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Objective: To elucidate the molecular cause in a well-characterized cohort of patients
with Congenital Hypothyroidism (CH) and Dyshormonogenesis (DH) by using targeted
next-generation sequencing (TNGS).

Study design: We studied 19 well-characterized patients diagnosed with CH and DH by
targeted NGS including genes involved in thyroid hormone production. The pathogenicity
of novel mutations was assessed based on in silico prediction tool results, functional
studies when possible, variant location in important protein domains, and a review of the
recent literature.

Results: TNGS with variant prioritization and detailed assessment identified likely
disease-causing mutations in 10 patients (53%). Monogenic defects most often
involved TG, followed by DUOXA2, DUOX2, and NIS and were usually homozygous or
compound heterozygous. Our review shows the importance of the detailed phenotypic
description of patients and accurate analysis of variants to provide a molecular diagnosis.

Conclusions: In a clinically well-characterized cohort, TNGS had a diagnostic yield of
53%, in accordance with previous studies using a similar strategy. TGmutations were the
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Abbreviations: CH, congenital hypothyro
gland in situ; MAF, minor allele frequency
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most common genetic defect. TNGS identified gene mutations causing DH, thereby
providing a rapid and cost-effective genetic diagnosis in patients with CH due to DH.
Keywords: congenital hypothyroidism, dyshormonogenesis, mutations, targeted next-generation sequencing,
gland in situ
INTRODUCTION

Congenital hypothyroidism (CH) is the most common neonatal
endocrine disorder, with an incidence of 1/2,500–3,500
newborns (1, 2). Among patients with CH, 65% have thyroid
dysgenesis (TD), with a large phenotypic spectrum
encompassing athyreosis, thyroid ectopy, hypoplasia of an
orthotopic gland, and hemithyroid (3). In the remaining 35%
of patients, CH is due to dyshormonogenesis (DH) with a
thyroid gland in situ (GIS) with or without goiter. DH may
lead to goiter formation due to thyroid tissue overstimulation by
increased TSH levels. Most cases of DH are due to mutations in
TG, TPO, SLC5A5/NIS, SLC26A4/PDS, IYD/DEHAL1, DUOX2,
DUOXA2, DUOX1, DUOXA1, and SLC26A7, which are involved
in thyroid hormone production and usually inherited on an
autosomal recessive basis (4–6).

The proportion of patients with CH due to DH who receive a
molecular diagnosis varies widely across studies, from 20 to 60%
(7–13). Factors contributing to this variability include differences
in patient phenotypes, clinical characterization of the patients
(imaging techniques, as thyroid ultrasound and scintigraphy,
perchlorate test, thyroglobulin measurement), geographic origin,
and mainly variant classification.

The objective of this study was to assess the diagnostic yield of
targeted Next Generation Sequencing (TNGS) in a cohort of 19
well-characterized patients with CH due to DH. We also report
the results of an extensive literature review of studies describing
genetic findings in patients with CH, with special attention to
those having DH.
MATERIALS AND METHODS

Patients
Nineteen patients with permanent primary CH, referred by
various centers in France, Tunisia (n = 2), and the United
States of America (USA) (n = 1) were included in the study.
Diagnosis of primary CH was based on systematic newborn
screening in France and increased venous TSH at control blood
sample. Cut-off in blood spot for newborn screening is 15 mIU/L
in France and 20 mIU/L in New York (USA); no newborn
screening is available in Tunisia. CH was diagnosed at birth
for all patients except the patient from USA and the
Tunisian patients diagnosed during the first months or year of
life, respectively, due to clinical symptoms suggesting
hypothyroidism and confirmed by high TSH levels and low
idism; DH, dyshormonogenesis; GIS
; NGS, Next generation Sequencing.

n.org
,

2

free T4 levels (FT4), according to laboratory reference values.
Inclusion criteria of 19 patients were CH with GIS and at least
one of the following: clinical goiter (≥2SD), available thyroid
scintigraphy providing an evaluation of thyroid position and
radionuclide uptake, and a perchlorate discharge test performed.
This study was approved by French Biomedecine Agency.
Written, informed consent was obtained from the individuals
and minors’ legal guardian for the publication of any potentially
identifiable images or data included in this article.

Detection of Mutations
We designed a TNGS panel (HypothySeq NGS) of 78 genes
including genes known to be associated with CH (thyroid
dysgenesis; dyshormonogenesis; thyroid hormone transport
protein defects; and inborn errors in thyroid hormone
membrane transport, metabolism, or action) and candidate genes
that have been identified in animal models (mouse and zebrafish
knock-out models) or by microarray assays but not yet validated in
humans. Sensitivity (false-negative rate) of the panel was assessed
in positive controls with known thyroid disease-causing mutations,
including mutations in dyshormonogenesis genes, and specificity
(false-positive rate) in healthy individuals previously screened
using whole exome sequencing for another research project.

TNGS on HiSeq 2500 system (Illumina, San Diego, CA) and
bioinformatics analyses were already described (14). Mean
coverage for each gene is reported Table 1.

Prioritizing Strategy for Filtering
Pathogenic Variants
Variants (including frameshift mutations, missense and
nonsense mutations, and splicing-site mutations) identified in
known dyshormonogenesis genes were considered for the
analysis. If available, functional data and segregation analysis
results were taken into consideration.

Inheritance is recessive for TPO, TG, DUOX2, DUOXA2,
SLC5A5, and SLC26A4 and dominant for PAX8. Genome
variations were defined using PolyDiag in-house software for
TABLE 1 | Reference transcript and average coverage of genes responsible for
CH and DH.

Reference transcript Average
coverage

TG NM_003235 614
TPO NM_000547 694
DUOX2 NM_014080 586
DUOXA2 NM_207581 516
NIS/SLC5A5 NM_000453 577
PDS/SLC26A4 NM_000441 720
DEHAL1/IYD NM_001164694,

NM_203395
580
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TNGS, which filters out irrelevant and common polymorphisms
based on frequencies extracted from the following public
databases: US National Center for Biotechnology Information
database of single nucleotide polymorphisms (SNP) (dbSNP),
1000 Genomes, Exome Variant Server and Exome Aggregation
Consortium (ExAC). Consequences of mutations on protein
function were predicted using three algorithms: Polyphen2,
SIFT, and Mutation Taster. Mutations were ranked based on
the impact of each variant predicted by combined annotation-
dependent depletion (CADD) then compared using the
mutation significance cut-off, which is a gene-level specific
cutoff for CADD scores.

For deletions or insertions in exons, information on the
variants was sought in similar published studies. Sanger
sequencing was performed to validate and segregate the
identified variants (3500xL Genetic Analyzer, Thermo Fisher
Scientific, Waltham, MA). Primer sequences are shown in
Table 2.
RESULTS

Clinical Description of the Study Cohort
We studied 19 index cases of CH due to dyshormonogenesis
(Table 3). Among them, 16 were born in France [two of them
(patients #4 and #18) born in France to consanguineous parents,
and of Moroccan and Turkish origin, respectively] and were
diagnosed with primary CH at birth by routine neonatal
screening (TSH cutoff, 15 mIU/L) followed by a venous-blood
TSH assay. CH was diagnosed at day 75 of age in one patient
(#19) born in the USA and at 2 months and 5 months of age in
two patients (#14 and #15 respectively) born in Tunisia. These
three patients underwent evaluation for clinical symptoms
suggesting hypothyroidism and were found to have high TSH
levels and low FT4 levels. Of the 19 patients, eight had a family
history of CH and five were born to consanguineous parents,
including one with an affected sibling (#1). A goiter was evident
at diagnosis in nine patients including two (#3 and #16)
diagnosed with goiter in utero. Fetal goiter was diagnosed
during one of the routine fetal sonograms performed in France
during pregnancy at 13, 22, and 32 gestational weeks. In our
cases, the diagnosis was made on the second ultrasound, around
22 gestational week and treated with intraamniotic levothyroxine
injections, mean dose between 200 and 400 micrograms/
Frontiers in Endocrinology | www.frontiersin.org 3
injection. The response to levothyroxine treatment was
assessed by decrease in thyroid size in fetal ultrasound and/or
normalization of fetal thyroid hormones. According to the
European Society for Paediatric Endocrinology guidelines (15)
the FT4 level at diagnosis indicated severe CH in nine patients
(FT4<5 pmol/L) and moderate CH in 1 patient (FT4, 10–15
pmol/L). Thyroglobulin was not assayed routinely. A perchlorate
discharge test was performed in 14 patients, of whom 11 had a
positive result >10%.

Genetic Results and Diagnostic Yield
TGNS allowed the molecular diagnosis in the majority of
patients (10/19) screened, providing a diagnostic yield of 53%
(Table 4, Figures 1–3). We identified of 14 novel variants on 24.
Twelve/24 variants were causative in function of the context
(genetic model, specificity of variants). TG was the most
common site of mutations, followed by DUOXA2 for causative
variants (Figure 1). Figure 2 shows the familial pedigrees and
Figure 3 the location of DH-causing mutations.

TG Variants
Seven novel variants have been identified by TNGS in our study
cohort, located mainly in the type 1 repeat protein domain and
the acetylcholinesterase (ACHE)-like domain.

Two siblings (patient #1 and his brother) were compound
heterozygous for two previously described TG mutations: an
insertion in a splice site (c.638+1 G>A) leading to exon 5
skipping and a missense mutation (c.886C>T, pR277X)
producing a premature stop codon (16, 17). Familial
segregation and Sanger sequencing confirmed that one variant
was transmitted by the mother and the other one by the father
(Table 4). Another known homozygous TG mutation
(c.6701C>A, p.A2215D) in the ACHE-like domain, associated
with deficient TG secretion due to TG retention within the
endoplasmic reticulum (18, 19) was identified in patient #2.
Unfortunately, no parental DNA was available. Patient #3 was
compound heterozygous for two TG mutations including the
previously described c.4588 C>T mutation (inherited from the
father) that produces a premature stop codon (p.R1511X) with
skipping of the exon 22 domain (34). Exon 22 skipping may
result in protein structure alterations responsible for protein
retention within the cell. This nonsense mutation occurs in a
CpG dinucleotide sequence and may be caused by deamination
of a methylated cytosine resulting in a thymine (21). The other
TABLE 2 | Primers sequences to verify variants by PCR and Sanger sequencing.

Gene Exon Primer Forward Primer Reverse

PAX8 3 GGCTCTGGCTAAATCCCTGTCTAA TCCCTGCCTGATTGTTCAGCAT
PAX8 7 TGCAGGAAGGTCGGCTTGTT GACAGCCAGCCAAGCTCTTCA
SLC5A5 9_10 GATGGTGTGGACGGTCTCTC TAATGGGAAAGAGGGAAAGG
TG 5 GAGTGCATATGCTGCTCGAC TCAAGGTGAGTGTGGGCTG
TG 6 TTCCTTTTCACTAGGCGTGG GCAGGCAGTCACTCTAGCTG
TG 7 AACTTTGAAACCCAAGAGGC AGGTCAGGGCTTCCTTTCTG
TG 9 CTCTGTGCCAGAAGATGTGG CTGTACTGCATTGGGTCAGG
TG 22 TAGGAGTCAGGGGATTCCAG AGCCCTTGAGACTACTCCCC
TG 26 TCCAACTCTGCCATGTTTTG CAGCTCCATGTTGTGTGTCC
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TABLE 3 | Clinical description of cohort of patients with CH due to DH.

oid
raphy

Perchlorate
test

Associated
features

Familial cases

osition -
uptake

11% – CH in a brother
with similar

clinical features

osition -
uptake

N – –

osition,
uptake

10.4% – Subclinical non-
autommune

hypothyroidism
in mother and
grand-mother

osition -
uptake

84% – –

osition -
uptake

50% – –

osition Normal
position,
normal
uptake

N –

osition 13% – –

osition -
uptake

42% – –

NA – 2 brothers with
CH and similar

clinical
presentation

uptake – – –

osition -
uptake

50% Unilateral
cryptorchidism

- no renal
anomalies

CH and gland
in situ (mother)
- urinary tract
duplication
(father)
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Patient Country
of origin

Consanguineous
parents

Age / Sex Age at
diagnosis

TSH at
diagnosis
(mIU/L)

free
T4 at

Thyroglobulin Goiter at
diagnosis

Cervical
Ultrasound

Thy
Scintig

1 France No 19 y / M D9 470 3.5 NA No NA Normal p
elevated

2 France No 30 y / M D19 49 NA 1.5 Yes Normal position
- RL 46x25 mm
- LL 45x30 mm

Normal p
elevated

3 France No 6 y / M D19 143 8.4 NA Yes. In
utero

NA Normal
normal

4 Morocco Yes 9 y / F D19 100 NA 2,512 Ye, mild Normal position
- RL 18x9 mm -
LL 20x10 mm

Normal p
elevated

5 France No 19 y / M D14 657 3 NA No NA Normal p
elevated

6 Tunisia Yes 11 y / M D4 637 undetectable NA Yes Normal

–

7 France No 6 y / F D8 443 6.1 1.2 No Normal position
- RL 21x10 mm
- LL 17x10 mm

Normal

8 France No 24 y / F D3 110 6.2 NA No Normal position Normal p
elevated

9 France No 22 y / M D3 high (NA) NA NA Yes, mild Normal position N

10 France No 17 y / F D13 580 < 1.8 NA Yes Normal position
RL 30x6 mm -
LL 30x3.5 mm

No Iodin

11 France No 3 y / M D10 300 14 NA No NA Normal p
normal
r

p

p

p

A

e
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TABLE 3 | Continued

Thyroid
Scintigraphy

Perchlorate
test

Associated
features

Familial cases

Normal position -
normal uptake

25% –

Normal position 57% – CH in the twin
sister

No Iodine uptake NA – CH (brother.
similar clinical
presentation) -
CH (uncle)

No Iodine uptake NA – –

Normal position 26% – –

Normal position -
normal uptake

N – CH in the sister

Normal position 27% –

Normal position -
reduced uptake

NA Prematurity.
No intrauterine

growth

CH in the twin
sister

when the discharge is less than 10%.
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Patient Country
of origin

Consanguineous
parents

Age / Sex Age at
diagnosis

TSH at
diagnosis
(mIU/L)

free
T4 at

Thyroglobulin Goiter at
diagnosis

Cervical
Ultrasound

12 France No 7 y / F D9 53.8 NA 431 No Normal position
- length: RL 21
mm - LL 21 mm

13 France No 8 y / F D9 111.5 < 5 NA No Normal position
- RL 7.7x5 mm
- LL 8.1x5.9

mm

14 Tunisia Yes 32 y / M 2 M 90 2 35 No Normal position

15 Tunisia Yes 24 y / F 5 M > 60 < 0.5 NA No Normal position

16 France No 15 y / M D1 180 4.9 NA Ye, in
utero

Normal position

17 France No 26 y / M D3 37.6 20 71 Yes Normal position
- RL 6x4x11

mm - LL 4x5x10
mm

18 Turkey Yes 9 y / F D3 591 3.5 2,110 Yes Normal position
- RL 40x20x10

mm - LL
40x19.5x11 mm

19 United
States

No 5 y / F D75 755 1.2 NA No Normal position

Normal
values

Age TSH (mIU/L) T4 (pmol/L)

2 – 7 D 1.1 – 15.6 11.6 – 36.0

8– 15 D 0.87 – 7.8 9.5 – 28.9

16– 30 D 0.82 – 6.9 9.3 – 23.5

1 month
– 1y

0.80- 6.05 8.3 – 18.6

Normal
values

TG 20-70ng/mL

NA, not available; N, normal; D, days; M, months; y, years; M, male; F, female; RL, right lobe; LL, left lobe. Normal perchlorate discharge test is considered
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TABLE 4 | Molecular and protein descriptions regarding variants found in patients with CH due to DH.

tion Inheritance Reference/ho
or het/Func-
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Causative

utation
aster

CADD
score

– 25.9 carrier
mother

Alzahrani et al.
(16) / ho / no

Yes

– 37 carrier
father

Van de graaf
et al. (17) / ho /

no

Yes

isease
using

32 NA Caputo et al.
(18), Pardo
et al. 2009
(19)/ het

compound and
ho/ deficient
TG secretion,
retention in

cells

Yes

– -1 NA Pfarr et al. (20)-
het compound/

No

No

– -1 No Yes

– 38 carrier
father

Targovnik et al.
(21), ho/ No

Yes

orphism 8.8 No No

isease
using

11.2 No No

orphism 24.7 NA Tonacchera
et al. (22)/ het
compound /

partial defect in
H2O2

production

Yes

– NA Brust et al.
(23)/ het

compound /
No

No

orphism 0 NA No No

– -1 carrier
mother

No Yes

– 38 carrier
father

Targovnik et al.
(21)/ ho /No

Yes

orphism 9.9 NA No No
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Patient Gene cDNA change Amino acid
change

Exon Homozygous (ho)/
Heterozygous (he)

Variant
type

Protein
Domain

Variant name - ExAC
frequence/dbSNP orMAF and
allele frequency in gnomAD

In silico predic

SIFT Polyphen-
2

M

1 TG c.638+1 G>A 1_ex.5 He splice
donor
region

Type 1 repeat 8_133885467_G_A- 0 – –

TG c.886 C>T p.R277X 7 He premature
stop
codon

Type 1 repeat rs121912648 - 0.0003625 -
gnomAD 0.0003535

– –

2 TG c.6701 C>A p.A2215D 38 Ho missense ACHE-like
domain

rs370991693 - 0.00004141 -
gnomAD 0.00004245

Deleterious Damaging D
c

DUOX2 c.601_602insG p.G202Tfs99 6 He frameshift N-terminal
peroxidase-like

domain

rs565500345 - 0.001 - gnomAD
0.00009553

– –

3 TG c.2132_2133insG p.A693Gfs24 9 He frameshift Type 1 repeat 8_133899750_A_AG- 0 – –

TG c.4588 C>T p.R1511X 22 He premature
stop

Type 1 repeat rs121912646 - 0.00006591
-gnomAD 0.00009195

– –

SLC26A4 c.199 A>C p.T67P 3 He missense – 7_107303775_A_C - 0 Deleterious Benign Poly

DUOX2 c.598 G>A p.G200R 6 He missense N-terminal
peroxidaselike

domain

rs2467827 - 0.003 -gnomAD
0.0009541

Tolerated Possibly
damaging

D
c

4 DUOX2 c.3155 G>A p.C1052Y 24 missense – rs76343591 - 0.004218
-gnomAD 0.001294

Deleterious Possibly
damaging

Poly

TG c.5299_5301
del.GAT

p.D1748del 27 He no
frameshift

Type 3 repeat rs112749206 - 0.011 -gnomAD
0.004399

– –

TG c.5370 A>G p.I1771M 27 He missense Type 3 repeat rs73710715 - 0.011 -gnomAD
0.004414

Benign Tolerated Poly

5 TG c.648_649insG p.A198Gfs14 6 He frameshift Type 1 repeat 8_133894118_T_TG - 0 – –

TG c.4588 C>T p.R1511X 22 He premature
stop
codon

Type 1 repeat rs121912646 - 0.00006591
-gnomAD 0.00009195

– –

6 TG c.7859 G>A p.G2601D 45 He missense ACHE-like
domain

rs978923522 - 0 Tolerated Benign Poly
T

a

m

a

m

m

m
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TABLE 4 | Continued

In silico prediction Inheritance Reference/ho
or het/Func-
tional study

Causative

– 37 carrier
father

Van de graaf
et al. (17)/ ho /

No

Yes

rious Damaging Disease
causing

25.2 carrier
mother

No Yes

– 25.2 NA No Yes

rious Damaging Disease
causing

24.7 NA No Yes

– – -1 NA No ?

– – NA No ?

rious Damaging Disease
causing

25.2 No No

– -1 No No

rious Damaging Disease
causing

28.2 carrier
mother

Lanzerath et al.
(24)/ thyroid
hypoplasia /

het compound
/ No

Yes

rious Damaging Disease
causing

35 NA Vincenzi et al.
(25) / het / Yes

but not
deleterious on

TG

No

– 37 carrier
mother

Fu et al. (26) /
het hypoplasia

/ No

No

rious Damaging Disease
causing

33 carrier
mother,
father NA

Kosugi et al.
(27)/ ho / no
iodide uptake

Yes

rious Damaging Disease
causing

33 carrier
father and
mother

Kosugi et al.
(27)/ ho / no
iodide uptake

Yes
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Patient Gene cDNA change Amino acid
change

Exon Homozygous (ho)/
Heterozygous (he)

Variant
type

Protein
Domain

Variant name - ExAC
frequence/dbSNP orMAF and
allele frequency in gnomAD

7 TG c.886C>T p.R277X 7 He premature
stop
codon

Type 1 repeat rs121912648 - 0.0003625
-gnomAD 0.0003535

–

TG c.5182T>C p.C1709R 26 He missense Type 3 repeat rs37600169 - 0.00002471 Delet

8 DUOXA2 c.205+2T>C 2_ex2 He essential
splicing

II
transmembrane

domain

rs201506037 - 0.00038
-gnomAD 0.0004583

–

DUOXA2 c.463C>G p.L155V 4 He coding extracellular
domain

rs201808443 - 0.00040
-gnomAD 0.0004595

Delet

TG c.2233_2234insT p.L727Afs*3 10 He frameshift Type 1 repeat eva_exac_8_133900286_C_CT
- 0

–

TG c.3452delT p.V1132Afs*31 16 He frameshift Type 1 repeat rs766130576 - 0.00003 –

9 TPO c.866 T>C p.F289S 8 He missense Heme
peroxidase

2_1480904_T_C - 0 Delet

10 TPO c.1768+1insGTCTGCCAG 1_ex10 He splice
donor
region

Heme
peroxidase

2_1491764_G_GGTCTGC CAG
- 0

–

11 PAX8 c.101 T>A p. I34N 3 He missense Paired box
protein

2_114004421_A_T_0.00008331 Delet

12 PAX8 c.397C>T p.R133W 5 He missense Paired box
protein

2_114000348_G_A - 0 Delet

13 PAX8 c.658 C>T p.R220X 7 He premature
stop
codon

– 2_113999247_G_A - 0 –

14 SLC5A5 c.1183 G>A p.G395R 10 Ho missense X
transmembrane

domain

rs121909180 - 0.00006595
-gnomAD 0.00004597

Delet

15 SLC5A5 c.1183 G>A p.G395R 10 Ho missense X
transmembrane

domain

rs121909180 - 0.00006595
-gnomAD 0.00004597

Delet

NA, Not available.
? No definitive molecular diagnosis.
For TG, the amino acid positions are numbered after subtracting the 19-amino acid signal peptide.
e

e

e

e

e

e

e
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A

B C

FIGURE 1 | Schematic representation of found variants in the cohort of patients with CH due to DH. (A) Flowchart of the selection and distribution of variants
identified by TNGS in 19 patients, including TG, TPO, DUOX2, DUOXA2, SLC5A5/NIS, SLC26A4, DEHAL1/IYD, and PAX8 (B) Distribution of variants detected for
each gene and absolute numbers of non-causative and causative variants. (C) Distribution of causative variants for each gene calculated relative to the total number
of causative variants.
FIGURE 2 | Pedigrees showing causative variant distribution and segregation in seven families. The patients with CH and DH are represented by filled boxes. In
familial forms, the index patient is indicated by an arrow. Representative chromatograms are shown for each family member. NA, not available for DNA sampling.
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TG mutation was a novel variant, c.2132_2133 insG, in exon 9,
responsible for a frameshift in the Type-1 domain. This
c.2132_2133 insG mutation explains therefore along with the
p.R1511X, the clinical phenotype of the patient. Patient #5 also
had two TG mutations. One (c.4588 C>T, p.R1511X) was a
previously described mutation (34) for which no functional
studies are available, inherited from the father, and responsible
for a stop codon. The other, inherited from the mother, was a
novel G insertion in exon 6 leading to a frameshift in the Type 1
TG domain and to a premature stop codon. The previously
reported c.886 C>T mutation (p.R277X), also found in patient
#1, was identified in patient #7 along with a novel missense
mutation that replaces a cysteine with an arginine (c.5182 T>C,
p.C1709R), located in the type 3 repeat domain of TG, and
responsible for absence of a disulfide bond that may alter the
conformation of TG. A novel TG monoallelic variant
(c.7859G>A, p.G2601D) located in the ACHE-like domain was
found in another patient (patient #6); its pathogenicity cannot be
ascertained in silico.

DUOX2 and DUOXA2 Variants
TGNS identified one case (patient #4) with a probably causative
biallelic DUOX2 mutation leading to partial deficiency in H2O2

production (22). Interestingly this patient had also two
Frontiers in Endocrinology | www.frontiersin.org 9
heterozygous TG variants located in the same type-3 protein
domain, of which one—a 3-bp (GAT) deletion at amino acid
position 1,767—has been reported previously (23) and the other
is novel (c.5370A>G, p.I1771M); suggesting that accumulation of
pathogenic variants may lead to CH.

In our study cohort, patients #2 and #3 besides TGmutations,
carried a monoallelic DUOX2 variant not located in DUOX2
functional domains or hot-spot mutations. The DUOX2 variant
of patient #2 has been previously described in patients with DH,
without any functional study (20).

The accumulation of variants in different DH genes applies on
other cases, as in patient #8 heterozygous for four novel variants
in TG and DUOXA2. The two TG variants, c.2233_2234insT and
c.3452delT, were in the type 1 repeat domain. One DUOXA2
variant, c.205+2 T>C, was in an essential splice site. In silico
predictions predictive algorithms show an abolishment of
natural splice donor site, suggesting a splicing effect of the
variation. The other DUOXA2 mutation, c.463 C>G, p.L155V,
was a missense variant in the larger extracellular domain. The
patient had a GIS and a positive perchlorate discharge test.
Although the two DUOXA2 mutations may explain the
organification defect, a pathogenic effect of the two TG
mutations cannot be ruled out, particularly as no TG assay was
performed at diagnosis.
FIGURE 3 | Variants identified in the present study with their location in the protein domains of thyroglobulin (TG), sodium-iodide symporter (NIS), dual oxidase 2
(DUOX2), dual oxidase maturation factor 2 (DUOXA2), thyroid peroxidase (TPO), and paired-box protein 8 (PAX8). TG: arrows show the positions of identified
mutations in key structural domains including the repetitive type 1, type 2, and type 3 cysteine-rich regions (shown in black, dark gray, and light gray boxes,
respectively) and follows the acetylcholinesterase homology (ACHE-like) domain (adapted from Di Jeso and Arvan) (28). NIS: one identified variant (arrows) in 1 of 13
different transmembrane domains (adapted from Kosugi et al.) (29). DUOX2: the different protein domains are as follows: the peroxidase-like domain is in the N-
terminal region and the black boxes represent the transmembrane domains, the dark-gray boxes the EF-hand motifs, the light gray boxes the FAD-binding domain,
the narrow white boxes the NADPH-binding domains, and the oval box the heme-binding site (adapted from Moreno et al.) (30). Mutations are shown by arrows in
the various protein regions. DUOXA2: light gray boxes represent transmembrane domains (adapted from Grasberger and Refetoff) (31) and mutations are shown by
arrows. TPO: the heme oxidase domain is shown in light gray with an oval representing its catalytic site (encoded by exons 8–10) and the transmembrane domain is
represented in dark gray at the C-terminal end of the protein (adapted from Deladoey et al.) (32). The two TPO mutations are shown by arrows in the heme oxidase
domain. PAX8: paired domain (dark gray box), residual paired type homeodomain (light gray box), and the repressor and activating domains defined by dark lines
(adapted from Poleev et al.) (33). The three PAX8 variants are shown by arrows.
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TPO Variants
We did not identify any biallelic mutations but only two novel
monoallelic variants. Monoallelic TPO mutations have been
reported to cause DH with showed monoallelic expression (35).
The first TPO variant c.866 T>C, p.F289S, is in exon 8, encoding
for the catalytic domain (patient #9). In silico prediction tools
suggested a deleterious or disease-causing effect. Monoallelic
expression of the TPO mutation in patient #9 cannot be ruled
out, as no thyroid tissue study was performed. Familial segregation
for patient #9 showed that mother carried this TPO variant despite
a normal thyroid function. The second variant (patient #10) is an
insertion (c.1768+1insGTCTGCCAG), after exon 10. This
variation does not affect the main splice donor site, but because
of the duplicated sequence it creates a putative new splice donor
site, which is the same as the previous site. Its pathogenicity
remains questionable, as ideally functional data would be helpful.

PAX8 Variants
PAX8mutations have been chiefly described in patients with CH
and thyroid dysgenesis, some of whom also have renal and
urinary malformations (36). However, mutations in the PAX8
binding domain have been found in patients with CH and DH
characterized by defective iodide organification and positive
perchlorate discharge test or partial iodide transport defect,
with normal-sized thyroid gland (37, 38). Three previously
reported variants have been identified in three cases of cohort;
two of them in the DNA binding domain. One case (patient #11),
with GIS and a positive perchlorate discharge test, was
heterozygous for a mutation located in the binding domain of
PAX8 (c.101T>A, p.I34N). This mutation has been reported
previously in a patient with CH and thyroid gland hypoplasia
(24), who was also heterozygous for another PAX8 mutation
(p.V35I), in the DNA binding domain. Although no functional
data are available, given its location in the binding domain, the
p.I34N mutation probably impairs transactivation of TG or TPO.
Moreover, this variant was inherited from the mother, who also
had CH and GIS. Patient #12 was heterozygous for a missense
variant (c.397C>T, p.R133W) at the end of the PAX8 DNA
binding domain. This previously described mutation had no
deleterious effect on TG transactivation or with the synergism
between PAX8 and NKX2-1 (25). Pathogenicity is unclear, for
the third variant (patient #13) (c.658C>T, p.R220X) located after
the PAX8 binding domain and responsible for a premature stop
codon; described previously in a single patient who did not
undergo functional studies and whose phenotype is unclear (26).
In addition, the mutation was inherited from the mother, who
has normal thyroid function, position, and size.

SLC5A5/NIS Variants
The two Tunisian patients (#14 and #15), born to
consanguineous parents, were homozygous for the same
SLC5A5 mutation, c.1183 G>A, p.G395R. In a previous study
of this homozygous mutation, no perchlorate-sensitive iodide
uptake was observed in COS-7 cells transfected with the mutant
G395R NIS cDNA (27). Moreover, Dohan et al. have analyzed
the effect of the p.G395R mutation allowing valuable insights
into the structure-function and mechanistic properties of NIS
Frontiers in Endocrinology | www.frontiersin.org 10
(39). Amino acid substitutions at position 395 showed that the
presence of an uncharged amino acid residue with a small side
chain at position 395 is required for NIS function, suggesting that
glycine 395 is located in a tightly packed region of NIS. For
family of patient #14, the mother carries the variant; father’s
DNA was not available. The brother diagnosed also with CH at 8
months of age is homozygous for the mutation. For patient #15,
both parents are heterozygous as well as the healthy sibling.

Unsolved Cases With “No Causative” Variants
In four patients (#16–19), our filter prioritization strategy
identified no mutations. Among these patients, three had
goiter at diagnosis and two had familial CH, including one
born to consanguineous parents.

Literature Review
We reviewed the literature by searching PubMed with the
following terms: “hypothyroidism AND mutations” ,
“hypothyroidism AND mutations AND sequencing”, and
“hypothyroidism AND dyshormonogenesis”. We excluded
articles that did not provide NM accession numbers, detailed
clinical data, and/or a detailed genetic analysis. Nearly 400
patients with hypothyroidism and GIS, with or without goiter,
have been evaluated using either TNGS including a mean of 14
genes or whole exome sequencing (7, 8, 10–13, 40, 41). Most
patients underwent thyroid sonography to assess gland position
and size. Selected variants were missense mutations and
nonsense mutations in coding regions and splice sites. Variants
in untranslated regions or noncoding RNA and synonymous
variants were disregarded. The filters used were based on minor
allele frequency [mainly MAF of 0.01 or 0.02, and 0.001 in only
one study (41)] and in silico prediction tool results (usually SIFT
and Polyphen-2 and less often Mutation Taster, Mutation
Assessor, FATHMM, GERP score, CONDEL, and PROVEAN).
Variants were classified based on frequency, in silico prediction
tool results, pedigree segregation, and functional studies, as
available. In one study, a score from A to C was used to
stratify variants according to these criteria (8). The frequency
of patients with mutations in known genes varied from 20 to 60%
in cohorts including patients of various ethnicities (Korean,
Chinese, Finnish, Italian, Saudi Arabian, Russian, and
multiethnic). Table 5 recapitulates the main clinical and
molecular NGS studies published so far.
DISCUSSION

We used TNGS to perform comprehensive genetic screening of a
well-characterized cohort of patients with CH due to DH,
including patients with GIS and/or goiter at diagnosis and/or a
positive perchlorate discharge test. The proportion of patients
with identified disease-causing mutations was 53%. TG
mutations predominated, as described previously (7, 13). We
found 25% of DUOX2 and DUOXA2 variants as in others
European countries (42). DUOX2 mutations were uncommon
in our cohort, in contrast to studies in Asians showing a
prevalence of 60% (12). This could be explained by the absence
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of patients of Asian ethnicity in our cohort and the detailed
phenotypic and molecular description and assessment of
variants. The pathogenicity of each variant was carefully
evaluated based on clinical data including correlations with
clinical phenotypes, previously published information,
availability of functional studies, in silico prediction tool
results, and location of variants in regions of interest of the
protein. Interestingly we detected no causative DEHAL1/IYD or
SLC26A4/PDS variants, suggesting that these may be rarely
responsible for CH due to DH, depending usually on iodine
uptake or associated with syndromic features as in the case of
Pendred syndrome (4, 6). The proportion of patients with
identified mutations differed between familial and sporadic
cases (62 versus 54%, respectively).

The biallelic TG mutations identified in patient #2 have been
reported previously and were consistent with the clinical
presentation of goiter, low thyroglobulin levels, elevated iodide
uptake, and normal perchlorate discharge test. Similarly, in
patients #1 and #3, the goiter in utero or GIS with normal
radionuclide uptake and nearly normal perchlorate discharge test
are consistent with a TG mutation. Interestingly, the perchlorate
discharge test result in patient #5 was elevated. Variable
perchlorate discharge test values and partial iodide
organification defects have been reported in patients with TG
mutations (43, 44). When available, thyroglobulin values were in
agreement with the molecular diagnosis, as observed in patients
#2 and #7. This finding confirms that very low thyroglobulin
levels are a good indication for TG mutation screening (45).

Biallelic DUOX2 mutations explaining the DH were detected
in a single patient (#4), who had a goiter and a positive
perchlorate discharge test. Monoallelic DUOX2 variants were
identified combined with biallelic mutations in TG gene. The
pathogenic role of these variants and their contribution, if any, to
disease severity is difficult to determine. We identified two
heterozygous TPO variants (patients #9 and #10) as the only
disease-causing candidates. DH due to monoallelic TPO variants
has been reported (35). Monoallelic expression in thyroid tissue
and/or other, unidentified genetic factors may explain the
phenotype. Indeed, the TPO variant of the patient #9
(c.866T>C, considered as deleterious through three in silico
predictive algorithms) could be disease-causing if associated
with another TPO variant or if there is monoallelic expression.
However, given the uncertainty regarding the molecular
diagnosis and the absence of functional data, the contribution
to the CH phenotype of patients remains unclear.

We detected compound heterozygosity for two different novel
DUOXA2 variants in a patient with DH and a partial iodide
organification defect (patient #8). DUOXA2 mutations are a rare
cause of DH, and only seven variants have been reported so far
(5). Interestingly, we identified three different PAX8 variants in
three patients (#11, #12, and #13), including two variants located
in the DNA-binding domain. A single variant (p.I34N) was
considered causative, based on location and familial
segregation. However, p.R133W is also located in the binding
domain, although a previously reported functional study found
no evidence of a causative effect (25). The variant p.I34N in
Frontiers in Endocrinology | www.frontiersin.org 13
PAX8 of patient #11 was causative probably due to its
involvement in transactivation of DUOX2 and TPO leading to
defect of iodide organification. PAX8 mutations cause thyroid
dysgenesis and some mutations were compatible with
dyshormonogenesis as already described (37, 38).

Our literature review of studies of the molecular diagnosis of
CH using NGS techniques including whole exome sequencing
showed that differences in mutation frequencies across cohorts
were chiefly ascribable to differences in ethnicity. Korean,
Chinese, Finnish, Italian, Russian, or Saudi Arabian patients
were studied. A single study included patients of different
ethnicities (7). In two studies that distinguished between
familial and sporadic cases, mutations were identified in about
54% of familial cases and 20–22% of sporadic cases (7, 8). No
such difference was observed in our cohort. Furthermore,
frequency differences across cohorts depend on the type of
variant classification. Some studies determined the number of
variants without differentiating variants with recessive versus
dominant inheritance. Inheritance is usually recessive for
variants responsible for CH with DH (11, 12, 40). The
frequency of pathogenic variants was therefore overestimated.
When identifying genetic causes of CH, the challenge consists in
using appropriate criteria to select variants for TNGS screening.
Interestingly, the diagnostic yield of TNGS in our study was 53%,
in keeping with the results of previous studies that used a similar
filter prioritization strategy (Table 5). Reports of digenic variants
in several genes (TPO/TG, PDS/TPO, DUOX2/TG) suggest a
pathogenic effect of variant accumulation, with the occurrence of
DH. Oligogenic models involving CH-causing genes have been
developed (10). We also found two or three mutated genes in
several patients, although presence of a single recessive mutation
was sufficient to cause DH, without the presence of the other
monoallelic variants.

Combining scintigraphy and thyroid ultrasound in the
individual patient improves diagnostic accuracy and guides
molecular studies. In our cohort, positive TNGS findings
correlated well with thyroid radionuclide uptake and
perchlorate discharge test results. TNGS after newborn
screening and CH confirmation may be a valid strategy for
rapidly obtaining the accurate diagnosis of CH due to DH.
TNGS, if available, may serve as a diagnostic alternative to
thyroid scintigraphy, which is a time-consuming and invasive
method. However, this approach should not delay treatment
initiation and appropriate clinical care of patients.

In conclusion, in a well-characterized cohort of patients with
DH, our TNGS approach provided the molecular diagnosis and
shed light on genetic cause in 53% of cases. Several novel
mutations were detected, half of which were causative for DH.
Our analysis of the identified variants was based on both a
detailed phenotypic description and an in-depth assessment of
causality. TNGS is a rapid and cost-effective method for
screening patients with CH. Patients whose TNGS results fail
to provide the molecular diagnosis can then be assessed using
other NGS approaches, i.e., whole exome sequencing or whole
genome sequencing, with the goal of identifying new
candidate genes.
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