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Abstract

Purpose of Review To present the multi-faceted aspects of communication between robot and humans (HRI), putting in evidence
that it is not limited to language-based interaction, but it includes all aspects that are relevant in communication among physical
beings, exploiting all the available sensor channels.

Recent Findings For specific purposes, machine learning algorithms could be exploited when data sets and appropriate algo-
rithms are available.

Summary Together with linguistic aspects, physical aspects play an important role in HRI and make the difference with respect
to the more limited human-computer interaction (HCI). A review of the recent literature about the exploitation of different
interaction channels is presented. The interpretation of signals and the production of appropriate communication actions require
to consider psychological, sociological, and practical aspects, which may affect the performance. Communication is just one of
the functionalities of an interactive robot and, as all the others, will need to be benchmarked to support the possibility for social

robots to reach a real market.
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Introduction

Robots that are involved in communication are growing ex-
ponentially [1], and they will increase even faster as the com-
munication abilities will open new applications. Social robots
[2, 3¢] used in public spaces (for instance, hotels [4, 5], malls
[6, 7], airports [8, 9], hospitals), education [10¢], assistance
[11, 12], and personal care [13—15], co-bots [16, 17] used in
production plants, but also smart toys [18] and autonomous
cars [19, 20], all need to interact effectively with people.

Interaction may be based on communicative acts [21, 22],
performed intentionally to produce some effect in the
interacting agent(s), but also obtained by unintentional acts,
since it is impossible not to communicate when a channel is
open between two agents [23].
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Human-robot interaction requires from both sides the ex-
ploitation of different sense channels [24], typically hearing,
sight, and touch, respectively, presented in sections “The
Hearing Channel: Sounds and Speech,” “The Sight Channel:
Light and More,” and “The Touch Channel.” The signals
should be not only produced and detected along these chan-
nels but need to be elaborated to produce information compat-
ible with the decision function of both the human and robot
agents, so that appropriate actions can be selected as a conse-
quence of the communicative act. Interpretation could be ei-
ther programmed, or learned, as discussed in “Learning to
Interact.”

In communication, so also in HRI, it is important that
all the signals involved on the different channels be co-
herent in order to obtain effective message exchange and
to establish a good relationship between the interacting
agents. From the point of view of robot expression, this
could be obtained by considering all the limitations im-
posed by sensors, computational power, mechanical im-
plementation, and the role to be played, to keep the robot
coherently placed on the Mori’s curve [25], possibly
refraining from trying to achieve impossible perfor-
mances and making a robot able to play a role compat-
ible with its physical, mechanical, and computational
features.
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The quality of communication between robot and humans
should be evaluated to support the effectiveness of the robots
to perform tasks where communication is needed, in particular
for social robots. “Benchmarking: the “Real” Performance”
section mentions some of the efforts that are being performed
in this direction. They are part of a much larger set of activities
aimed at providing some kind of certification of the robot’s
abilities, needed to make them reach the real market, issue still
open in most potential situations [26].

The Hearing Channel: Sounds and Speech

Sounds can be used by robots to express emotional content by
explicit production, as we have been used with R2D2 and
BB8 robots of the Star Wars saga [27, 28¢], or by exploiting
the “natural” sounds that motors are producing [29].

The production of content of a speech can be done directly
by text-to speech systems [30], which may require to define
some structure of the dialogue a priori and to integrate the
speech production in a framework for the interaction.
Recently, this activity can be learned, typically by deep learn-
ing, to produce dialogue models [31]. A rich speech produc-
tion may come from the use of dialogue management systems
[32, 33¢] that can produce or adapt the structure of the dia-
logue online by using rules, statistical models, or machine
learning [34]. These systems are often computationally expen-
sive and require computation that cannot be done on board but
needs a connection to large systems, like Watson [35]. This
solution may lead to lag issues, due to the time needed to
generate the proper text to speech and to the unpredictable
delays due to the network supporting the connection.
Although these lags may produce non-fluent interaction, some
tricks may be used to limit this issue, such as simulating think-
ing, either gesturally, or with a short text, or with generic
interjections, like: “Ehm...”.

The speech production can include signals to convey emo-
tion, typically through prosody [36, 37], which make the in-
teraction more natural and linked to the context defined by the
content and the situation.

Speech interpretation by a machine is knowing a great im-
provement in the last years, also due to the development of
home assistants [38], which, again, need a connection to a
provider that could interpret the speech, with the consequent
possibility of lags. While question-answering dialogues have
achieved a good, market-grade quality, several challenges to
obtain fluent general dialogue are still open [39]. Most of the
solutions are not using the traditional natural understanding
procedures, based on signal analysis, phoneme detection,
grammars, and text structure interpretation, but exploit deep
learning models trained off-line and able to interpret many of
the possible sentences, possibly integrated in dialogue man-
agement systems.
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From prosody and analysis of text, it is possible to capture
some emotional content of the human speech [40—42], which
can be used to adapt the dialogue and the expression of the
robot.

Short commands, useful in directive interaction, can also
be successfully interpreted by systems on-chip [43], which
can be hosted on-board without requiring network connec-
tions to providers. Recent developments on both deep learning
algorithms and hardware technology are bringing on-chip also
more powerful speech understanding systems, reaching with
FPGA technology more than real-time performances [44, 45].

The Sight Channel: Light and More
Visual Interaction: Robot to Human

Robots may exploit the vision channel of people to produce
messages through light, images, or motion.

Light can be emitted by LED or other light sources that by
exploiting color, intensity, and rhythm may convey emotional
states or messages with a content [46]. These can also be
organized in matrices, which can depict eyes and mouth, pro-
viding an immediate expression of affective and attention
signals.

Interaction through a screen, often a touch screen, allows to
convey quite a lot of information, either textual or visual. This
is a solution taken by many social robots to overcome possible
issues affecting other channels. In many cases, it may seem
not natural, being in front of a humanoid, for instance, to have
to read from the screen on its chest and to push virtual buttons
on it, but this is becoming common, giving to the robot the
minor role of “screen bearer” and diminishing the feeling of
rich interaction with an autonomous agent. In most cases, this
is a way to circumvent the current limits of a full speech
interaction but also an effective way to produce complex in-
teractions, such as in the case of asking to select an element in
a relatively long list of alternatives.

Images are most often reproduced on screens, but they can
also be projected on the floor or on objects, e.g., to convey
specific information about the intention of the robot [47].
Other surfaces can also be used for projection; an interesting
example is the Furhat head [48], where facial expressions are
projected from inside an opaline face giving it the possibility
to show rich and highly believable facial and emotional move-
ments at a cost and complexity relatively lower than physical
and mechanical faces.

A last, interesting possibility for screens is to use them to
show either an animated face or parts of it sometimes integrat-
ed in physical faces (e.g., [49]), with a much less natural effect
than the mentioned Furhat, or even actual faces of people
interacting with the user through the robot, in a telepresence
experience. These robots are used to have a remote



Curr Robot Rep (2020) 1:279-285

281

audiovisual contact with people that cannot be reached in a
specific moment, as we have seen in the recent COVID-19
pandemics, and most of them do not even pretend to be more
than a bare screen bearer.

Another way to exploit the visual channel of the human for
the robot is to move its body or parts of it. This is very impor-
tant also to accompany signals presented on other channels. It
has been said that body language conveys most of the com-
munication content in humans [23], and it is indeed important
also for robots, to support their claims of animacy [50] and
improve naturalness of the interaction. Most of the move-
ments are pretending to mime as much as possible the analo-
gous movements in humans [51¢], with possible limitations
given by the mechanical implementation of joints, usually
different from the biological ones, which bring to inconsisten-
cy, mostly in movements (uncanny valley [25]). It is possible
to exploit bioinspired movements also in non-bioinspired ro-
bot bodies [52—-54], obtaining recognizable expressions [55],
as it was studied for cartoon animation [56-58].

Visual Interaction: Human to Robot

The robot has to understand the explicit and implicit commu-
nicative cues people produce with their body, mostly the af-
fective expressions. Although many systems have been pro-
posed to detect emotion from facial expressions [59, 60], they
often have relatively low accuracy, leading to too quick shift
in interpretation and quite demanding requirements both about
face resolution and the expression of facial cues [61], often
required to be unnaturally expanded to be recognized. Work
has still to be done on body expressions [62] and on subtle
cues, whose detection is also limited by sensor resolution, the
learning models which cannot come with too high complexity,
and the situations where interaction actually occurs, with sub-
jects moving fast in front of the robot, and reaching positions
out of the camera range.

Explicit, ample gestures can be easily detected by cameras,
mostly to be interpreted as commands. More natural human
activities can be recognized, at least under constrained situa-
tions not so common in social robot applications, since most
of the models have been developed for surveillance or other
purposes related to entertainment and require settings not all
common for social robots, such as depth cameras, fixed in the
environment, presence of a single user, models developed in
controlled environments, and subjects distant from the cam-
era. Moreover, only limited sets of actions have been consid-
ered in the data sets used to learn the available models, mostly
by deep learning [63], and many actions interesting for HRI
are not included in those sets. Reliable identification of com-
mon gestures, in a wild environment, from a mobile camera
mounted on a social robot is still an open research issue.

A simpler, although less informative, interaction channel
related to vision is based on low-cost range sensors (sonar,

infrared), which provide the distance from an unidentified
object, possibly a moving person. The analysis of the dynam-
ics of these signals can establish interesting interaction in low-
cost, low computational power applications, such as robotic
toys used in games.

The Touch Channel

Some robots rely on touch for at least some of the possible
interactions.

Simple touch detectors, such as buttons, are integrated in
many robotic toys, while resistive or capacitive sensors are
common in many other robots, often used to detect affective
gestures such as hugs, caresses, and punches (e.g., [52, 64]).
More complex, distributed, and expensive sensors can be used
to detect also punctual interactions, similarly to an artificial
skin [65].

Manipulation of small robots can also be interpreted from
accelerometer and gyroscope sensors, widely used to detect all
sort of activity in smart phones and watches, thus enabling
interaction through, usually implicit, communication acts.
For instance, in [66], these data are used to interpret the ma-
nipulation of a plush robot intended to be used by autistic
children, in order to objectively evaluate their activity and to
have the robot react to undesired actions, such as being thrown
to others. Accelerometers can also be used to interpret ges-
tures or human activities. For instance, in [67], a human player
involved in a robogame wears an accelerometer that gives
implicitly to the opponent robot information about the type
and the quality of activity that the person is performing, thus
allowing the robot to adapt its playing style to the human
player.

There are also situations, e.g., in robotic rehabilitation, in
robogames, or in cobots, where the way the robot enters in
contact with the human body should convey messages about
safety and confidence, which require this channel to be effec-
tively expressed.

Learning to Interact

Machine learning plays a relevant role in supporting different
aspects of the communication between robots and humans, in
particular in supporting the basic interpretation of signals: im-
age content from camera images, speech content from audio
signal, manipulation characteristics from contact sensors, and
accelerometers. Another important aspect concerns the gener-
ation of behaviors, including planning and execution.

We have already mentioned many possible aspects of HRI
communication that exploit machine learning, and we only
present in this section some general considerations.
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Interpreting the Signals

In most cases, signal interpretation is based on classification,
today performed in many cases by using quite complex archi-
tectures belonging to the wide category of deep learning. In
many cases, models are available to classify objects and peo-
ple’s actions: they have been developed spending a large
amount of time and effort, and they are regarded as general
models, good for many purposes. Being all layered models, it
is also possible to retain the first, more data intensive levels,
and train models on specific situations, for instance, for the
recognition of activities or objects not included in the original
data set. Usually, the last layers start from higher level fea-
tures, requiring less time and effort to be learned.

Key points for the application of deep learning in HRI are
the need of extensive data sets covering all the aspects inter-
esting for the specific application and the need of massive
computational power to learn the models. While this second
issue can be addressed by off-line learning activity and with
the support of cloud computing and data centers, the first one
is critical and leads in many situations to the use of tools and
models that some member of the community kindly made
available, with few possibilities of tuning or obtaining what
would really be needed for the specific application. In other
situations, the collection of proper data sets is simply not pos-
sible, so the need for a different learning approach is emerg-
ing, but still not addressed.

Learning and Adaptation of Interactive Behaviors

Behaviors can be learned by following different approaches.

Imitation learning requires that a task be performed by
some other agent (either human or another robot), and descrip-
tions of both situation and taken actions are considered to
build the new model. This approach is generalized by super-
vised learning where the proper behaviors for given situations
are directly provided in their representational form.

Another promising approach is reinforcement learning,
where some evaluation of the performance of the robot is used
to promote correct actions and discard the worst ones.

To implement effective social robots, learning in the actual
situations where they will operate is crucial. In particular, it is
important to model not only the multimodal features describ-
ing the person the robot is interacting with, but the whole
situation, including other possible persons, objects, surround-
ings, and possibly anticipating what will happen next [68].
Replicating the multimodal interactive actions could also be
learned, e.g., modeling synchronous speech and gestures for a
humanoid robot [69].

The complexity of interaction requires, mostly in long-term
activities [70], to understand what are the general attitudes,
personality [71], preferences, and possible limitations of the
interlocutor(s) and try to match them [72]. The identification
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of these aspects, and consequent adaptation of the robot be-
havior to the specific situation, including the selection of the
appropriate multimodal communicative actions, can be done
by learning models of general attitudes, trying to classify the
interlocutor from the interaction, to identify the type of the
most appropriate modality, and to apply the learned model
to generate the proper interaction. It has been observed both
for verbal interaction (e.g., [73]) and for non-verbal interaction
(e.g., inrobotic games [74, 75]) that robots matching the char-
acteristics of the interacting people can have better
performance.

Given safety and performance issues in real environments,
and the usually long learning time, needed to identify complex
models general enough to be used in the desired range of
situations, learning is often done in simulation, with possible
issues about how much realistic could be the learning experi-
ence in a simulated world that cannot include real people,
whose behavior is difficult to simulate. The same issues hold
for adversarial learning, where two learning systems learn
from each other, again in a simulated environment, the only
one where it is possible to perform the needed, very large
number of iterations. Also for behaviors, different learning
approaches may be beneficial, at least for some aspects and
for complex applications.

Benchmarking: the “Real” Performance

“Robot benchmarking can be defined as an objective perfor-
mance evaluation of a robot system/subsystem under con-
trolled, reproducible conditions. [...] A benchmark includes a
set of metrics together with a proper interpretation, allowing
the evaluation of the performance of the system/subsystem
under test according to well-specified objective criteria. In
particular, a benchmark can be used to certify properties and
functionalities, and therefore takes a key role in demonstrating
the worth of specific solutions to prospective adopters, be they
companies contemplating the realization of new products, or
their clients interested in the purchase of such products” [76].

Benchmarking is becoming relevant also in HRI when an
objective evaluation of the performance of the robot would be
required to match the market requirements. HRI
benchmarking activities are still in their infancy [77-79], but
their importance will increase as certification processes will be
defined for interacting robots, and the real market will require
guarantees for value, performance, and safety.

Conclusion

We have presented a concise list of issues concerning com-
munication in HRI. It is evident that communication includes
transmission of signals among the communicating agents as
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explicit, implicit, and involuntary interaction stimuli, in an
integrated flow, that has to be considered as a whole.

We have left apart all considerations about physical aspects
of the robots—such as shape, dimension, skin material, and
weight—which are also important elements that affect com-
munication, but would have required as much space, dedicat-
ed to robot design; also, this is knowing a new season, since
social robots will face a market of people used at high-quality
design.

Despite the great efforts required to make acceptable the
communication with a complex device as a robot, considering
the different aspects and the inherent limits involved in this
activity, the scientific community facing these challenges is
growing exponentially, striving to contribute to the definition
of objects that could be really considered as companions in
our activities.
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