.

Furthermore, the coefficients of determination (R2) of

different models on soil respiration (R) against soil tem-

perature (T) and/or soil moisture (W) were calculated by

nonlinear least-squares method. The results were from

average coefficients of determination (R2) value of 51

points.
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Method of analysis

The soil CO2 emission of every point was calculated by,

respectively using equations (1), (2), and (3). Besides, W

and T of the every point were represented by their aver-

age value. The estimation errors of R, W, and T caused

by spatial variations were calculated using various sample

size based on Monte Carlo sampling.

Figure 1 shows the flow diagram of the Monte Carlo

sampling computer program, and the specific steps are

shown as follows:

(1) The size of a sample A is N (N = 51; respectively for

R, W and T), and the arithmetic mean value EN of

this sample was calculated.

(2) The subsamples Bi with the sample size k = N – 1

were chosen from the sample about M = 10,000

times, randomly. The arithmetic mean values Ei of

each subsample Bi were calculated and i = 1, 2, . . .,

M. The sampling for subsamples Bi is a random pro-

cess, and it can be thought that the subsamples are

different, because it was decided by the sampling

method. We assume the sample A = [A1, A2,. . ., AN],

and the method is shown as follows:

a N is the size of a sample A, and the numbers

from 1 to N were rearranged randomly. The

rearranging result C1 was a vector, for example,

C1 = a1, a2,. . ., aN (ai = 1, 2,. . ., N, ai 6¼ aj).

b The other vector D was obtained by choosing

numbers from C1 before the number k. Thus, D1

= a1, a2,. . ., ak;

c The subsamples B1 were obtained by choosing

the data Aai(i = 1, 2, . . ., k), so

B1 ¼ Aa1;Aa2; . . .;Aak½ �;
d The steps a–c were repeated 10000 times, and

the vector groups Ci, Di and Bi
ði ¼ 1; 2; . . .; 10; 000Þ were obtained. Because the

rearranging process for Ci was random,

Ci ¼ Cjði; j ¼ 1; 2; . . .; 10; 000; i 6¼ jÞ was a little

probability event. There were few of Di = Dj or

Bi ¼ Bjði; j ¼ 1; 2; . . .; 10; 000; i 6¼ jÞ, but com-

pared with 10000 groups data, the effect on the

results can be ignored.

(3) EN was used as the arithmetic mean value of the sub-

sample Bi mean, Ei. Thus, the coefficients of variation

CVk for Ei with the sample size k can be calculated

by the following formula:

CVk ¼ 1

M � 1

XM
i ¼ 1

ðEi � ENÞ2
 !1=2

=EN

When M is large enough, based on the law of large

numbers, CVk means the degree of variation for the

subsample with measure times k is compared with

the sample with measure times N.

(4) Let k = k – 1, and repeat steps 2–3. Calculate the

coefficients of variation (CVk) of the subsample mean

with the sample size k and k = 1, 2. . ., N-1.

Additionally, In this study, the equations (1), (2), and

(3), respectively, assume that the variance of R estimates

associated with sample sizes was given by variance of T

estimates, variance of W estimates and combined variance

of T&W estimates associated with sample size. Also,

No 

No 

The sample A with the size N

Begin 

Calculate the sample mean EN and the variable coefficient CVN

k = N - 1 

End

Yes 

Yes 

i = 1 M = 10000

Choose a subsample Bi from the sample A with k

i = M

Calculate the coefficients of variation CVk

for Ei by the following formula: 

N

M

i
Nik EEE

M
CV /)(

1
1 2

1

1

2

k = k - 1 

k = 1 

Calculate the subsample mean Ei i = i + 1

Figure 1. Diagram of the Monte Carlo sampling computer program.
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constant coefficients in equations (1), (2), and (3) were

determined by the relation of R and T and/or W to

potential estimation errors. The total derivative of the

equations (1), (2), and (3) is as follows:

dR ¼ a � b � ebTdT (4)

dR ¼ a � b �Wb�1dW (5)

dR ¼ a � b �Wc � Tb�1dT þ a � c � Tb �W c�1dw (6)

The form of the equations (1), (2), and (3) can be trans-

formed to the following equation:

DR
R

¼ bDT (7)

DR
R

¼ b
DW
W

(8)

DR
R

¼ b
DT
T

þ c
DW
W

(9)

Equations (7), (8), and (9), respectively, mathematically

indicated sources of errors from the three estimation

models: the equation (7) means the errors in R caused by

the potential estimation variation in T associated with the

sample size; the equation (8) means the errors in R

caused by the potential estimation errors in W associated

with the sample size; and the equation (9) means the

errors in R caused by the potential estimation errors in T

and W associated with the sample size; The analyses were

performed using data sets collected from continuous mea-

surements for T and W. The similar mathematical deduc-

tion method has been effectively applied for estimation of

tree stand-scale transpiration (Kumagai et al. 2005a,b;

Kume et al. 2010).

To examine whether the potential errors due to sample

sizes change in different plot conditions, Monte Carlo

analyses were performed for subplots with different point

densities (i.e., four 2.5 9 2.5 km2 subplots and four

5 9 2.5 km2 subplots)

Results

Variation in soil respiration

The general pattern of the change in soil respiration dur-

ing every day of the preliminary experimental period was

similar (preliminary experimental design in detail see

appendix S1). There was a strong diurnal pattern with a

peak in the period. Figure 2 shows the typical diurnal

pattern of soil respiration in representative day of this

period. In this period, the diurnal average value is

approximately 4.5 lmol�m�2�s�1, and the diurnal peak

value is 7.0 lmol�m�2�s�1. Nevertheless, the time of the

peak value occurring was not steady, but the diurnal aver-

age value � error was located between approximately

7:30 and 12:30. Additionally, the maximum error is

defined as 10% of the average value.

Sample size

Figure 3 shows the relation between the sample size

and the CV of T & W in the 5 9 5 km2 plot. Two-di-

mensional analytic geometry has demonstrated that if

the slope of the curve is less than �1.0, the value of

the vertical axis will change more slowly compared with

abscissa axis; if more than �1.0, the situation will be

reversed. Therefore, �1.0 for dCV/dn is deemed as the

threshold of significant changes of CV (dCV/dn) for

estimating the optimal sample size. A dCV/dn < �1.0

indicates that the CV significantly decreased and greatly

improved the precision of the estimation with an

increase in the number (n) of PVC collars. In contrast,

a dCV/dn > �1.0 suggests a slight decrease with

increasing n, and the increase of n cannot effectively

improve the estimation precision. In this study, the

minimum n at dCV/dn > �1.0 is defined as the opti-

mal sample size. According to this threshold value,

n = 3 for the soil temperature was the optimal sample

size, and the CV was 5.4%. When n was less than 3,

the dCV/dn for the soil temperature was smaller than

�1.0. Conversely, when n was more than 3, the dCV/

dn for soil temperature was greater than �1.0

(Fig. 3A). Similarly, the dCV/dn for the soil moisture

was larger than �1.0 at n > 4, and the dCV/dn for the

soil moisture was smaller than �1.0 at n < 4 (Fig. 3B).

The optimal sample size for the soil moisture was

n = 4 and CV was 9.5.

The optimal sample size of T, W, and E estimates with

R:T, R:W, and R:T&W was analyzed by the Monte Carlo

method (Table 1). Depending on the threshold value

(dCV/dn = �1.0), different optimal sample sizes were

indicated for T, W, and E in one 5.0 9 5.0 km2 plot and

four 5.0 9 2.5 km2 plot. Furthermore, in four

2.5 9 2.5 km2 plots, the optimal sample size was not

obtained because all dCV/dn were smaller than �1.0.

Variation of errors in a different method for
estimating E

Figure 4 shows the variation of errors in E estimated by

R:T, R:W, and R:T&W, respectively, associated with the

sample size in different plots. There are no significant dif-

ferences between R:T, R:W, and R:T&W for 51 points in

the 5.0 9 5.0 km2 plot and for 30 points in the

5.0 9 2.5 km2 plot. The dCV/dn of E estimates by R:
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T&W was larger than with the other two models, with n

increasing for 27, 24, and 21 points in the 5.0 9 2.5 km2

plot and for 15 and 12 points in the 2.5 9 2.5 km2 plot.

However, for 9 points in the 2.5 9 2.5 km2, the dCV/dn

of the E estimates by R:T was larger than for R:W and R:

T&W, with n increasing.

Constant coefficient of errors in different
estimate methods

Constant coefficients of three different methods were

obtained by the total derivative of equations (1), (2),

and (3). The equations (7), (8), and (9) indicated the
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Figure 2. Soil respiration was automatically continuously measured in a preliminary experiment from 19 June to 31 August 2011. The general

diurnal pattern was determined from different typical days in this period. The dash line represents the upper and lower bounds of the daily

average value of soil respiration (diurnal average value � 10% error), and the arrow points to the appearance of these boundaries.
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influence of T and/or W on the error in R. Table 2 shows

the constant coefficient in the different estimate methods

for different size samples. The b of R:T is approximately

0.15, except for point numbers (points number/area) 21

(1.68 n�km�2) and 12 (1.92 n�km�2). And the b of R:T is

approximately 1.3; nevertheless, the b value is higher in

point numbers (points number/area) 21 (1.68 n�km�2),

12 (1.92 n�km�2), and 9 (1.44 n�km�2). Furthermore, the

b and c of R:T&W are not all positive, due to the interac-

tion between T and W.

Discussion

In this study, the measurements were taken between 8:30

and 12:00 local time on each sampling day. More and

more studies are reporting soil respiration over a time

range during the day to better represent daily average

values (Huang et al. 2007; Li et al. 2008b; Wang et al.

2010a). However, because environments are not differ-

ent, the typical time ranges are also different. In a pre-

liminary experiment, we confirmed that the diurnal

average value � error (10%) was about located between

7:30 and 12:30 (Fig. 2). In this time range and

5 9 5 km2 area, observation points maximally reached

51. Furthermore, number and space representations are

key for Monte Carlo spatial sampling. These points were

evenly distributed in consideration of the representative

and experimental situation (Table S1). To a large extent,

soil CO2 emission at this site was accurately measured,

and choosing new points did not result in significant

changes. Therefore, the number and location of these

points are reasonable for the new sampling technique

promotion.

There are mainly two sources of the error resulting

from the estimation of the model parameter(s) and the

integrating of the model prediction for R. In fact, this

kind of error was from fitting degree of the three models

on soil respiration (R) against soil temperature (T) and/

or soil moisture (W). Table 3 indicated the uncertainty

from the two sources by analyzing coefficients of determi-

nation (R2). In our original application of the Monte

Carlo method, we analyzed the optimal sample sizes and

potential errors (CV) by evaluating the dCV/dn value,

based on a data set with sample size changes and with

variation in stand condition. In the 2.5 9 2.5 km2 sub-

plot, the optimal sample sizes for R, T, and W were not

obtained; this suggests that the sample sizes in the area

were too small to significantly reduce the error (Fig. 4).

Nevertheless, the ranges of the optimal samples sizes and

the potential errors in the 5 9 2.5 km2 subplots were

similar to those in the 5 9 5 km2 plot (Table 1). The

results indicate that a small plot with a large enough sam-

ple size also can introduce a similar optimal error based

on optimal sample size.

T and W are two dominant factors for soil respiration

from homogenous soil and vegetation (Xu and Qi 2001;

Shi et al. 2012; Dore et al. 2014). Table 1 shows that the

optimal sample sizes were smaller for T than for W, and

potential errors for T at the optimal sample sizes were

also smaller than those for W. This finding indicated that

W variation could be a greater source of variability when

increasing the scale, which was observed because the

experimental site is arid land, and farmland in this area

depends on irrigation from the Heihe River. During the

growing season, T is basically stable. But, W is closely

related to irrigation, and the irrigation would result in
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Figure 3. Application of the spatial Monte Carlo technique. (A) Relationship between sample size and CV in T; (B) relationship between sample

size and CV in W.
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spatial heterogeneity of W (Ge et al. 2013; Liu et al.

2015). So in the scaling-up process, spatial heterogeneity

of soil moisture is higher than that of soil temperature.

However, the optimal sample sizes were larger for R

than for T and W, and the potential errors for R at the

optimal sample sizes were larger than those for T and

similar with those for W (Table 1). This suggested that

the relationship error of R with W and/or T is not a sim-

ple linear relation when increasing the scale. The R was

based on three models, including R:T, R:W, and R:T&W.

Although some studies have suggested that biophysiologi-

cal process (the hysteresis effect, root exudates, photosyn-

thesis and so on) plays an important role in soil

respiration, these belong to factors of the process model

for soil respiration (Griffis et al. 2003; Gaumont-Guay

et al. 2006; Kuzyakov and Gavrichkova 2010). Actually,

the process model is indeed more reliable and rational.

Nevertheless, the process model has not been effectively

developed and widely used until now (Zhou et al. 2010).

In this study, the three functions are classic empirical

models and have been confirmed and applied widely.

Therefore, the three empirical models were selected for

this study.

First, the R:T model is a more universal T-dependent

equation for soil respiration estimation (Lloyd and Taylor

1994). Equation (7) is total derivative form of the R:T

model and indicated that the error of R (CV) is linear

with variation in T (STD). In the scaling-up process, the

constant coefficients (b) are stable on the whole when

n > 24 (Table 2). Similarly, the R:W model is also an

important equation and, in soil moisture, is a single fac-

tor. Equation (8) is a total derivative form of the R:W

model. Equation (8) indicated that the error of R is linear

with the error of W. When n > 24, the constant coeffi-

cient (b) is stable on the whole in the scaling-up process.

Third, the equation (9) is from the total derivative of R:

T&W. This equation suggested that the error of R is the

multiple of the potential errors in T and W. Nevertheless,

the constant coefficients (b and c) are also shown in

Table 2. When n > 24, the constant coefficients (b and c)
are stable on the whole in the scaling-up process. All

above constant coefficients indicate that when the sample

size is not large enough, the effect of T or W on R is not

steady due to spatial heterogeneity. This demonstrated

that if the optimal sample size was obtained from enough

sample size in the Monte Carlo method, the error could

be significantly reduced. Furthermore, by comparing b
and c in equation (9), we were able to find that c is more

stable than b with a sample size change. This also indi-

cated that soil moisture is the dominant factor for soil

respiration; variation of steady soil temperature is depen-

dent on strong fluctuation of b. In contrast, W changes

dramatically compared with the variation in c. Besides,T
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Table 3 showed the coefficients of determination (R2) of

three models on R against T and/or W. The results indi-

cated W could explain 55.6 � 13.2% variation of R, but

T only could explain 28.3 � 11.6%. Although R:T&W

performs the best fitness among three models due to

interaction between T and W, the best fitness of R:T&W

was mainly based on W factor. That also demonstrated

soil respiration is dominated by soil moisture in the field.

For estimating soil CO2 emission, choosing an appro-

priate model is always a difficult problem (Shi et al.

2012); even though Gomez-Casanovas et al. (2013) evalu-

ated applicability of different models, the evaluation

depended on a time series. However, the problem of esti-

mating soil CO2 based on spatial heterogeneity has not

been solved. The results shown in Figure 4, from use of

the Monte Carlo method, show the variation of errors

(CV) for R based on three models with sample size

changes. Apparently, in 51 points in the 5.0 9 5.0 km2

plot and 30 points in the 5.0 9 2.5 km2 plot, the errors

with sample size changes are not different among the

three models (Fig. 4A,B). These results indicate that the

responses of the three models to sample size change are

not different for these point settings. This may because a

larger sample is enough to reduce the spatial heterogene-

ity. However, for 27, 24, and 21 points in the

5.0 9 2.5 km2 plot and 15 and 12 points in the

2.5 9 2.5 km2, the error of R:T&W is more significantly

reduced with sample size change. This means that the R:

T&W is more appropriate than other models for these

point settings. At these settings, the sample size is not

effective for decreasing the spatial heterogeneity from the

interaction between T and W. However, for 9 points in

the 2.5 9 2.5 km2, R:T is the best model for reducing

error with the scaling-up process. According to the above

analysis, it could be concluded that when the sample size

is large enough, the performance of the three models is

fine. Nevertheless, a consideration of convenient and tra-

ditional applications suggests that R:T could be an appro-

priate model. When the sample size is not more than

enough, R:T&W would be a better choice. Finally, when

the sample size is less for the experimental area, R:T is

also an effective model for increasing accuracy. Further-

more, Table 2 and Fig. 4 indicate that point density

(point number/area) may not be an effective proxy for

error analysis in comparison with point number.

However, these conclusions are only for this experi-

ment, but it can be demonstrated the spatial Monte Carlo

sampling is an effective method or technique for optimiz-

ing sample size and filtering model in future studies.

These analyses would open a new way to effectively

decrease error and shed light on the mechanisms driving

soil respiration.
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