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Background: Exercise training improves VO2peak in heart failure with reduced ejection
fraction (HFrEF), but the effect is highly variable as it is dependent on peripheral
adaptations. We evaluated changes in plasma-derived miRNAs by acute and chronic
exercise to investigate whether these can mechanistically be involved in the variability of
exercise-induced adaptations.

Methods: Twenty-five male HFrEF patients (left ventricular ejection fraction < 40%,
New York Heart Association class ≥ II) participated in a 15-week combined strength
and aerobic training program. The effect of training on plasma miRNA levels was
compared to 21 male age-matched sedentary HFrEF controls. Additionally, the effect
of a single acute exercise bout on plasma miRNA levels was assessed. Levels of
5 miRNAs involved in pathways relevant for exercise adaptation (miR-23a, miR-140,
miR-146a, miR-191, and miR-210) were quantified using RT-qPCR and correlated
with cardiopulmonary exercise test (CPET), echocardiographic, vascular function, and
muscle strength variables.

Results: Expression levels of miR-146a decreased with training compared to controls.
Acute exercise resulted in a decrease in miR-191 before, but not after training. Baseline
miR-23a predicted change in VO2peak independent of age and left ventricular ejection
fraction (LVEF). Baseline miR-140 was independently correlated with change in load
at the respiratory compensation point and change in body mass index, and baseline
miR-146a with change in left ventricular mass index.
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Conclusion: Plasma-derived miRNAs may reflect the underlying mechanisms of
exercise-induced adaptation. In HFrEF patients, baseline miR-23a predicted VO2peak
response to training. Several miRNAs were influenced by acute or repeated exercise.
These findings warrant exploration in larger patient populations and further mechanistic
in vitro studies on their molecular involvement.

Keywords: microRNA, HFrEF—heart failure with reduced ejection fraction, VO2peak, peak oxygen uptake,
response, exercise training, adaptation

INTRODUCTION

Heart failure (HF) is an increasingly prevalent syndrome
with substantial mortality and morbidity due to exercise
intolerance and dyspnea at exertion (Ponikowski et al., 2016).
Apart from pharmacological treatment, exercise training is a
successful multisystem approach in patients with heart failure
with reduced ejection fraction (HFrEF) as it significantly
improves morbidity and quality of life (Ponikowski et al., 2016).
However, the individual response to exercise training in terms
of peak oxygen consumption (VO2peak) is highly variable,
with 55% of HF patients showing insufficient increase (Bakker
et al., 2018). Importantly, these VO2peak non-responders
carry an adverse prognosis, independent of other risk factors,
and early identification is mandatory (Tabet et al., 2008).
The mechanisms driving the variability in response remain
incompletely understood, but evidence is pointing toward
both genetic and epigenetic regulation (Gevaert et al., 2019;
Witvrouwen et al., 2019).

MicroRNAs (miRNAs) are epigenetic modulators of protein
coding genes that act at the post-transcriptional level (Peschansky
and Wahlestedt, 2014). They are involved in pathways that are
relevant for adaptation to exercise, such as changes in skeletal
muscle function and angiogenesis, reduction of inflammation
and response to hypoxia (Wada et al., 2011; Hecksteden et al.,
2016; Welten et al., 2016; Seo et al., 2017; An et al., 2018;
Zheng et al., 2018). We recently identified 5 circulating miRNA
(miR-23a, miR-140, miR-146a, miR-191, and miR-210), that
predicted the training-induced change in VO2peak in HFrEF
patients. In a bio-informatics analysis of their gene targets,
this miRNA panel showed intriguing relations with biological
pathways that could be involved in cardiovascular adaptation
to exercise, such as vascular endothelial growth factor (VEGF)
and mitogen-associated protein kinase (Witvrouwen et al., 2021).
Furthermore, these miRNAs have been related to endothelial
function and angiogenesis, skeletal muscle mass and function,
and inflammatory processes, all relevant to exercise adaptation
(Wada et al., 2011; Zhou et al., 2011; Zhu et al., 2016; Seo et al.,
2017; Sun et al., 2017; Mitchell et al., 2018; Zheng et al., 2018; Du
et al., 2019; Liu et al., 2019; Qiao et al., 2020).

Abbreviations: Aix, Augmentation index; AIx75, Heart rate corrected AIx;
CBC, Complete blood count; CRT, Cardiac resynchronization therapy; ET,
Exercise training; FMD, Flow mediated dilation; ICD, Implantable cardioverter
defibrillator; IVS, Interventricular septum; IVSd, Interventricular septal end
diastole; LAVi, Left atrial volume index; LVEDV, Left ventricular end diastolic
volume; LVEF, Left ventricular ejection fraction; LVMi, Left ventricular mass index;
PWV, Carotid-femoral pulse wave velocity; RCP, Respiratory compensation point;
RER, Respiratory exchange ratio; UC, Usual care.

Previously, it has been shown that miR-146a levels at peak
exercise are positively related with VO2max, and miR-210 was
negatively related to VO2max in healthy subjects (Baggish et al.,
2011; Bye et al., 2013). Both miR-146a and miR-210 have also
been associated with the diagnosis of HF (Vegter et al., 2016).
Furthermore, circulating miRNA levels are dynamically regulated
by acute and chronic exercise. In healthy subjects, some miRNAs
are down- or upregulated immediately after an acute exercise
bout, and return to resting levels 24 h after an extended-duration
acute exercise bout, depending on the tissues of origin or targets
affected by exercise (Baggish et al., 2011, 2014; Nielsen et al.,
2014). However, whether circulating miRNAs in HFrEF patients
are dynamically regulated after a period of exercise training or by
an acute exercise bout is currently unknown.

In this prospective cohort study, we aimed to evaluate whether
plasma levels of miR-23a, miR-140, miR-146a, miR-191, and miR-
210 are influenced by a 15-week exercise training program. In
addition, we assessed the effect of an acute exercise bout on
plasma miRNA levels, both in the untrained and trained status.

MATERIALS AND METHODS

Patients and Study Design
In this prospective cohort study, consecutive HFrEF patients
that were referred for a 15-week supervised combined strength
and moderate-intensity aerobic training program to the Cardiac
Rehabilitation Centre of the Antwerp University Hospital (ET
group) were compared to age-matched HFrEF patients receiving
usual care without exercise training (UC group). Randomization
into a training and non-training group was considered as non-
ethical in view of the strong indication for exercise training in
HFrEF (Class IA indication) (Ponikowski et al., 2016). Patients
were included when they completed at least 30 of the 45
sessions. The study complied with the Declaration of Helsinki
and was approved by the ethics committee of the Antwerp
University Hospital. Written informed consent was obtained
from all participants.

The change in miRNA levels after a 15-week exercise training
program was investigated in the ET group and compared the UC
group, and baseline miRNA levels were related to the change in
VO2peak. In the ET group only, the relation between baseline
miRNA levels and change in cardiopulmonary exercise test
(CPET), cardiac and vascular adaptation, and muscle strength
was studied, and the effect of an acute exercise bout on the
miRNA panel was assessed (Figure 1).
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FIGURE 1 | Study design: Plasma miRNA levels were assessed at baseline and after 15 weeks in the ET and UC group. Vascular function, strength characteristics
and the effect of an acute exercise bout (CPET) on the miRNA levels were evaluated in the ET group only. Since the relation between miRNAs and the
central/peripheral determinants of VO2peak (e.g., endothelial function and skeletal muscle strength) was not the primary objective of this study, these determinants
were not assessed in the UC group. Vascular function measurements included flow mediated dilation of the brachial artery, pulse wave velocity and heart rate
corrected augmentation index. Maximal strength of quadriceps, pectoral, latissimus dorsi, triceps, and deltoid muscles was assessed. CBC, complete blood count;
CPET, cardiopulmonary exercise test; ET, exercise training; TTE, transthoracic echocardiography; UC, usual care.

Power Calculation
The sample size was calculated at 20 individuals per group.
This offers 80% power to detect a difference in change in
VO2peak between the 2 groups of 0.9 standard deviations (SD)
at a significance level of 5%. Previous studies indicate that the
standard deviation of the change in VO2peak is typically around
1.4 ml/kg/min (Belardinelli et al., 1995). Hence, a difference
of 1.26 ml/kg/min in change in VO2peak between the two
groups is detectable.

In- and Exclusion Criteria
Patients with a left ventricular ejection fraction (LVEF) < 40%,
symptoms and signs of HF [New York Heart Association class
(NYHA) ≥ II], clinically stable and optimally medically treated
for ≥ 6 weeks, aged ≥ 18 and ≤ 80 years were eligible. To
avoid the effect of sex-differences in epigenetic regulation,
only male patients were included. Exclusion criteria were
severe valvular pathology, severe renal failure (eGFR CKD-
EPI < 30 ml/min/1.73m2), acute coronary syndrome < 4 weeks
ago, uncontrolled hypertension or arrhythmias, cognitive
impairment, severe pulmonary disease (FEV1 < 60% predicted,
severe decrease in diffusion capacity, chronic obstructive
pulmonary disease GOLD III-IV), auto-immune disorders,
oncologic disease, or inability to exercise.

Exercise Training
Supervised in-hospital exercise training consisted of combined
aerobic and resistance training, 3 sessions/week (58 min/session)
for 15 weeks. Aerobic training intensity was set at 90% of

heart rate (HR) at the respiratory compensation point (RCP).
When RCP was not reached, exercise intensity was calculated
using the Karvonen formula [exercise heart rate = rest heart
rate+ (0.70∗ heart rate reserve)] (Karvonen et al., 1957). Strength
exercise was an important component of the training program,
with the focus primarily on gaining strength during the first
8 weeks. Afterward, aerobic training became more prominent
(Supplementary Figure 1).

Clinical Assessments
CPET was performed on a treadmill (Medical Jaeger, Würzburg,
Germany) with a graded protocol (equivalents of 40 W + 20
W/min or 20 W + 10 W/min) (Beckers et al., 2011), with
an identical protocol for the follow-up test (Cardiovit CS-
200 Ergo-Spiro, Schiller AG, Baar, Switzerland). Gas exchange
measurements and 12-lead electrocardiogram were recorded
continuously. Blood pressure was measured every minute.
VO2peak was determined as the mean VO2peak during the final
30 s of exercise. Percent predicted VO2peak was calculated using
the Jones equation (Jones and Campbell, 1982). The RCP was
estimated from the systematic increased ventilatory equivalent
for VCO2 (VE/VCO2) and the systematic decrease in end tidal
partial pressure of CO2 (PETCO2) (Whipp et al., 1989; Algul
et al., 2017).

Echocardiography was performed on a Vivid E95 cardiac
ultrasound using the 4V transducer for 3-D imaging and
analyzed on Tomtec Arena). Left ventricular ejection fraction
(LVEF), left ventricular mass index (LVMi), left ventricular end
diastolic volume (LVEDV), left atrial volume index (LAVi),
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interventricular septum (IVS) thickness and diastolic parameters
(E/A, E/e’) were recorded. In the UC group, LVEF was calculated
using Simpson’s monoplane (4 chamber view) method on M5S
transducer, AGFA IMPAX Agility 8.1.2, Vivid E95.

Endothelial-dependent vasodilation of the brachial artery
was evaluated by flow mediated dilation (FMD) as previously
described (ProSound alfa6, Hitachi-Aloka Medical Ltd.) (Van
Craenenbroeck et al., 2015c; Mannaerts et al., 2019). FMD was
expressed as the percent change in peak vessel diameter from
the baseline value [(peak diameter − baseline diameter)/baseline
diameter]. Endothelial-independent dilation was calculated
accordingly after sublingual administration of nitroglycerine.
Arterial stiffness was assessed with carotid-femoral pulse wave
velocity (PWV) and pulse wave analysis (PWA) that calculates
augmentation index (AIx) and heart rate corrected AIx (AIx75)
using SphygmoCor (Atcor Medical), as previously described
(Van Craenenbroeck et al., 2015b). All measurements were
done in triplicate.

Bioelectrical impedance analysis was performed on an Omron
BF306 Body Fat Monitor (Omron Healthcare Co., Ltd., Kyoto)
using 2 electrodes (1 handle in each hand) to provide estimates of
total lean mass and fat mass.

Plasma MicroRNA Levels
Whole blood was collected after an overnight fast prior to the
CPET in ethylenediaminetetraacetic acid tubes (EDTA). The
first 3 ml of blood was discarded to prevent contamination
with skin epithelial cells and endothelial cells. Samples were
centrifuged within 30 min after collection (1,500 g, 15 min) at
room temperature, and plasma was stored at−80◦C.

MiR-23a, miR-140, miR-146a, miR-191, and miR-210 were
quantified in plasma samples using miRNA RT-qPCR. In brief,
plasma samples were thawed on ice and centrifuged for 10 min
(4◦C, 16,000 g). RNA enriched for small RNAs (including
miRNAs) was isolated using the mirVana Paris Kit (Thermo
Fisher Scientific). Four hundred microliter 2X Denaturing
Solution was added to 400 µl of plasma. RNA was extracted
using acid-phenol:chloroform and ethanol. The aliquoted eluate
was immediately stored at −20◦C. Reverse transcription and
preamplification were performed using TaqMan miRNA primers
(Thermo Fisher Scientific) and multiplex qPCR was done in a
CFX96 thermal cycler (BioRad) as previously described (Van
Craenenbroeck et al., 2015a). Raw Cq values were calculated in
BioRad CFX manager software v.3.1 using automatic baseline
and threshold settings. Cq values that were undetermined
or > 35 were removed from the analysis, to minimize statistical
confounding by high quantification cycle values. Data were
normalized using geNorm and relative miRNA levels were
expressed as log(2−1Cq∗104) (Gevaert et al., 2018).

Statistical Data Analysis
Data were analyzed using SPSS 26.0 and R version 3.6.0.

Normality of continuous variables was evaluated using
Shapiro-Wilk test. Normally distributed data are expressed as
mean ± standard deviation (SD), skewed variables as median
and range (1st–3rd quartile). Fisher-exact test was used for
comparison of categorical variables, independent samples T-test

or Mann-WhitneyU-test for comparison of continuous variables.
To assess changes with 15 weeks of ET or with acute exercise,
linear mixed models were fitted using time and group or visit as
fixed effects and patient ID as random effect, or paired samples
T-test was used as appropriate.

Correlations were assessed using Pearson correlation analysis.
Multiple linear regression analyses adjusting for age and baseline
LVEF were performed to assess independent determinants of
VO2peak. A two-sided p-value < 0.05 was considered significant.

RESULTS

Baseline Patient Characteristics and
MicroRNA Expression
Twenty-five patients were included in the ET group and 21
patients in the UC group. Baseline patient demographics, clinical,
pharmacological, CPET characteristics, and circulating miRNA
levels are shown in Table 1.

At baseline, ET and UC were similar with regard to
demographics and clinical characteristics, except for BMI, which
was higher in UC (p = 0.042). Ischemic cardiomyopathy was
more common in ET compared to UC (p = 0.033), and
implantable cardioverter defibrillator (ICD) was less common
in ET compared to UC (p = 0.022). Pharmacological therapy
was comparable between ET and UC. CPET characteristics were
similar between groups, except for work economy, which was
lower in ET compared to UC group (6.4 vs. 7.3, p = 0.015).

Baseline miRNA expression was similar between groups,
except for miR-23a which was higher in patients referred for ET
compared to CG (p = 0.043).

At baseline, better heart (LVEF) and kidney (creatinine)
function were associated with higher VO2peak (respectively,
r = 0.303, p = 0.043, and r = −0.514, p < 0.001, Supplementary
Figure 2). Patients with lower LVEF had higher miR-210 levels
(r = −0.321, p = 0.032, Supplementary Figure 2) independent
from age (β =−9.455, p = 0.035, 95%C.I.−18.192,−0.717). None
of the other baseline miRNA levels were related with LVEF. No
significant correlation was found between baseline miRNA levels
and baseline VO2peak.

Exercise Training-Induced Changes in
MicroRNA Expression
Changes in aerobic capacity and clinical characteristics after
15 weeks of follow-up are shown in Table 2 and Supplementary
Figure 3. Change in VO2peak was significantly different between
the ET and UC group (+ 0.95 vs. − 0.64 ml/kg/min (difference
1.59, 95% CI 0.06, 3.12, p = 0.041). NYHA class, peak load and
load at RCP significantly improved in ET. Both ET and UC
patients performed a maximal exercise test, evidenced by a high
respiratory exchange ratio (RER).

After 15 weeks of follow-up, plasma levels of miR-146a
significantly decreased in the ET group, whereas in the UC group
plasma levels remained unaltered (p interaction < 0.05, Figure 2
thick black lines). A significant different evolution in expression
levels of miR-191 was observed in ET compared to UC (decrease
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TABLE 1 | Baseline patient characteristics and training adherence.

ET (n = 25) UC (n = 21) p-value

Clinical characteristics

Age (years) 55.6 ± 13.4 60.0 ± 9.4 0.199

Male sex 100% 100% 1.0

BMI (kg/m2) 26.3 ± 4.7 29.2 ± 4.7 0.042

Diabetes (n, %) 7 (28%) 1 (5%) 0.055

Arterial hypertension 13 (52%) 8 (38%) 0.346

History of smoking 21 (84%) 13 (62%) 0.089

NYHA class II = 15 (60%) III = 10 (40%) II = 17 (81%) III = 4 (19%) 0.124

Ischemic origin of HF 15 (60%) 6 (29%) 0.033

CRT or ICD ICD = 5 (20%); CRT = 4 (16%) ICD = 11 (52%); CRT = 4 (19%) 0.022 1.0

Creatinine (mg/dl) 1.25 (0.98–1.54) 1.22 (0.96–1.59) 0.947

eGFR (ml/min/1.73 m2) 69.2 ± 27.6 66.6 ± 21.8 0.726

Echo characteristics

LVEF (%) 32.5 (25.0–37.0) 30.0 (22.5–37.0) 0.576

Pharmacological therapy

RAAS blocker 25 (100%) 21 (100%) 1.0

Beta blocker 22 (88%) 19 (90%) 1.0

Aldosteron antagonist 18 (72%) 13 (62%) 0.467

Diuretic 16 (64%) 10 (48%) 0.264

CPET characteristics

Resting heart rate (bpm) 66.0 (60.0–71.5) 63.0 (55.0–71.5) 0.440

Baseline VO2peak (ml/kg/min) 21.0 ± 6.3 19.2 ± 5.8 0.321

% Predicted VO2peak (%—ml/kg/min) 73.0 ± 20.6 71.4 ± 16.8 0.780

RER 1.19 ± 0.1 1.18 ± 0.1 0.736

Work economy (watt/ml/kg/min) 6.4 ± 1.0 7.3 ± 1.3 0.015

Peak systolic blood pressure (mmHg) 140 ± 31.5 129 ± 37.3 0.289

Peak load (Watt) 133.6 ± 39.9 140.5 ± 46.5 0.592

VE/VCO2 slope 35.7 ± 6.8 33.5 ± 7.7 0.296

miRNA expression [log(2−1Cq*104)]

miR-23a 1.49 ± 0.4 1.23 ± 0.5 0.043

miR-140 2.50 ± 0.2 2.46 ± 0.2 0.432

miR-146a 3.66 ± 0.2 3.62 ± 0.3 0.557

miR-191 3.83 ± 0.2 3.87 ± 0.2 0.519

miR-210 1.48 ± 0.3 1.41 ± 0.3 0.401

Training adherence

Sessions completed (max. 45) 41 (39-43) NA NA

Data are expressed as mean ± SD, as median (1st–3rd quartile) or as number of subjects (%).
BMI, body mass index; ET, exercise training; CPET, cardiopulmonary exercise test; CRT, cardiac resynchronization therapy; eGFR, estimated glomerular filtration rate; ICD,
implantable cardioverter defibrillator; HF, heart failure; LVEF, left ventricular ejection fraction; RAAS, renin-angiotensin-aldosterone system blockers; n, number of subjects;
NA, not applicable; NYHA class, New York Heart Association functional class; RER, respiratory exchange ratio; UC, usual care.

vs. increase, p interaction < 0.05), but within group differences
did not reach significance (dotted-dashed lines, Figure 2). None
of the other miRNAs had a significant different evolution between
the groups (p-interaction > 0.05).

Acute Exercise-Induced Changes in
MicroRNA Expression
A single exercise bout (CPET) resulted in a rapid and
significant decrease in miR-191 levels in untrained HFrEF
patients (p = 0.043). Intriguingly, exercise training resulted in a
blunted and even reversed response to acute exercise (Figure 3);
a non-significant increase (p = 0.120) after training was observed

(p-interaction = 0.003). No significant effect on the other plasma-
derived miRNAs was observed, but the same trend of reversal of
the miRNA response was observed (except for miR-210).

MicroRNAs as Predictors for Response
to Exercise Training
After 15 weeks of follow-up, VO2peak significantly changed in
ET compared to UC.

In the ET group only, changes in CPET, echocardiographic,
muscle strength and vascular function parameters were assessed
as secondary characteristics of adaptation to training. Following
training, peak load, load at RCP, VO2 at 50% of peak load during
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CPET1, BMI, LVEF, LVMi, lean mass and strength characteristics
significantly improved (see Table 2).

Baseline MicroRNAs and Change in VO2peak
Baseline miR-23a was significantly associated with percent
change in VO2peak (r = 0.387, p = 0.009, Figure 4), and
this was confirmed by multiple linear regression adjusted for
age and baseline LVEF (β = 11.307, p = 0.017, 95% CI
2.113, 20.500). Other miRNAs were not significantly related to
VO2peak changes.

Baseline MicroRNAs and Training-Induced Changes
in Clinical Variables
Baseline miR-140 was related with the percent change in load at
RCP (r =−0.505, p = 0.033) as well as the percent change in BMI
(r = −0.454, p = 0.023). Baseline miR-146a correlated with the

percent change in LVMi (r = −0.446, p = 0.026, Figure 5). None
of the other baseline miRNAs were related with training-induced
changes in clinical variables.

The percent change in BMI, percent change in peak load and
percent change in lean mass were not related with the percent
change in strength characteristics.

DISCUSSION

In this prospective cohort study, we investigated the effect of
15 weeks of exercise training as well as an acute exercise bout on
plasma miRNA levels in HFrEF patients. Moreover, we studied
the relation of miRNA levels with VO2peak training response
to unravel the underlying mechanisms of adaptation to chronic
exercise. The principal findings include:

TABLE 2 | Change in clinical characteristics, CPET variables, echocardiographic findings, skeletal muscle strength, and vascular function after 15 weeks of either
exercise training (ET) or usual care (UC).

ET (n = 25) UC (n = 21) p-value for interaction

Baseline 15 weeks Baseline 15 weeks

BMI 26.3 ± 4.7 27.0 ± 4.7* 29.2 ± 4.7 29.1 ± 4.6 0.006

NYHA class (n, %) II = 15 (60%), III = 10 (40%) I = 9 (36%), II = 13 (52%)
III = 2 (8%), IV = 1 (4%)*

II = 17 (81%), III = 4
(19%)

I = 1 (5%), II = 14
(67%), III = 6 (28%)

0.002

VO2peak (ml/kg/min) 21.0 ± 6.3 21.95 ± 7.5 19.2 ± 5.8 18.56 ± 6.2 0.041

Peak load (Watt) 133.6 ± 39.9 156.4 ± 47.9* 140.5 ± 46.5 143.3 ± 45.3 <0.001

RER 1.19 ± 0.1 1.21 ± 0.1 1.18 ± 0.1 1.18 ± 0.1 0.675

VE/VCO2 slope 35.7 ± 6.8 37.2 ± 9.4 33.5 ± 7.7 35.5 ± 9.5 0.751

Load at RCP (Watt) 110.5 ± 38.5 127.6 ± 40.7** 128.8 ± 46.2 113.8 ± 52.6 0.031

VO2 at RCP (ml/kg/min) 19.2 ± 6.1 20.1 ± 6.1 18.5 ± 6.7 17.7 ± 7.3 0.370

VO2 at 50% of peak load
during CPET1 (ml/kg/min)

14.1 ± 4.1 12.9 ± 3.8** 11.6 ± 3.9 12.0 ± 4.7 0.022

LVEF (%) 31.17 ± 7.4 37.15 ± 9.9*

LVMi (g/m2) 161.32 ± 72.0 135.45 ± 63.0**

RWT 0.33 ± 0.09 0.32 ± 0.08

LAVi (ml/m2) 45.36 ± 19.3 42.47 ± 16.7

IVSd (mm) 10.66 ± 2.3 10.55 ± 2.0

LVEDV (ml) 194.17 ± 55.9 193.58 ± 54.8

E/A 1.29 ± 0.8 1.22 ± 0.7

E/e’ (med) 17.4 ± 8.2 19.1 ± 14.6

E/e’ (lat) 13.8 ± 8.2 12.7 ± 9.1

Lean mass (kg) 59.6 ± 8.5 61.5 ± 8.1**

Bio-impedance (%) 26.0 ± 7.2 26.1 ± 6.9

Quadriceps (kg) 37.07 ± 18.0 51.20 ± 19.2*

Latissimus dorsi (kg) 46.25 ± 12.3 54.20 ± 12.3*

Triceps, pectoral and
deltoid muscles (kg)

55.80 ± 14.3 63.95 ± 11.6**

Pectoral muscles (kg) 28.88 ± 10.9 41.33 ± 10.2*

PWV (m/s) 7.96 ± 2.0 7.63 ± 1.9

FMD (%) 4.89 ± 3.2 5.18 ± 2.3

AIx75 (%) 17.06 ± 13.4 17.5 ± 13.0

Data are expressed as mean ± SD or as number of subjects (%). *p < 0.001, **p < 0.05.
AIx75, heart rate corrected augmentation index; BMI, body mass index; CPET, cardiopulmonary exercise test; ET: exercise training; FMD, flow-mediated dilation; IVSd,
interventricular septal end diastole; LAVi, left atrial volume index; LVEDV, left ventricular end-diastolic volume; LVEF, left ventricular ejection fraction; LVMi, left ventricular
mass index; n, number of subjects; NYHA class, New York Heart Association class; PWV, pulse wave velocity; RCP, respiratory compensation point; RER, respiratory
exchange ratio; UC, usual care.
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FIGURE 2 | Effect of 15 weeks of training on plasma levels of miRNAs in ET compared to 15 weeks of follow-up in UC. Data are expressed as the mean logarithm of
the relative expression of the respective miRNA ± SD at baseline and after 15 weeks. Each line represents the change in plasma miRNA levels with 15 weeks of
training in ET (n = 25) and 15 weeks of follow-up in UC (n = 21).

FIGURE 3 | Fold change miRNA expression with acute exercise at baseline and after 15 weeks of exercise training in ET. ET, exercise training group (n = 25); Fold
change, post CPET/pre CPET miRNA expression. Data are expressed as mean and error. #within group p < 0.05, *p-value for interaction < 0.05.

• miR-146a levels decrease following 15 weeks of training
compared to controls
• A single bout of acute exercise results in a decrease in miR-

191 in untrained patients
• Baseline miR-23a predicts the percent change in VO2peak

following 15 weeks of training
• miRNA change in response to exercise may provide insights

in the mechanisms driving VO2peak variability.

Dynamic Regulation of MicroRNA
Expression Following Chronic Exercise
As previously reported, expression levels of circulating miRNAs
change with acute or chronic exercise training (Baggish et al.,
2011; Denham and Prestes, 2016). In the present study, we
observed a significant decrease in relative expression of miR-
23a, miR-140, and miR-146a in the ET group with 15 weeks of
training. However, the evolution was only significantly different
for miR-146a when compared to the UC group. Our findings

are in contrast with Baggish et al. (2011) who observed no
change in miR-146a levels with 90 days of rowing training.
This difference might be related to the population studied i.c.
athletes. To date, evidence on the physiological role of circulating
miRNA in the adaptation to exercise is scarce, and to the best
of our knowledge, virtually non-existent in the response to
training in HFrEF patients. Hence, we can only speculate that
the differences in circulating miRNA levels after training that
we observed, may result from an underlying active and selective
miRNA process that is involved in pathways relevant to exercise
adaptation in HFrEF patients, rather than reduced passive release
of these miRNAs.

In HFrEF patients, capillary density in skeletal muscle is
reduced (Duscha et al., 1999). Both miR-23a and miR-146a
were previously shown to stimulate angiogenesis (Zhou et al.,
2011; Zhu et al., 2016). Therefore, reduced miR-23a and miR-
146a levels after 15 weeks of training may reflect a diminished
need for angiogenesis since capillary density increases with
endurance and resistance training (Ingjer, 1979; Hudlicka et al.,
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FIGURE 4 | Pearson correlation of baseline relative miR-23a expression and
the percent change in VO2peak in ET (n = 25) and UC (n = 20).

1992; Holloway et al., 2018). Also, a transient increase in miR-
23a and miR-146a may be expected during the training program,
reflecting the exercise-induced angiogenesis, but this needs to be
explored in future experiments.

Furthermore, HFrEF patients often have skeletal muscle
wasting, especially with more advanced disease status, and this
contributes to typical HF symptoms and signs such as dyspnea
and exercise intolerance, which results in lower VO2peak and
load during CPET (Ponikowski et al., 2016). Exercise training
improves skeletal muscle mass and function and has beneficial
effects on LVEF and LV remodeling in HFrEF patients (Adams
et al., 2017; Tucker et al., 2019). An important driver of skeletal
muscle wasting is the ubiquitin-proteasome system (Adams
et al., 2021). Both miR-23a and miR-140 were shown to protect
against skeletal muscle atrophy through inhibiting the ubiquitin-
proteasome pathway and Wnt family member 11 expression,
respectively (Wada et al., 2011; Liu et al., 2019). Hence, after
training, sufficient skeletal muscle hypertrophy may result in
lower miR-23a and miR-140 levels. However, this contrasts the

finding that baseline miR-140 was inversely correlated with the
change in load at RCP and BMI.

In the present study, we observed a differential expression
between ET and UC in miR-23a. This could be attributed to
the non-randomized study design, where ET patients might have
had more skeletal muscle wasting compared to stable sedentary
HFrEF controls, as BMI was significantly lower in ET compared
to UC. Unfortunately, we do not have strength characteristics
of the UC group. After 15 weeks of combined resistance and
aerobic training, BMI significantly increased in the ET group,
which could be attributed to increases in skeletal muscle mass, as
indicated by higher strength characteristics in ER and coinciding
increase in lean mass. However, no correlations with strength
characteristics, or between (fold change) miR-23a and percent
change in strength or lean mass were observed. Regarding the
effect on cardiac hypertrophy, both miR-23a, miR-140, and
miR-146a mediate cardiac hypertrophy through targeting the
ubiquitin-proteasome pathway, GATA binding protein 4 and
dihydrolipoyl succinyltransferase, respectively (Wang et al., 2012;
Heggermont et al., 2017; Li et al., 2019). In contrast, we observed
an inverse correlation between baseline miR-146a and percent
change in LVMi in the ET group.

Baseline miR-210 was inversely related to LVEF. Since miR-
210 has been related to hypoxia and upregulates VEGF in
endothelial cells (Zheng et al., 2018), the inverse relation with
LVEF could reflect the reduced oxygen delivery to the periphery
that coincides with worsening LVEF and cardiac output in HFrEF
(Piepoli et al., 2010).

Dynamic Regulation of MicroRNA
Expression Following Acute Exercise
In addition, miRNA levels can be altered by acute exercise bouts.
Previous research in patients with chronic kidney disease showed
a rapid downregulation of circulating miR-146a following an
acute exercise bout (Van Craenenbroeck et al., 2015a). In patients
with heart failure (average LVEF 47.7%), Xu et al. (2016) observed
an increase in circulating miR-21, miR-378, and miR-940 with
acute exercise. However, in this study no distinction between
heart failure with reduced, preserved or mid-range ejection
fraction was made. In healthy athletes, miR-146a and miR-222
were shown to be upregulated by acute exercise both before

FIGURE 5 | Pearson correlation of baseline relative miRNA expression, the percent change in LVMi, percent change in load at RCP and the percent change in BMI in
ET only. BMI, body mass index (n = 25); LVMi, left ventricular mass index (n = 25); RCP, respiratory compensation point (n = 18).
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and after a 90-day rowing training, whereas miR-21 and miR-
221 were only upregulated by acute exercise before the training
period (Baggish et al., 2011). In the present study, at baseline all
miRNA tended to decrease following an acute exercise bout, but
this was only significant for miR-191. Intriguingly, this response
reversed after 15 weeks of ET, which also suggests a selective
training-induced effect on the miRNA expression.

MiR-191 has inhibitory effects on angiogenesis in endothelial
cells (Gu et al., 2017; Du et al., 2019) and it stimulates myogenesis
(Mitchell et al., 2018). As an acute exercise bout in sedentary
patients elicits a hypoxic state, this triggers pro-angiogenic
mechanisms. The fact that miR-191 has been shown to inhibit
angiogenesis therefore could explain the decreased miR-191
levels observed at baseline. However, this needs to be confirmed
in in vitro experiments. Regarding the effect on myogenesis, a
single exercise bout provokes acute muscle damage after which
myogenesis is established, and therefore lower levels of miR-
191. After this initial decrease in myogenesis, we speculate to
observe a rise in miR-191 and stimulation of myogenesis to
repair the damaged skeletal muscle cells and to increase skeletal
muscle hypertrophy. However, we only collected blood samples
immediately after CPET so this hypothesis needs to be confirmed.
In addition, increased angiogenesis and reduced myogenesis due
to lower circulating miR-191 levels following an acute exercise
bout may be conflicting. This could be explained by the fact that
miRNA are tissue and disease specific, and circulating miRNA
levels not always reflect intracellular levels (Pigati et al., 2010).

Finally, we hypothesize that with repeated acute exercise
bouts (i.e., the effect of a 15-week training program) in HFrEF
patients, the triggers for angiogenesis and myogenesis might have
faded out due to increased capillarity and skeletal muscle mass,
resulting in the opposite change of miRNA expression levels.

Predicting Change in Aerobic Capacity
Based on Baseline Plasma MicroRNA
Levels
More than half of the HFrEF patients who participate in an
ET program may not increase their VO2peak (Bakker et al.,
2018) and despite many efforts, a predictive biomarker for
VO2peak response to training is still lacking. In our previous
study, we identified several miRNA that were upregulated in
patients with an unfavorable VO2peak response (Witvrouwen
et al., 2021). Among these miRNAs, miR-23a, miR-140, miR-
146a, miR-191, and miR-210 were involved in pathways relevant
for exercise adaptation processes. In the current study, we
observed a significant change in VO2peak in ET compared
to UC; however, the increase within ET was not significant,
which could be explained by the fact that BMI significantly
increased in ET. Consequently, the observed change in VO2peak
in ml/kg/min is underestimated. Furthermore, we confirmed
that baseline miR-23a predicts the change in VO2peak with
training, which may reflect the underlying mechanisms of
exercise adaptation since miR-23a was shown to stimulate
angiogenesis and to protect against skeletal muscle atrophy
(Wada et al., 2011; Zhou et al., 2011). However, we observed clear

improvements in muscle strength, but no correlations with miR-
23a. This could be attributed to the low sample size. Nevertheless,
miRNAs could emerge as promising epigenetic biomarkers of
training response.

Limitations and Future Perspectives
Whereas aerobic training is known to improve endothelial
function in stable coronary artery disease and HFrEF patients
(Van Craenenbroeck et al., 2010, 2015c), and both aerobic,
resistance and combined aerobic/resistance training showed
similar improvements in FMD in patients with hypertension
or prehypertension (Pedralli et al., 2020), we did not observe
significant improvements in vascular function with 15 weeks of
ET. This could be attributed to this subgroup analysis lacking
statistical power to draw definitive conclusions.

Furthermore, the study can be biased due to the non-
randomized design. However, as stated in the methods,
randomizing patients to a training and control group would
have been unethical in view of the class IA recommendation
of ET in HFrEF patients with favorable effects on morbidity,
mortality and quality of life (Ponikowski et al., 2016). As
findings of this study are hypothesis generating, they should be
validated in larger prospective trials and in in vitro experiments.
Future pre-clinical studies could investigate and compare
the expression levels in tissue (skeletal muscle, endothelial
cells) to the observed changes in plasma levels. Hence, the
contribution of miRNA to exercise adaptation processes
can be examined, as either miRNA post-transcriptionally
influence gene expression or they can be an exercise-induced
epiphenomenon in these tissues (f.ex. exercise-induced
skeletal muscle hypertrophy results in an increased release
of miRNAs in the circulation). This will aid in further unraveling
of the underlying mechanisms of response to acute and
chronic exercise.

CONCLUSION

The effect of acute and chronic exercise on the expression levels of
5 circulating miRNAs involved in pathways relevant for exercise
adaptation (miR-23a, miR-140, miR-146a, miR-191, and miR-
210) was investigated in HFrEF patients admitted to a 15-week
combined strength and aerobic training program and compared
to the sedentary usual care group.

MiR-146a levels decreased following 15 weeks of training
compared to the UC group. A single bout of acute exercise
resulted in a decrease in miR-191 levels before, but not after
training. Baseline miRNA-23a levels were related with the change
in VO2peak. Furthermore, baseline miR-140 was inversely related
to the percent change in load at RCP and BMI, and baseline
miR-146a was inversely related to the percent change in LVMi
following 15 weeks of training.

Therefore, miR-23a, miR-140, miR-146a, and miR-191 may
provide insights in skeletal muscle, cardiac hypertrophy and
angiogenic response to exercise in HFrEF patients. These findings
warrant further exploration in larger patient populations and in
molecular biology set-ups.
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