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Purpose: To develop a deep learning (DL) model to detect morphologic patterns of
diabetic macular edema (DME) based on optical coherence tomography (OCT) images.

Methods: In the training set, 12,365 OCT images were extracted from a public data set
and an ophthalmic center. A total of 656 OCT images were extracted from another
ophthalmic center for external validation. The presence or absence of three OCT patterns of
DME, including diffused retinal thickening, cystoid macular edema, and serous retinal
detachment, was labeled with 1 or 0, respectively. A DL model was trained to detect three
OCT patterns of DME. The occlusion test was applied for the visualization of the DL model.

Results: Applying 5-fold cross-validation method in internal validation, the area under
the receiver operating characteristic curve for the detection of three OCT patterns (i.e.,
diffused retinal thickening, cystoid macular edema, and serous retinal detachment) was
0.971, 0.974, and 0.994, respectively, with an accuracy of 93.0%, 95.1%, and 98.8%,
respectively, a sensitivity of 93.5%, 94.5%, and 96.7%, respectively, and a specificity of
92.3%, 95.6%, and 99.3%, respectively. In external validation, the area under the receiver
operating characteristic curve was 0.970, 0.997, and 0.997, respectively, with an accuracy
of 90.2%, 95.4%, and 95.9%, respectively, a sensitivity of 80.1%, 93.4%, and 94.9%,
respectively, and a specificity of 97.6%, 97.2%, and 96.5%, respectively. The occlusion
test showed that the DL model could successfully identify the pathologic regions most
critical for detection.

Conclusion: Our DL model demonstrated high accuracy and transparency in the
detection of OCT patterns of DME. These results emphasized the potential of artificial
intelligence in assisting clinical decision-making processes in patients with DME.
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Diabetic macular edema (DME) is one of the major
causes of vision loss among patients with diabetic

retinopathy.1 Fluorescein angiography is an important
diagnostic tool for the investigation of microaneur-
ysms and leakage in the retina. However, the precise
structure of deep retinal layers cannot be observed in
fluorescein angiography. Optical coherence tomogra-
phy (OCT) can provide precise evaluation of retinal
layers, quantification of retinal thickness and macular
volume, and qualitative assessment of hyperreflective

foci.2 Therefore, OCT has been widely used in the
diagnosis and evaluation of clinical outcomes of
DME.2 There are several patterns of DME on OCT
examination, including diffused retinal thickening
(DRT), cystoid macular edema (CME), and serous
retinal detachment (SRD).3,4 Different OCT patterns
may be associated with different pathogenesis and
treatment responses.4–6

Previous studies have shown that certain OCT
pattern may be accompanied by specific systemic risk
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factors (e.g., hypertension, hyperlipidemia, or renal
dysfunction), indicating that the pathogenesis of
different OCT patterns may be diverse.7–9 The patho-
genesis of DME mainly involves the breakdown of the
inner and outer blood–retinal barriers (BRBs).10–12 It
has been shown that inner BRB breakdown was more
responsible for DRT and CME, whereas SRD was
more attributable to outer BRB breakdown.13,14 Con-
sistently, different OCT patterns have been shown to
respond differently to treatments, suggesting that OCT
pattern may be one of the key factors of determining
the treatment modality of DME, along with other
factors (e.g., age, lens status, and cost).15–17

Deep learning (DL) has recently attracted tremen-
dous interest in the field of ophthalmology.18–20 Pre-
viously, several DL systems have been developed to
detect DME with high sensitivity and specificity
(.90%) based on OCT images.18,19,21 However, no
DL model to date has been developed to detect the
morphologic patterns of DME based on OCT images.
Such a model could help make personalized therapeu-
tic strategies for patients with DME according to their
OCT patterns. This study aimed to (1) develop a DL
model to detect the OCT patterns of DME and (2)
demonstrate the critical areas in OCT images highly
correlated with accurate detection.

Methods

Composition of Image Data sets

The diagnosed DME patients were searched from local
electronic medical record databases. Totally, 11,599 OCT
images of diagnosed DME patients were extracted from a
public data set (Mendeley).22 The Mendeley data set
(https://data.mendeley.com/datasets/rscbjbr9sj/2) consists
of the OCT images (Spectralis OCT; Heidelberg Engi-
neering, Germany) selected from retrospective cohorts of
adult patients from 4 clinical sites in California, Shanghai,
and Beijing between July 1, 2013, and March 1, 2017,
without exclusion criteria based on age, gender, or eth-
nicities.18 Meanwhile, 1,547 OCT images of 329 DME
eyes at the Department of Ophthalmology, Guangdong
Provincial People’s Hospital between January 1, 2017,
and May 1, 2019, were extracted from an OCT device
(Spectralis OCT; Heidelberg Engineering, Heidelberg
Eye Explorer version 6.9a, Germany). During each
OCT scan, the 20° · 20° volume acquisition protocol
was used to obtain a set of high-speed scans from each
eye, with an axial resolution of 7 mm and a transverse
resolution of 14 mm.23 The high in-tissue resolution of
the OCT device makes the accurate detection of the DME
patterns possible. After excluding 781 low-quality
images, 12,365 OCT images of DME eyes from the
Mendeley data set and Department of Ophthalmology,
Guangdong Provincial People’s Hospital were included
for training and cross-validating the DL model. Besides,
656 OCT images of 117 DME eyes from the Department
of Ophthalmology, Zhujiang Hospital of Southern Med-
ical University were extracted through the same process
and used for external validation. All OCT sampling in
Guangdong Provincial People’s Hospital and Zhujiang
Hospital of Southern Medical University were performed
by trained technicians with more than 5-year experience
in OCT imaging. Normally, the horizontal B-scan passing
through the foveal reflex on the enface red-free macular
image was extracted. In patients whose foveal reflex was
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invisible, the horizontal B-scan with the highest foveal
bulge or the smallest tapering point of the inner nuclear
layer was extracted. Of all OCT images included in our
study, DRT, CME, and SRD were present, respectively,
on 7,207, 5,284, and 2,472 images in the training set. In
the external validation set, DRT, CME, and SRD were
present, respectively, on 276, 301, and 256 images. The
study was conducted according to the Declaration of
Helsinki and was approved by the institutional review
board of the Guangdong Provincial People’s Hospital.

Classification of Optical Coherence Tomography
Patterns of Diabetic Macular Edema

There were three OCT patterns of DME, which
included the DRT as sponge-like retinal swelling of the
macula with reduced intraretinal reflectivity, the CME as
intraretinal cystoid spaces of low reflectivity and highly
reflective septa separating cystoid-like cavities in the
macular area, and the SRD as a shallow elevation of the
retina and an optically clear space between the neuro-
sensory retina and retinal pigment epithelium.3,4 The
OCT images of mixed DME pattern, defined as the mix-
ture of two or three of these OCT patterns, were also
included in our study (Figure 1). The OCT images of
traction retinal detachment and posterior hyaloidal trac-
tion patterns of DME were excluded from this study to
focus on identifying the OCT patterns primarily treated
with intravitreal injection rather than pars plana
vitrectomy.24,25

Image Multilabeling

Because the mixed DME pattern is commonly seen in
clinical practice, the multilabel approach is more similar
to the clinical reality.3,24 Before training, all OCT images
went through a layered multilabel system consisting of
multiple layers of trained graders with increasing exper-
tise for verification and correction of image labels. The
first layer of trained graders excluded images with low
image quality. These images were taken of improper
positioning during image acquisition or scans with strong
motion artifacts, causing misalignment and blurring of
sections. The second layer of graders consisted of two
Chinese board-certified ophthalmologists (Q.P. and P.Z.)
who independently multilabeled each image that had
passed the first layer. The second layer of graders labeled
the presence or absence of each OCT pattern with 1 or
0 (Table 1). Finally, the third layer graders consisting of
two retinal specialists (Q.W. and B.L.) independently
verified the true multilabel of all OCT images. We used
the kappa statistic (k) to evaluate the interobserver var-
iation between these two retinal specialists. The k was
0.762 for the detection of DRT, 0.856 for the detection
of CME, and 0.825 for the detection of SRD. The results

suggested excellent agreement of the two retinal special-
ists in OCT image labeling (k = 0.61–0.80, substantial
agreement; k .0.80, almost perfect agreement). More-
over, if there was discordance between the two retinal
specialists, arbitration was performed by a third senior
retinal specialist (H.Y.) to generate the final multilabel.
Thus, the effects of interobserver variation in OCT image
labeling could be eliminated by the role of the third
senior retinal specialist. These labels, representing the
true presence of the three OCT patterns, were used as
references both in the training process and assessing the
performance of our DL model.

Images Preprocessing

Raw OCT images were preprocessed to normalize the
input data. Saturated pixels were removed with an
intensity value of 255 in the OCT images. The
sparsity-based block-matching and 3D-filtering method
was used to denoise and smooth the OCT images. Then,
the retinal layer was cropped based on smooth pixel
intensity to focus on the region of the retina that contains
morphological structures with sufficient variation
between different OCT patterns. Finally, the OCT
images were resized into 224 · 224 pixel based on the
requirements of Visual Geometry Group 16 (Department
of Engineering Science, the University of Oxford).26

Development of the Deep Learning Model

Figure 2 represents an abstraction of our DL model
pipeline. The Visual Geometry Group 16 network was
used as the benchmark DL model in our whole experi-
ments.26 Then, we replaced the last fully connected layer
containing 1,000 neurons, the SoftMax layer, and the
classification layer with a new fully connected layer con-
taining 3 neurons and the regression layer. Finally, the
OCT images were mapped into the OCT patterns using
the regression Visual Geometry Group 16 model and
adjusted the last fully connected layer to binary output
classes for DRT, CME, and SRD, respectively. After
training our DL model, we could obtain the probability
of each OCT image with a 3-dimensional vector and
divide each element in the vector to be 1 or 0 based
on the threshold of 0.5 to obtain the three DME patterns
information.

Model Validation

The correlation of predicted labels obtained from
our DL model with the true labels was depicted as
confusion matrices, which were used to calculate the
accuracy, sensitivity, and specificity of the three binary
classifications of OCT patterns (i.e., DRT, CME, and
SRD). We also used the area under the receiver

1112 RETINA, THE JOURNAL OF RETINAL AND VITREOUS DISEASES � 2021 � VOLUME 41 � NUMBER 5



operating characteristic curve (AUC) to evaluate the
accuracy of the DL model in detecting the three OCT
patterns. For the internal validation, the popular 5-fold
cross-validating scheme was used on the training data
set that was divided into five independent portions
randomly. In each run, four portions of the data set
were used to train the DL model and the rest one was
used to evaluate the performance. The experiments
were conducted until each portion was tested. The
average results after the five runs were recorded to
measure the overall performance of the DL model. In
addition to the cross-validating scheme, OCT images
from Zhujiang Hospital of Southern Medical Univer-
sity were used to perform the external validation. The
results were recorded to evaluate the performance of
our well-constructed DL model in the training set.

Visualization Method of the Deep Learning Model

To visualize the critical areas in OCT images highly
correlated with the DME patterns, the occlusion test

was used to increase model transparency. Similar to
the method described by Zeiler and Fergus,27 a blank
51 · 51 pixel box was systematically moved across
every possible position in the image, and the probabil-
ities of the disease were recorded. The highest drop in
the probability represents the part of the OCT image
most critical for accurate detection. Furthermore,
whether these regions identified by the occlusion test
were the most clinically significant areas of pathology
in DME eyes was verified by our retinal specialists.

Results

Internal Validation

In the internal validation, the binary classifier detecting
the DRT pattern from the non-DRT pattern achieved a
mean accuracy of 93.0%, with a mean sensitivity of
93.5%, a mean specificity of 92.3%, and a mean AUC of
0.971 (Figure 3, A and D). The binary classifier detecting
the CME pattern from the non-CME pattern achieved a
mean accuracy of 95.1%, with a mean sensitivity of
94.5%, a mean specificity of 95.6%, and a mean AUC
of 0.974 (Figure 3, B and D). The binary classifier de-
tecting the SRD pattern from the non-SRD pattern
achieved a mean accuracy of 98.8%, with a mean sen-
sitivity of 96.7%, a mean specificity of 99.3%, and a
mean AUC of 0.994 (Figure 3, C and D).

External Validation

In the external validation, the binary classifier detect-
ing the DRT pattern from the non-DRT pattern achieved

Fig. 1. Representative optical
coherence tomography images:
Top left. DRT with sponge-like
retinal swelling (white arrow-
heads) of the macula and
reduced intraretinal reflectivity.
Top right. CME with intraretinal
cystoid spaces (arrows) of low
reflectivity and highly reflective
septa separating cystoid-like
cavities in the macular area.
Bottom left. SRD with a shallow
elevation of the retina and an
optically clear space between the
neurosensory layer retina and
retinal pigment epithelium (*).
Bottom right. Mixed DME rep-
resents the mixture of three OCT
patterns (white arrowheads,
arrows, and *).

Table 1. Multilabel of Different OCT Patterns of DME

OCT Patterns DRT CME SRD Multi-label

DRT 1 0 0 1/0/0
CME 0 1 0 0/1/0
SRD 0 0 1 0/0/1
DRT + CME 1 1 0 1/1/0
DRT + SRD 1 0 1 1/0/1
CME + SRD 0 1 1 0/1/1
DRT + CME + SRD 1 1 1 1/1/1

1 = presence; 0 = absence.
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an accuracy of 90.2%, with a sensitivity of 80.1%, a
specificity of 97.6%, and an AUC of 0.970 (Figure 4, A
and D). The binary classifier detecting the CME pattern
from the non-CME pattern achieved an accuracy of
95.4%, with a sensitivity of 93.4%, a specificity of
97.2%, and an AUC of 0.997 (Figure 4, B and D).
The binary classifier detecting the SRD pattern from
the non-SRD pattern achieved an accuracy of 95.9%,
with a sensitivity of 94.9%, a specificity of 96.5%, and
an AUC of 0.997 (Figure 4, C and D). The retinal spe-
cialists required �60 minutes (range 49–65 minutes) to

multilabel and assess all the OCT images (�5.5 seconds
per image) in the external validation set, which was
much longer than the time required by the DL model
(�1.5 seconds per image).

Occlusion Test

Results of the occlusion test showed that our DL
model can successfully identify pathologic regions in
the OCT images most critical for accurate detection.
For example, in OCT images of the DRT pattern

Fig. 2. Abstraction of the proposed algorithmic pipeline: A deep learning model was developed to detect the three morphologic patterns of DME (i.e.,
DRT, CME, and SRD) using regression VGG-16 convolutional neural networks based on optical coherence tomography images. VGG-16, Visual
Geometry Group 16 layers.

Fig. 3. Binary comparison
evaluating the concordance
between the DL model and ret-
inal specialists in the internal
validation: A. Confusion matrix
of the binary classification for
the DRT pattern. The row of
matrix is the references verified
by three independent retinal
specialists. The column of
matrix is the predicted labels
obtained from the DL model.
The mean accuracy for the
detection of the DRT pattern
was 93.0%, with a mean sensi-
tivity of 93.5% and a mean
specificity of 92.3%. B. Confu-
sion matrix of the binary clas-
sification for the CME pattern.
The row of matrix is the refer-
ences verified by three inde-
pendent retinal specialists. The
column of matrix is the pre-
dicted labels obtained from the
DL model. The mean accuracy
for the detection of the CME
pattern was 95.1%, with a mean
sensitivity of 94.5% and a mean
specificity of 95.6%. C. Confu-
sion matrix of the binary clas-
sification for the SRD pattern.
The row of matrix is the refer-
ences verified by three inde-
pendent retinal specialists. The
column of matrix is the predicted labels obtained from the DL model. The mean accuracy for the detection of the SRD pattern was 98.8%, with a mean
sensitivity of 96.7% and a mean specificity of 99.3%. D. ROC curve for DRT, CME, and SRD binary classifications: The mean area under the ROC
curve was 0.971, 0.974, and 0.994, respectively. ROC, receiver operating characteristic.
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(Figure 5, A and B), the regions highlighted by the
occlusion test were areas where sponge-like retinal
swelling was the most prominent. Similarly, in OCT
images of the CME and SRD patterns (Figure 5, C–F),
the areas highlighted by the occlusion test were visu-
ally confirmed to be the intraretinal cystoid spaces and
subretinal fluid. These highlighted areas represented
the areas in each of the OCT image that were highly
correlated with the accurate detection of the DME
patterns.

Discussion

In this study, a DL model was developed to detect
different morphologic patterns of DME based on OCT
images. Our results showed that the accuracy of our DL
model in the detection of the three OCT patterns was
promising. Moreover, visualization of the DL model
showed that the areas highlighted by the occlusion test
were the most predominant pathologic regions of
different DME patterns. These findings indicated that
our DL model could successfully detect OCT patterns by
recognizing the critical pathologic regions in OCT
images.

Previous studies have suggested that the pathogen-
esis of each OCT pattern may be different from the
others.7–9,12 It has been shown that DRT and CME
were mainly attributable to breakdown of the inner
BRB, respectively, resulting in intracytoplasmic swell-
ing and necrosis of Müller cells.5,12–14 On the con-
trary, SRD is caused by dysfunction of the outer
BRB, causing accumulation of subretinal fluid.6,14

Consistently, different morphologic patterns of DME
determined by OCT images may respond differently to
anti-VEGF therapy because of their diverse pathogen-
esis.4,5,13 In addition, the prognosis of patients with
DME was also associated with integrity of the ellip-
soid zone and external limiting membrane, the pres-
ence of the disorganization of retinal inner layers, and
hyperreflective foci.4,28,29 However, a much larger
number of OCT images are required to train the DL
model to make accurate detection of these subtle
lesions. The labeling of these OCT images also needs
tremendous workload. Therefore, our DL model can
only be trained to predict the OCT patterns.
Nevertheless, the morphologic patterns of DME can

indirectly reflect these lesions. It has been shown that the
total number of hyperreflective foci and the damaging

Fig. 4. Binary comparison
evaluating the concordance
between the DL model and ret-
inal specialists in the external
validation: A. Confusion matrix
of the binary classification for
the DRT pattern. The row of
matrix is the references verified
by three independent retinal
specialists. The column of
matrix is the predicted labels
obtained from the DL model.
The accuracy for the detection
of the DRT pattern was 90.2%,
with a sensitivity of 80.1% and a
specificity of 97.6%. B. Confu-
sion matrix of the binary clas-
sification for the CME pattern.
The row of matrix is the refer-
ences verified by three inde-
pendent retinal specialists. The
column of matrix is the pre-
dicted labels obtained from the
DL model. The accuracy for the
detection of the CME pattern
was 95.4%, with a sensitivity of
93.4% and a specificity of
97.2%. C. Confusion matrix of
the binary classification for the
SRD pattern. The row of matrix
is the references verified by
three independent retinal spe-
cialists. The column of matrix is
the predicted labels obtained

from the DL model. The accuracy for the detection of the SRD pattern was 95.9%, with a sensitivity of 94.9% and a specificity of 96.5%. D. ROC curve
for DRT, CME, and SRD binary classifications. The area under the ROC curve was 0.970, 0.997, and 0.997, respectively. ROC, receiver operating
characteristic.
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degree of the external limiting membrane and ellipsoid
zone at baseline in the SRD pattern were significantly
higher than those in the DRT and CME patterns.4,28 In
addition, visual acuity loss associated with the CME
pattern may be primarily caused by the foveal disorga-
nization of the retinal inner layer.29 Hence, detecting the
OCT patterns can indirectly or directly predict the prog-
nosis of patients with DME, and personalized therapeutic
strategies could be made according to the OCT patterns.
However, current subjective detection and classification
of OCT patterns is expertise-requiring and time-consum-
ing.21,30 Thus, it is particularly beneficial to develop an
automated system for the detection of OCT patterns to
assist the clinical decision-making processes in patients
with DME.
DL systems have been shown to have expert-level

performance in detecting various ocular diseases, includ-
ing diabetic retinopathy,20 DME,18,19,21 and AMD.30 For
instance, a DL model developed based on 11,349 OCT
images was shown to have high accuracy in detecting
DME (accuracy = 98.2%).18 Another DL algorithm com-
bined a three-dimensional segmentation network and a
classification network to interpret three-dimensional
OCT scans and identify different retinal diseases.19 After
being trained with 14,884 OCT scan volumes, this algo-

rithm achieved a mean AUC of 99.0% in DME detec-
tion.19 These findings indicated that DME diagnosis
using DL models was promising. However, there was
still no DL model for the detection of the OCT patterns.
In the current study, we trained a DL model to detect

different OCT patterns. Except for effectively reducing
the time required for image analysis, our DL model
automatically processed features of OCT images and
achieved robust performance. The mean accuracy for the
detection of the three OCT patterns was 93.0% to 98.8%,
with a mean AUC of 0.971 to 0.994 in internal validation
(Figure 3). Moreover, the mean accuracy of detection of
the DME patterns was 90.2% to 95.9%, with a mean
AUC of 0.970 to 0.997 in external validation (Figure 4).
These results were comparable with the previous studies
using DL architectures to detect DME based on OCT
images because the detection of the OCT patterns may
be more complicated and challenging than distinguishing
DME from normal eyes.18,19,21 The difference in char-
acteristics between different OCT patterns might be less
obvious than that between DME and normal eyes. There-
fore, the result achieved by our DL model is promising
and encouraging.
In addition, our DL model could precisely recognize

the critical areas in OCT images highly correlated with
accurate detection. In this study, the occlusion test was
performed to improve the transparency of our DL
model and demonstrate the pathologic regions most
critical to accurate detection of each OCT pattern. The
occlusion test confirmed that the DL model made the
detection based on accurately recognizing unique
features of each OCT pattern (Figure 5). Deep learning
models have often known as “black boxes” entities
because of difficulties in understanding how the algo-
rithms make their predictions.30 These efforts to
uncover the mystery of DL models may help convince
ophthalmologists and patients to adopt DL models in
clinical practice.
There are several limitations in the study. First, the

detection ability of the DL model needs to be further
validated by prospective multicenter trials. Second,
another limitation is the sole use of OCT images
obtained by the Heidelberg Spectralis imaging system
in our study. Because the primary goal of our study was
to develop a DL model for the detection of the
morphologic patterns of DME, using the same OCT
imaging system could help reduce confounding variables
and increase accuracy of the DL model. Future
researches could include images from different OCT
platforms. Finally, the size of CME, SRD, and DRT
lesions could not be estimated by a single B-scan. In the
future, a three-dimensional model, used to quantify and
derive measurements of the size of CME, SRD, and
DRT lesions, can be incorporated into our DL model for

Fig. 5. Occlusion test successfully identified the pathologic regions in
the OCT images of diffuse retinal thickening (A and B) pattern, cystoid
macular edema (C and D) pattern, and serous retinal detachment (E and
F) pattern. An occlusion map was generated by convolving an
occluding kernel across the input image. The occlusion map is created
after prediction by assigning the probability of the correct label to each
occluded area. The occlusion map could then be superimposed on the
input image to represent the critical areas in OCT images that were
highly correlated with accurate detection of diabetic macular edema
patterns.
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more comprehensive detection and evaluation of the
anatomical outcomes of different DME patterns.19

In conclusion, our DL model demonstrated high
accuracy and transparency in the detection of the
morphologic patterns of DME based on OCT images.
After integrating the three morphologic patterns
information, the final classification of OCT patterns
could be obtained. This DME detection model could
help make personalized therapeutic strategies for
patients with DME according to the classification of
OCT patterns. These results emphasized the potential
of artificial intelligence in assisting clinical decision-
making processes of DME.

Key words: artificial intelligence, deep learning,
complication of diabetic retinopathy, diabetic macular
edema, optical coherence tomography.
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