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It is quite possible that if she had seen but a glimpse of
her young country’s future while writing “The New Co-
lossus” in late 19th-century America, Emma Lazarus
might have modified her famous line to read “Give me
your.huddled masses yearning to breathe free,” well-
nourished and long-lived. And indeed, at a time when
food shortage and famine were sources of great suffering
throughout much of the world, such a persuasive line
would have seemed very compelling to the “masses.”
How strange might it also have been for people at that
time to be told of what we now know, which is that over-
nourishment typically prohibits a person from living a
long and healthy life. Evidence of this fact is manifested
in the rapidly rising rates of obesity-related pathologies,
particularly cardiovascular disease and metabolic syn-
drome/type 2 diabetes, which of course are hardly unique
to the U.S. as recent reports show that rates of obesity
and related cardiometabolic diseases are escalating world-
wide, with the highest rates in developing countries
across Africa and the Middle East (1,2). Lifestyle inter-
ventions to combat this epidemic are increasingly being
prioritized by health care professionals who recognize
that, unless action is taken, the tidal wave of associated
costs and resource demands placed on hospitals and pri-
mary care providers will wash over us all with devastating
consequences.

Caloric restriction (CR) is an intervention that
consistently leads to improved cardiometabolic out-
comes (3–5). Yet despite its clear benefits, CR remains
difficult to implement as a long-term therapy in obese
patients for many legitimate reasons (e.g., challenges
with dietary adherence, perceived decreases in quality
of life). Understanding the mechanisms by which CR
improves cardiometabolic fitness would be immensely
valuable as it would illuminate novel therapeutic targets
and allow for better treatment strategies. However, iden-
tifying one singular pathway is likely to prove difficult as

CR is known to exert beneficial effects throughout every
organ system in the body. It is therefore important for
investigators to focus on CR within a specific disease
context, at the cell and molecular level in the relevant
organ system, to more clearly delineate underlying
mechanisms.

In this issue of Diabetes, Johnson et al. (6) provide
insight into the mechanism by which CR improves
whole-body insulin sensitivity. The authors used the
hyperinsulinemic-euglycemic clamp method to evaluate
whole-body insulin sensitivity before and after a 16-
week CR intervention in obese individuals. They also
comprehensively evaluated a number of metabolic and
molecular end points in the skeletal muscle and blood of
the CR group and compared these values with a normal
lifestyle control group. A substantial improvement in
systemic insulin sensitivity was observed in the CR
group, corresponding with a greater than twofold in-
crease in nonoxidative glucose disposal rate in the
skeletal muscle. Interestingly, muscle glucose and lipid
oxidation capacity were unaffected by CR, as were mito-
chondrial respiratory capacity and reactive oxygen spe-
cies (ROS) emission supported by carbohydrate-linked
substrates. There were also no changes in muscle ceram-
ide or diacylglycerol content with CR. The most striking
observation was that the expression of thioredoxin-
interacting protein (TXNIP) in the skeletal muscle
decreased with CR and the degree of TXNIP downregu-
lation was associated with the rate of glucose disposal
during clamp measurements.

TXNIP belongs to the arrestin superfamily of proteins
and was named for its ability to bind and negatively
regulate thioredoxin via a disulfide bond (7). A critical role
for TXNIP in regulating glucose metabolism in humans
was revealed in a report where TXNIP was shown to
strongly inhibit glucose uptake, and this effect was abro-
gated by insulin (8). In a recent study, TXNIP deficiency
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led to the upregulation of glycolysis in the skeletal muscle
(9), a finding that nicely complements the findings of
Johnson et al. (6). Although the exact mechanisms by
which TXNIP acts in this manner are still unclear, one
study reported that TXNIP negatively regulates Akt, and
subsequent glucose uptake, by maintaining PTEN in a re-
ductive (i.e., active) state (10). An obvious theory initially
emerged among investigators that perhaps TXNIP was the
“unifying mechanism” connecting nutrient overload to
oxidative stress and insulin resistance. This theory was
largely repudiated by a study showing that a Cys-247-Ser
mutant of TXNIP, which does not bind thioredoxin and
is insensitive to cellular redox status, is just as effective
at blunting glucose uptake in cells as wild-type TXNIP
is (11). A redox-independent role for TXNIP is supported
by the findings of Johnson et al. (6) in that no changes in
mitochondrial ROS emission occurred with CR. The au-
thors did not measure global redox status (e.g., reduced/
oxidized glutathione) of the skeletal muscle before and
after CR, however, and that may prove to be the more
important trigger for induction of TXNIP, as shown by
others (12,13).

Another interesting outcome of this study is that many
of the “usual suspects” that previously have been associ-
ated with muscle insulin sensitivity (e.g., mitochondrial
respiration/ROS, ceramide, diacylglycerol) did not change
with CR in this study. Despite this fact, the comprehen-
sive analysis of muscle metabolism and related parame-
ters presented by the authors will undoubtedly be useful

for establishing future studies. For example, levels of car-
nosine, anserine, and taurine in the skeletal muscle in-
creased with CR, and these dipeptides and amino acid
metabolites are potent scavengers of lipid- and sugar-
derived reactive carbonyl species (RCS) (14). A causal
role for RCS in obesity-related cardiometabolic diseases
is starting to emerge (15–17). Autophagy is another
well-characterized process known to enhance cellular
“metabolic fitness” in response to CR (18,19). This path-
way was not examined by Johnson et al. (6), although
temporal aspects of the study design likely prohibited
the investigators from properly examining the skeletal
muscle autophagic flux before and after CR.

To conclude, although more work is clearly necessary
to elucidate all the pathways involved, Johnson et al. (6)
present compelling new evidence that the downregulation
of TXNIP plays a role in the insulin-sensitizing effects of
CR in the muscle (Fig. 1). In addition, they establish an
excellent basis for hypothesis-driven studies to better un-
derstand and improve CR and for the development of
novel therapeutics to mitigate obesity-related cardiometa-
bolic diseases.
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