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Protein kinase C-theta (PKCθ) is a key enzyme inT lymphocytes, where it plays an important
role in signal transduction downstream of the activated T cell antigen receptor (TCR) and
the CD28 costimulatory receptor. Interest in PKCθ as a potential drug target has increased
following recent findings that PKCθ is essential for harmful inflammatory responses medi-
ated byTh2 (allergies) andTh17 (autoimmunity) cells as well as for graft-versus-host disease
(GvHD) and allograft rejection, but is dispensable for beneficial responses such as antiviral
immunity and graft-versus-leukemia (GvL) response. TCR/CD28 engagement triggers the
translocation of the cytosolic PKCθ to the plasma membrane (PM), where it localizes at
the center of the immunological synapse (IS), which forms at the contact site between an
antigen-specificT cell and antigen-presenting cells (APC). However, the molecular basis for
this unique localization, and whether it is required for its proper function have remained
unresolved issues until recently. Our recent study resolved these questions by demon-
strating that the unique V3 (hinge) domain of PKCθ and, more specifically, a proline-rich
motif within this domain, is essential and sufficient for its localization at the IS, where it is
anchored to the cytoplasmic tail of CD28 via an indirect mechanism involving Lck protein
tyrosine kinase (PTK) as an intermediate. Importantly, the association of PKCθ with CD28 is
essential not only for IS localization, but also for PKCθ-mediated activation of downstream
signaling pathways, including the transcription factors NF-κB and NF-AT, which are essential
for productive T cell activation. Hence, interference with formation of the PKCθ-Lck-CD28
complex provides a promising basis for the design of novel, clinically useful allosteric PKCθ

inhibitors. An additional recent study demonstrated that TCR triggering activates the ger-
minal center kinase (GSK)-like kinase (GLK) and induces its association with the SLP-76
adaptor at the IS, where GLK phosphorylates the activation loop of PKCθ, converting it
into an active enzyme. This recent progress, coupled with the need to study the biology
of PKCθ in human T cells, is likely to facilitate the development of PKCθ-based therapeutic
modalities for T cell-mediated diseases.
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INTRODUCTION
Protein kinase C-theta (PKCθ) is a key regulator of signal trans-
duction in activated T cells that is linked to multiple pathways
downstream of the T cell antigen receptor (TCR; Isakov and
Altman, 2002). Engagement of the TCR and the resulting forma-
tion of diacylglycerol (DAG) are sufficient for promoting PKCθ

recruitment to cell membranes (Monks et al., 1997, 1998). How-
ever, localization of PKCθ to the immunological synapse (IS) is
entirely dependent on the concomitant ligation of the CD28 core-
ceptor (Huang et al., 2002). Localization of PKCθ at the center
of the IS is essential for activation of signaling pathways that
promote T cell-dependent immune responses against distinct anti-
gens and pathogens. While the recruitment of PKCθ to the IS of
TCR/CD28 engaged T cells has been extensively studied, informa-
tion on the molecular basis for this highly selective process has
been relatively scarce until recently. The present manuscript pro-
vides background information on the molecules involved in this

process and describes in more detail the studies that clarified a new
mechanism by which PKCθ is being recruited to the center of the
IS and is essential for the induction of PKCθ-dependent activation
signals.

THE PKC FAMILY
Protein kinase C was discovered by Nishizuka and colleagues, who
demonstrated a new kinase that undergoes activation by lim-
ited proteolysis (Inoue et al., 1977), or by translocation to the
plasma membrane (PM), where it associates with specific cofac-
tors (Takai et al., 1979). The membrane-associated PKC-activating
factor turned to be DAG (Kishimoto et al., 1980). DAG, together
with inositol 1,4,5-trisphophate (IP3), are products of phospho-
lipase C-mediated hydrolysis of the membrane phospholipid,
phosphatidylinositol 4,5-bisphosphate (PIP2; Berridge and Irvine,
1984; Nishizuka, 1984). These two second messengers transduce
signals from a plethora of activated receptors: the hydrophobic
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DAG remains bound to the cell membrane where, in addition to
PKC, it activates effector molecules such as RasGRP, a guanine
nucleotide exchange factor (GEF) for Ras (Lorenzo et al., 2000),
while the hydrophilic IP3 diffuses through the cytosol and binds
IP3-receptors, which function as ligand-gated Ca2+ channels in
the endoplasmic reticulum (ER), thereby triggering the release of
free Ca2+ ions into the cytoplasm (Takai et al., 1979; Khan et al.,
1992; Bourguignon et al., 1994). The utilization of phorbol esters,
which mimic the activity of DAG, together with Ca2+ ionophores,
demonstrated that PKC also plays an essential role in the induc-
tion of T lymphocyte proliferation (Truneh et al., 1985; Isakov and
Altman, 1987) and reactivation of effector cytotoxic T cells (Isakov
and Altman, 1985; Isakov et al., 1987).

Protein kinase C enzymes transduce a myriad of signals from
a large number of cell surface receptors that are coupled to
phospholipase C and phospholipid hydrolysis. They regulate the
function of effector molecules by phosphorylating specific serine
and threonine residues. The PKC family includes 10 structurally
and functionally related isoforms (for more details, see the first
review by Pfeifhofer-Obermair et al., 2012), grouped into three
subfamilies based on the composition of their regulatory domains
and their respective cofactor requirements (Newton, 1995; Mel-
lor and Parker, 1998). The first subfamily includes conventional
PKCs (cPKC; α, βI, βII, γ) that are regulated via two DAG-binding
C1 domains organized in tandem near the cPKC amino termi-
nus (Hurley et al., 1997; Johnson et al., 2000; Ho et al., 2001)
and an adjacent Ca2+ and phospholipid-binding C2 domain
(Nalefski and Falke, 1996; Johnson et al., 2000). The second
group includes novel PKCs (nPKC; δ, ε, η, θ) that are DAG-
dependent, but Ca2+ and phospholipid independent for their
activity. The third group includes atypical PKCs (aPKC: ζ, λ/ι)
that are DAG-, Ca2+-, and phospholipid-independent. While
PKC enzymes are involved in metabolic processes in different
cell types, many studies implicate PKC enzymes in signal trans-
duction networks that convert environmental cues into cellular
actions (Rosse et al., 2010). Six of the PKC isoforms, includ-
ing PKCα, δ, ε, η, θ, and ζ are expressed at varying amounts
in T cells (Meller et al., 1999). Immunological studies using dif-
ferent genetic models and pharmacological drugs indicated that
distinct PKC isoforms are required for different aspects of the
activation and effector functions of T cells. The results sug-
gest that distinct PKC isoforms may serve as drug targets for
different T cell mediated adaptive immune responses (Baier and
Wagner, 2009).

PROTEIN KINASE C-THETA
Protein kinase C-theta is a Ca2+-independent nPKC isoform
exhibiting a relatively selective pattern of tissue distribution, with
predominant expression in T lymphocytes (Baier et al., 1993;
Meller et al., 1999), platelets (Chang et al., 1993; Meller et al.,
1998; Cohen et al., 2009), and skeletal muscle (Osada et al., 1992;
Chang et al., 1993). It has a unique ability to translocate to
the center of the IS of activated T cells (Monks et al., 1997,
1998) where its full activation requires the integration of TCR
and CD28 costimulatory signals (Huang et al., 2002; Tseng et al.,
2008; Yokosuka et al., 2008). Engagement of the TCR and the
CD28 coreceptor initiates a series of PKCθ-dependent signaling

events leading to activation of transcription factors, including
NF-κB, AP-1, and NF-AT, which are critical for T cell activa-
tion, proliferation and differentiation (Baier-Bitterlich et al., 1996;
Coudronniere et al., 2000; Dienz et al., 2000; Lin et al., 2000;
Sun et al., 2000; Pfeifhofer et al., 2003). Under certain activa-
tion conditions, PKCθ can translocate to the nucleus where it
directly associates with chromatin and is involved in the regu-
lation of microRNAs and T cell-specific inducible gene expression
program (Sutcliffe et al., 2011). The exact mechanism by which
the membrane-bound PKCθ delivers signals to the nucleus has
not been fully resolved but studies provided information on a
number of effector molecules that operate along this pathway
in activated T cells. These studies demonstrated that PKCθ-
mediated regulation of NF-κB activity involves the multisubunit
inhibitor of κB (IκB) kinase (IKK) complex (Coudronniere et al.,
2000; Dienz et al., 2000; Khoshnan et al., 2000; Lin et al., 2000;
Bauer et al., 2001).

An important upstream effector in the NF-κB signaling path-
way is IκBα, which binds NF-κB in the cytoplasm of resting T cells
and mask its nuclear localization signal (NLS), thereby preventing
NF-κB translocation to the nucleus (Mercurio et al., 1997; Regnier
et al., 1997; Jacobs and Harrison, 1998). IKK-mediated phospho-
rylation of IκBα signals the protein for degradation (Karin, 1999),
exposes the NF-κB NLS and promotes NF-κB translocation to
the nucleus and the induction of NF-κB-mediated gene transcrip-
tion. T cells from PKCθ-deficient (Prkcq−/−) mice fail to respond
to TCR stimulation with degradation of IκBα (Sun et al., 2000),
supporting the model whereby PKCθ regulates NF-κB activity
through its effect on IKK-IκBα. Some of the effector molecules
that link PKCθ to IKK have been identified and include the PKCθ

substrate protein, caspase activation and recruitment domain
(CARD) and membrane-associated guanylate kinase (MAGUK)
domain-containing protein-1 (CARMA1). This scaffold protein
is primarily expressed in lymphocytes (Bertin et al., 2001; Hara
et al., 2003), where it links PKCθ to NF-κB activation in T cells
(Ruland et al., 2001, 2003; Ruefli-Brasse et al., 2003; Xue et al.,
2003). Phosphorylation of CARMA1 by PKCθ in TCR/CD28-
stimulated T cells, promotes CARMA1 association with the B-cell
lymphoma/leukemia 10 (Bcl10) and mucosa-associated lymphoid
tissue 1 (MALT1) proteins (Matsumoto et al., 2005; Sommer et al.,
2005) leading to recruitment of the trimolecular complex to the
IS (Gaide et al., 2002; Che et al., 2004; Hara et al., 2004) and
activation of the IKK complex (McAllister-Lucas et al., 2001). Fur-
thermore, overexpression of CARMA1, Bcl10, and MALT1 in T
cells, followed by TCR/CD28 stimulation, resulted in the forma-
tion of a CARMA1-Bcl10-MALT1 trimolecular complex, where
all three proteins were required for maximal activation of NF-κB
(McAllister-Lucas et al., 2001; Ruland et al., 2001). It should be
noted that in some studies (Khoshnan et al., 2000), but not oth-
ers (Lin et al., 2000), PKCθ was found to directly associate with
members of the IKK complex, particularly IKKβ, suggesting the
potential existence of an additional linear route from PKCθ to
NF-κB. The transcription factor AP-1, similar to NF-κB, is a pri-
mary physiological target of PKCθ (Baier-Bitterlich et al., 1996; Li
et al., 2004), while regulation of the NF-AT transcription factor
requires cooperation between PKCθ and calcineurin, a Ca2+-
dependent serine/threonine phosphatase (Pfeifhofer et al., 2003).
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All three PKCθ-regulated transcription factors have correspond-
ing binding sites on the IL-2 gene promoter, and their bind-
ing to the IL-2 gene is essential for optimal IL-2 response
(Isakov and Altman, 2002).

While PKCθ-mediated regulation of NF-κB activity in
TCR/CD28-stimulated T cells has been studied in great detail,
PKCθ is also involved in the regulation of additional cellular func-
tions, and physically associates with additional binding partners.
Besides CARMA1, PKCθ physically associate with 14-3-3τ (Meller
et al., 1996), Cbl (Liu et al., 1999), Fyn (Ron et al., 1999), Lck (Liu
et al., 2000), AKT (Bauer et al., 2001), moesin (Pietromonaco et al.,
1998), PICOT (Witte et al., 2000), and the HIV nef protein (Smith
et al., 1996). Some of these molecules (i.e., Lck) phosphorylate
PKCθ and may affect its activity and/or subcellular distribution,
while others, which serve as substrates for PKCθ (i.e., Cbl, 14-3-3τ

and moesin) may regulate cellular functions, such as cytoskeletal
reorganization.

DIFFERENTIAL REQUIREMENTS FOR PKCθ BY
DISTINCT T CELL SUBPOPULATIONS
Initial characterization of PKCθ-deficient T cells suggested the
involvement of PKCθ in cellular responses leading to T cell acti-
vation, proliferation, and cytokine production (Sun et al., 2000;
Pfeifhofer et al., 2003; Anderson et al., 2006). Subsequent in vitro
and in vivo investigations and the analysis of Prkcq−/− mice in dif-
ferent disease models demonstrated differential requirements for
PKCθ by distinct T cell subpopulations and during the induc-
tion of selected types of immune responses. Thus, PKCθ was
found to be essential for the induction of Th2-type immune
responses to allergens or helminth infection (Marsland et al., 2004;
Salek-Ardakani et al., 2004) and the induction of Th17-mediated
experimental autoimmune encephalomyelitis (EAE) that serves
as a model of multiple sclerosis (Salek-Ardakani et al., 2005;
Anderson et al., 2006; Tan et al., 2006; Marsland et al., 2007;
Kwon et al., 2012), and other experimental autoimmune dis-
eases (Anderson et al., 2006; Healy et al., 2006; Marsland et al.,
2007; Chuang et al., 2011). In contrast, Th1-dependent mouse
resistance to Leishmania major infection was intact in Prkcq−/−
mice (Marsland et al., 2004; Ohayon et al., 2007), and PKCθ

was dispensable for CTL-mediated protective antiviral responses,
most likely reflecting compensation by innate immunity sig-
nals (Berg-Brown et al., 2004; Giannoni et al., 2005; Marsland
et al., 2005, 2007; Valenzuela et al., 2009). Consistent with the
in vivo findings, in vitro induction of CD4+ T cell polariza-
tion by optimal T cell-antigen-presenting cell (APC) coculture
conditions, demonstrated a requirement for PKCθ during Th2
and Th17 cell development, and only moderate effect of PKCθ

on Th1 cell development (Marsland et al., 2004; Salek-Ardakani
et al., 2004, 2005). Additional studies performed in Prkcq−/−
mice demonstrated the requirement for PKCθ in the induction of
graft-versus-host (GvH) and alloreactive T cell-mediated immune
responses (Valenzuela et al., 2009). In contrast, PKCθ-deficient T
cells retained the ability to induce graft-versus-leukemia (GvL)
responses in allogeneic bone marrow (BM) transplanted mice
(Valenzuela et al., 2009).

Protein kinase C-theta also contributes to allograft rejection,
as shown by Manicassamy et al. (2008) using an adoptive transfer

model. In these studies, Rag−/− mice reconstituted with Prkcq−/−
T cells were unable to reject cardiac allografts, in contrast to the
acute allograft rejection observed in the wild-type T cell recon-
stituted Rag−/− mice. However, this was due to lack of PKCθ-
regulated expression of anti-apoptotic molecules, such as Bcl-xL,
which led to apoptosis of the effector T cells; transgenic expression
of Bcl-xL in Prkcq−/− T cells restored their ability to reject the car-
diac allografts. The rejection of cardiac allograft by Prkcq−/− mice
was only slightly delayed (Manicassamy et al., 2008; Gruber et al.,
2009), suggesting compensation by other PKC isoforms. Indeed,
mice lacking both PKCθ and PKCα, demonstrated a significantly
delayed rejection of cardiac allografts (Gruber et al., 2009).

The overall positive role of PKCθ in the activation of effector
T cells (Teff ) and the promotion of adaptive immune responses
raise questions about the nature of its function in regulatory T
cells (Treg) that suppress Teff functions. This issue has recently
been partially resolved by Zanin-Zhorov et al. (2010) who found
that PKCθ mediates negative feedback on Treg functions. Further-
more, activation of Treg resulted in sequestration of PKCθ away
from the IS, and inhibition of PKCθ activity (using the C20 com-
pound) increased the suppressive activity of Treg (Zanin-Zhorov
et al., 2010, 2011). In vivo studies demonstrated that Treg devel-
opment in the thymus of Prkcq−/− mice is impaired leading
to reduced numbers of Treg cells in the periphery (Schmidt-
Supprian et al., 2004; Zanin-Zhorov et al., 2010, 2011), although
activity of these mature PKCθ-deficient Treg cells was intact
(Gupta et al., 2008).

THE IMMUNOLOGICAL SYNAPSE
Adaptive immune responses are dependent on the effective com-
munication between antigen-specific T cells and APCs. At the
very early phase of the activation response, T cells interact via
their TCR with cognate peptide-MHC complexes on the surface
of APCs and both cell types respond by redistributing their recep-
tors/ligands to the contact area that rearranges as a platform for
effective signaling (Dustin and Zhu, 2006). The IS, representing
the interface between a T cell and an APC, is formed by specific
protein microclustering (Yokosuka et al., 2005) and their segre-
gation into one of two separate regions: a central core [central
supramolecular activation clusters (cSMAC)], which contains the
TCR and costimulatory receptors, and a peripheral region [periph-
eral supramolecular activation clusters (pSMAC)], which contains
adhesion molecules, such as LFA-1 (Dustin, 2009). T cell sur-
face receptor engagement triggers signaling cascades that result in
the recruitment of multiple membrane-anchored and cytoplas-
mic effector molecules, including kinases, adaptor proteins, and
cytoskeletal components, to the IS (Dustin et al., 2010). One of
the most prominent proteins to be recruited to the IS of antigen-
responding T cells is PKCθ, which localizes at the cSMAC (Monks
et al., 1997, 1998). Additional high-resolution imaging analysis
by TIRF microscopy demonstrated that PKCθ colocalizes with
CD28, and demonstrated that the cSMAC is divided into two
structurally and functionally distinct compartments: a central
TCRhigh compartment, where signaling is terminated (Vardhana
et al., 2010) and TCR-associated signaling complexes are internal-
ized and degraded, and an outer TCRlow “ring” where PKCθ and
CD28 colocalize (Yokosuka et al., 2008).
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CD28
CD28 is a type 1 transmembrane glycoprotein that is constitu-
tively expressed as a disulfide-linked homodimer on all CD4+ and
CD8+ murine T cells and majority of CD4+ and CD8+ human
peripheral blood T cells (Gross et al., 1990; Vallejo, 2005). The
human CD28 precursor protein is 220 amino acids long (218 in
mouse) and the mature protein possesses 202 amino acids (218
in mouse) due to cleavage of an amino-terminal leader sequence
(18 and 19 amino acids in the human and mouse CD28, respec-
tively). In addition, CD28 possesses a cytoplasmic tail of 41 amino
acids (38 in mouse) that is critical for signal transduction and
coreceptor-induced cell stimulation. Physiological activation of
CD28 is mediated by one of two natural ligands expressed on
the surface of APCs, CD80, and CD86, which directly asso-
ciate with a conserved motif [MYPPPY (single amino-acid letter
code)] in the extracellular region of CD28 (Kariv et al., 1996;
Truneh et al., 1996). Engagement of CD28 provides costimula-
tory signals that complement or synergize with those provided
by the TCR, leading to optimal activation of T cells (Thompson
et al., 1989; Harding et al., 1992). CD28 engagement increases IL-
2 production (Thompson et al., 1989; Jain et al., 1995; Reichert
et al., 2001) and IL-2 receptor expression (Shahinian et al., 1993),
and provides survival signals by upregulating the anti-apoptotic
protein, Bcl-XL (Boise et al., 1993). In addition, CD28 syner-
gizes with the TCR in providing potent signals for activation of
c-Jun kinase (JNK), p38 MAP kinase, and IKK pathways (Su
et al., 1994; Harhaj and Sun, 1998), and activation of the NF-
κB (Michel et al., 2000; Diehn et al., 2002) AP-1 (Rincon and
Flavell, 1994) and NF-AT transcription factors (Michel et al., 2000;
Diehn et al., 2002).

The positive role of CD28 in T cell activation was demonstrated
in CD28-deficient (Cd28−/−) T cells, in which TCR engagement
in the absence of CD28 costimulation resulted in anergy and/or
tolerance induction upon rechallenge with the same antigen
(Appleman and Boussiotis, 2003). T cell proliferation and Th2-
type cytokine secretion were also severely impaired in Cd28−/−
mice or wild-type mice treated with CD28 antagonists (Green
et al., 1994; Lucas et al., 1995; Rulifson et al., 1997; Schweitzer
et al., 1997; Gudmundsdottir et al., 1999). Furthermore, lack of
CD28-mediated costimulation led to reduced immune responses
against infectious pathogens (Shahinian et al., 1993; King et al.,
1996; Mittrucker et al., 2001; Compton and Farrell, 2002) and
allografts (Salomon and Bluestone, 2001) and impaired GvH dis-
ease (Via et al., 1996), contact hypersensitivity (Kondo et al., 1996),
and asthma (Krinzman et al., 1996).

T cell receptor engagement in the absence of CD28 cos-
timulation induces an unbalanced signaling response in which
TCR-mediated Ca2+ influx predominates. This leads to activa-
tion of calcineurin which dephosphorylates NF-AT leading to its
nuclear translocation and induction of a limited set of anergy-
associated genes resulting in T cell anergy (Macian et al., 2004).
CD28, in contrast to the TCR, does not induce a Ca2+ response
(Lyakh et al., 1997). Instead, CD28-coupled costimulatory sig-
nals induce the activation of NF-κB and AP-1, and concomitant
AP-1 association with NF-AT, conditions that promote IL-2 prod
uction and rescue of the T cells from a state of anergy (Macian
et al., 2004).

SIGNALING DOWNSTREAM OF CD28
CD28 delivers signals in activated T cells via its cytoplasmic
tail, which has no intrinsic catalytic activity, but possesses sev-
eral protein–protein interaction motifs that enable it to associate
with enzymes and other effector molecules (Boise et al., 1993; see
Figure 1). In resting T cells, non-phosphorylated CD28 asso-
ciates with the serine/threonine protein phosphatase protein 2A
(PP2A), which dissociates from CD28 upon activation induced-
phosphorylation of CD28 (Chuang et al., 2000). CD28 triggering
by its ligands leads to phosphorylation of tyrosine residues (Raab
et al., 1995; Teng et al., 1996; King et al., 1997) in the cytoplas-
mic tail of CD28, creating new docking sites for different effector
molecules that initiate the activation of signaling cascades, and
define the costimulatory functions of CD28 (Raab et al., 1995;
Andres et al., 2004; Dodson et al., 2009).

The first motif in the human CD28 cytoplasmic tail, juxta-
posed to the PM, contains a Y173MNM sequence that undergoes
tyrosine phosphorylation following the engagement of CD28 and
serves as a binding site for the SH2 domain of p85, the regulatory
subunit of the lipid kinase, phosphatidylinositol 3-kinase (PI3K;
August and Dupont, 1994; Pages et al., 1994; Prasad et al., 1994;
Truitt et al., 1994). The methionine residue at the +3 position
confers specificity for p85 binding (Takeda et al., 2008), while the
asparagine at the +2 position confers additional specificity for
the SH2 domain of Grb2 and GADS (Songyang et al., 1993; Raab
et al., 1995; Sanchez-Lockhart et al., 2004; Schneider et al., 1995;
Harada et al., 2001). The relative concentration of PI3K, Grb2, and
GADS at the vicinity of CD28 cytoplasmic tail, and the relative
affinity of their SH2 domain for the phospho-Tyr173-containing

FIGURE 1 | Signaling motifs in the cytoplasmic tail of the human CD28

and binding partners. The human CD28 encodes a 220 amino acid-long
protein (218 in the mouse) that includes a leader sequence of 18 residues
(19 residues in the mouse). The mature protein (202 residues) possesses a
41 amino acid-long cytoplasmic tail that includes three potential
protein-protein interaction motifs (highlighted in yellow). The
phospho-Tyr173 within the YMNM motif serves as a docking site for the
SH2-containg proteins, p85, Grb2 and GADS. The P178RRP motif can
interact with the SH3 domain of Itk. The P190YAP motif can interacts with
the SH3 domain of Grb2, GADS and Lck, as well as with filamin-A.
Phosphorylation of Tyr191 within the PYAP motif creates a docking site for
the Lck SH2 domain and enables PKCθ to interact via its V3 domain with
the Lck SH3. Studies indicate that Tyr191 is important for CD28 and PKCθ

localization to the cSMAC, and that the PYAP motif contributes to T cell
activation and cytokine expression.
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motif likely determine which of the three potential binding
partners interacts with the activated CD28 and, hence, the result-
ing functional outcome. A second, nearby motif possesses the
P178RRP sequence, and serves as a binding site for the SH3
domain of IL-2-inducible T cell kinase (Itk; Marengere et al.,
1997; Garcon et al., 2004). CD28-mediated activation of Itk is
dependent on Lck (Gibson et al., 1996), but the actual role of Itk
in CD28-induced costimulation is still controversial (Liao et al.,
1997; Gibson et al., 1998; Yang and Olive, 1999; Li and Berg,
2005). A third, more distal, P190YAP motif serves as a poten-
tial docking site for several different effector molecules. These
include filamin-A, an actin binding protein and a scaffold for
lipid raft formation, which utilizes repeat 10 (amino acids 1158–
1246) for interaction with CD28 (Tavano et al., 2006), Grb2
and GADS adaptor proteins, which bind the P190YAP motif via
their SH3 domain (Okkenhaug and Rottapel, 1998; Ellis et al.,
2000), and the Lck and Fyn protein tyrosine kinases (PTKs;
Hutchcroft and Bierer, 1994; zur Hausen et al., 1997; Holdorf
et al., 1999; Tavano et al., 2004). Both Lck and Fyn were impli-
cated in the early phase of the CD28 signaling pathway (August
et al., 1994) and coexpression studies demonstrated that the two
PTKs could phosphorylate CD28, primarily on Tyr173 at the
Y173MNM motif, thereby increasing the binding of p85- and
Grb2-SH2 to CD28 (Raab et al., 1995). Lck and Fyn were also
found to coimmunoprecipitate with CD28 from activated T cells
(Hutchcroft and Bierer, 1994), where Lck interacted with the
P190YAP motif via its SH3 domain (Holdorf et al., 1999; Tavano
et al., 2004), and Fyn interacted with the same motif using its SH2
domain (zur Hausen et al., 1997), although other studies indi-
cated no interaction between CD28 and Fyn (Marengere et al.,
1997). While presence of the two proline residues in the P190YAP
motif predicts interaction with SH3-containg proteins, binding
studies demonstrated that the Lck-SH3 domain interacts with rel-
atively low affinity (Kd > 1 μM) with peptides that contain the
P190YAP motif and correspond to residues 188–202 of human
CD28, or 186–196 of murine CD28, respectively (Hofinger and
Sticht, 2005).

Other studies demonstrated that Tyr191 within the P190YAP
motif is one of two major phosphorylation sites in CD28-
stimulated Jurkat T cells, and the only tyrosine residue within
the CD28 cytoplasmic tail that is essential for delivery of cos-
timulatory signals leading to CD69 expression and synthesis and
secretion of IL-2 (Sadra et al., 1999). The latter findings raise
the possibility that CD28 engagement-induced phosphorylation
of Tyr191 creates a new and transient binding site for SH2-
containing proteins, possibly Lck, since CD28 and Lck were
shown to colocalize at the cSMAC (Tavano et al., 2004; Kong
et al., 2011). Binding studies provided further support for this
hypothesis by showing that a CD28-derived peptide that pos-
sesses phospho-Tyr191 interacts with the Lck-SH2 domain with
a relatively high affinity (Kd = 2.13 μM; Hofinger and Sticht,
2005), at the range of other SH2-ligand interactions (Bauer et al.,
2004). This binding affinity is about three orders of magnitude
stronger than that for the Lck-SH3 domain. High affinity bind-
ing of Lck-SH2 to P190pYAP occurs despite the difference between
this sequence and the phospho-YEEI sequence predicted to be
the preferred binding site of the Lck-SH2 domain (Songyang

et al., 1993). More recent studies indicated that PKCθ can also
interact with the cytoplasmic tail of CD28, and that this inter-
action involves Lck as an intermediate molecule, as discussed
below.

CD28 AND THE IS
Upon binding of its ligand, B7, CD28, similar to the engaged TCR,
accumulates at the cSMAC of the IS although the two receptors
initiates distinct but complementary signaling pathways. The tran-
sient recruitment of CD28 to the immature IS of TCR engaged T
cells is very rapid and occurs within seconds of the onset of the
calcium signal (Andres et al., 2004). Engagement of the TCR in
Cd28−/− T cells results in altered, diffuse pattern of distribution
of PKCθ and LFA-1 at the IS, suggesting an essential role for CD28
in the initiation and stabilization of the mature IS (Huang et al.,
2002; Sanchez-Lockhart et al., 2004). Furthermore, in vivo block-
ing of CD28 impairs the activity of effector molecules, including
PKCθ (Jang et al., 2008), and inhibits T cell-dependent immune
responses (Linsley and Nadler, 2009). CD28 engagement promotes
a cytoskeleton-dependent recruitment of cell surface receptors
(Wulfing and Davis, 1998) and signaling molecules-containing
lipid rafts that support building the IS and contribute to signal
transduction from IS-residing receptors (Dustin and Shaw, 1999;
Viola et al., 1999).

More recent studies demonstrated that in activated T cells,
CD28 is recruited coordinately with the TCR to form microclus-
ters at the cSMAC (Yokosuka et al., 2008). Upon progression of this
initial step, the CD28 and TCR segregate to two spatially distinct
subregions within the cSMAC, a central TCRhigh subregion, where
signaling is terminated and TCR-associated signaling complexes
are internalized and degraded, and an outer TCRlow annular form
that contain CD28 clusters, as well as PKCθ. CD28 and PKCθ were
physically associated, as shown by PKCθ coimmunoprecipitation
with CD28 from a lysate of PMA-stimulated T cells (Yokosuka
et al., 2008).

PKCθ–CD28 INTERACTION AND RECRUITMENT
OF PKCθ TO THE IS
T cell receptor engagement polarizes PKCθ and induce its recruit-
ment to the IS, a response that is greatly augmented by CD28
ligation (Huang et al., 2002; Tseng et al., 2008; Yokosuka et al.,
2008). Although the recruitment of PKCθ to the center of the
IS (cSMAC) of is well documented, information on the molec-
ular basis for this highly selective localization has been relatively
scarce. Early studies have shown that PKCθ recruitment to the
IS is indirectly dependent on the PI3K interaction motif within
the CD28 cytosolic tail (Harada et al., 2001). Thus, mutation
of Met173 within the mouse YMNM motif, which binds PI3K
upon its tyrosine phosphorylation, resulted in decreased ability
of CD28 to direct PKCθ recruitment to the cSMAC, and inhib-
ited PKCθ-dependent activation of NF-κB to and the Il2 gene
(Sanchez-Lockhart et al., 2004).

Following the recently reported PKCθ–CD28 association in
PMA-stimulated T cells (Yokosuka et al., 2008), we conducted a
detailed structure-function analysis of this association in TCR-
stimulated T cells (Kong et al., 2011). We demonstrated that
PKCθ physically associated with the cytoplasmic tail of CD28
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following TCR/CD28 costimulation. Taking advantage of the fact
that PKCδ, the closest relative of PKCθ, does not translocate to
the IS after T cell-APC interaction (Monks et al., 1997), we com-
pared the amino acid sequence analysis of PKCθ and PKCδ and
found that they diverged significantly only in their V3 (hinge)
domain, corresponding to amino acids∼291–378 of human PKCθ,
suggesting a potential role for this region in targeting PKCθ to
the IS. Indeed, a V3-deletion mutant of PKCθ (PKCθ-ΔV3) or
an exchange mutant of PKCθ, in which the native V3 domain
was replaced by the PKCδ V3 domain, did not coimmunopre-
cipitate with CD28, and failed to translocate to the IS (Kong
et al., 2011) and to activate PKCθ-dependent reporter genes such
as the CD28 response element (RE/AP). Conversely, the iso-
lated V3 domain of PKCθ localized in the center of the IS and
associated with CD28. Moreover, T cells recovered from mouse
BM chimeras on a Prkcq−/− background reconstituted with the
same PKCθ mutants failed to proliferate and produce IL-2 in
response to CD3/CD28 costimulation, and their ability to upreg-
ulate CD69 or CD25 expression was reduced. Given the critical
role of the V3 domain in directing the CD28 association and IS
localization of PKCθ, we argued that this domain will function
as a dominant negative mutant by disrupting the activation-
dependent association between endogenous CD28 and PKCθ. As
expected, ectopic expression of the isolated PKCθ V3 domain
blocked the recruitment of endogenous PKCθ to CD28 and the
IS, and severely inhibited PKCθ-dependent functions, includ-
ing CD25 and CD69 upregulation, T cell proliferation and IL-2

production, and Th2 and Th17 (but not Th1) differentiation and
inflammation.

Fine mapping of the PKCθ V3 domain identified an evolu-
tionarily conserved proline-rich (PR) motif (ARPPCLPTP; corres-
ponding to amino acid residues 328–336 of human PKCθ) within
the PKCθ-V3 domain, which was required for PKCθ–CD28
association, PKCθ localization to the IS, and induction of PKCθ-
mediated functions. Insertion of this motif into the V3 domain of
PKCδ enabled this altered PKCδ form to translocate to the IS and
activate PKCθ-dependent signal. The two internal proline residues
in this motif (Pro-331 and -334) were particularly critical in this
regard (Kong et al., 2011).

In trying to more precisely define the nature of the inducible
PKCθ-Lck complex, we focused on the potential contribution of
Lck kinase. This possibility was considered in view of previous
studies demonstrating a functional relationship between CD28,
PKCθ, and Lck. First, in stimulated T cells, Lck can be recruited
to the tyrosine-phosphorylated distal PR motif (P190Y*AP) in the
cytoplasmic tail of CD28 via its SH2 and SH3 domains, respectively
(Miller et al., 2009; see Figure 2), This motif directs the colocaliza-
tion of PKCθ and CD28 to the cSMAC (Yokosuka et al., 2008) and
is apparently involved in additional biological functions, includ-
ing the stabilization of IL-2 mRNA, reorganization of lipid rafts,
and sustained autophosphorylation and activation of Lck at the IS
(Holdorf et al., 2002; Sanchez-Lockhart et al., 2004; Dodson et al.,
2009). Second, Lck phosphorylates and associates with PKCθ, and
mutation of the major Lck phosphorylation site on PKCθ (Tyr90)

FIGURE 2 | A schematic model of the CD28-Lck-PKCθ tri-partite complex

formed inTCR/CD28-stimulatedT cells. TCR/ CD28 engagement triggers
the activation of tyrosine kinases and phosphorylation of multiple substrates,
including the cytoplasmic tail of the CD28. Phosphorylation of a tyrosine
within the PYAP motif (Y191 in the mature human CD28) forms a high
affinity-binding site for the SH2 domain of the Lck PTK. Lck is an IS-residing
molecule in activated T cells; it is tethered to the plasma membrane via its
N-terminal palmitic and myristic fatty acids (Paige et al., 1993), and is
constitutively associated with the cytoplasmic tail of the IS-residing
accessory molecules, CD4 or CD8 (Rudd et al., 1988, 1989; Veillette et al.,
1988; Barber et al., 1989; Paige et al., 1993). Simultaneous activation of

phospholipase C and hydrolysis of the membrane phospholipid (PIP2)
forms DAG, which enables PKCθ anchoring to the plasma membrane.
Colocalization of PKCθ and CD28 is regulated by an interaction between
the PKCθ PXXP motif and the Lck-SH3 domain, which results in the
formation of a trimolecular complex comprising CD28-Lck-PKCθ. The inset
table shows the amino acid sequence of a region within the cytoplasmic
tail of the immature CD28 that includes the PYAP motif (on a yellow
background) compared to homologous sequences of three additional
members of the CD28 coreceptor family (obtained using the ClustalW
multiple sequence alignment program). A partially conserved tyrosine is
marked in red.
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inhibited PKCθ-dependent activation events in stimulated T cells
(Liu et al., 2000).

Our further analysis confirmed the physical and functional
CD28-Lck-PKCθ link by demonstrating that Lck function as an
intermediate to recruit PKCθ to CD28 upon T cell stimula-
tion. The Lck-SH3 domain interacted with the PR motif in the
PKCθ V3 domain, while the Lck SH2 domain interacted with
phospho-Tyr191 in the P190YAP motif in the CD28 cytoplasmic tail.
Taken together, the above findings demonstrate a unique signaling
mode of CD28 and establish the molecular basis for the spe-
cialized localization and function of PKCθ in antigen-stimulated
T cells.

THE GLK-PKCθ LINK
Recent studies demonstrated that recruitment of PKCθ to the
cSMAC in activated T cells is essential but not sufficient for the
full activation of PKCθ and its downstream target molecules. These
studies further showed that the germinal center kinase (GSK)-like
kinase (GLK) also translocates to the IS of TCR-engaged T cells
where it phosphorylates the activation loop of PKCθ, convert-
ing it into an active enzyme (Chuang et al., 2011). Of interest,
however, despite the importance of PKCθ in the thymic devel-
opment of natural regulatory T cells (nTregs; Schmidt-Supprian
et al., 2004), GLK-deficient mice displayed normal nTreg develop-
ment (Chuang et al., 2011). These results emphasize the important
role of post-transcriptional regulation of PKCθ that occurs at sev-
eral steps and involve different checkpoints at distinct sites within
the activated T cell.

CONCLUSIONS AND FUTURE PERSPECTIVES
Identification and characterization of the molecular mechanism
by which PKCθ associates with CD28 and colocalizes with it at
the cSMAC has provided important information relevant to the
mechanism by which CD28 and PKCθ contribute to signal trans-
duction in TCR/CD28-engaged T cells. These findings also raise
new questions relevant to the mechanism of interaction of CD28
and PKCθ and their specific role in the induction of distinct T
cell-mediated immune responses. One obvious question relates to
the mechanism by which PKCθ is sequestered away from the IS of
activated Treg cells. It would be interesting to determine whether
a CD28-Lck-PKCθ tri-partite complex (Kong et al., 2011) occurs
in Treg cells, and determine the mechanism that enables PKCθ

recruitment away from the Treg-APC contact area. A possible
explanation for this process was provided by Yokosuka et al. (2010)
showing that CTLA-4 competes with CD28 in recruitment to the
cSMAC. In addition, it is not known whether PKCθ is involved
in a second signal delivery during the costimulation of γδ T cells
(Ribot et al., 2011).

Despite the extensive amount of studies on the biology of
PKCθ in mouse T cells, very little is known about its regula-
tion and function in human T cells. This is a substantial gap that
would need to be filled if PKCθ is destined to fulfill its promise
as a clinically relevant drug target (Altman and Kong, 2012).
As discussed earlier, the dependence of T cell-mediated delete-
rious autoimmune/inflammatory responses, including GvHD, on
PKCθ, but its dispensable role in beneficial responses (antiviral
immunity and GvL response) make it an attractive clinical drug
target with potentially advantage over global immunosuppressive
drugs such as calcineurin inhibitors (e.g., cyclosporine A), which
have pronounced toxic side effects. Indeed, there has been consid-
erable interest among pharmaceutical companies in developing
small molecule selective PKCθ catalytic activity inhibitors, and
AEB071,the most advanced of these compounds, which inhibits
other PKC family members in addition to PKCθ, is currently in
early clinical trials (Evenou et al., 2009).

Nevertheless, small molecule inhibitors of protein kinases often
have toxic side effects because of their lack of absolute speci-
ficity, which reflects the relatively high conservation of catalytic
domains within the protein kinase family, and even more so within
the PKC family. Furthermore, since catalytic kinase inhibitors in
current clinical use are ATP competitors, they need to be used
at relatively high and potentially toxic concentrations in order
to effectively compete with ATP, whose intracellular concentra-
tion is ∼1 mM. As a result, there has recently been considerable
interest and progress in developing allosteric kinase inhibitors,
which bind to sites other than the catalytic site in kinases and,
thus, are likely to be much more selective and less toxic (Lamba
and Ghosh, 2012). Our recent study (Kong et al., 2011) demon-
strates a new potential approach for attenuating PKCθ-dependent
functions utilizing allosteric compounds based on the critical
PR motif in the V3 domain of PKCθ that will block its Lck-
mediated association with CD28 and recruitment to the IS, which
is obligatory for its downstream signaling functions. This new
approach could serve as a basis for the development of new
therapeutic agents that would selectively suppress undesired T
cell-mediated inflammation and autoimmunity or prevent graft
rejection, while preserving desired immunity, such as antiviral
responses.
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