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Abstract: Image analysis techniques have been applied to measure the displacements, strain field,
and crack distribution of structures in the laboratory environment, and present strong potential for
use in structural health monitoring applications. Compared with accelerometers, image analysis
is good at monitoring area-based responses, such as crack patterns at critical regions of reinforced
concrete (RC) structures. While the quantitative relationship between cracks and structural damage
depends on many factors, cracks need to be detected and quantified in an automatic manner for
further investigation into structural health monitoring. This work proposes a damage-indexing
method by integrating an image-based crack measurement method and a crack quantification
method. The image-based crack measurement method identifies cracks locations, opening widths,
and orientations. Fractal dimension analysis gives the flexural cracks and shear cracks an overall
damage index ranging between 0 and 1. According to the orientations of the cracks analyzed by
image analysis, the cracks can be classified as either shear or flexural, and the overall damage index
can be separated into shear and flexural damage indices. These damage indices not only quantify the
damage of an RC structure, but also the contents of shear and flexural failures. While the engineering
significance of the damage indices is structure dependent, when the damage indexing method is used
for structural health monitoring, the damage indices safety thresholds can further be defined based
on the structure type under consideration. Finally, this paper demonstrates this method by using the
results of two experiments on RC tubular containment vessel structures.

Keywords: image-based measurement; crack measurement; shear cracks; flexural cracks;
damage index

1. Introduction

Sensing and quantifying damage plays a critical role in the process of structural health monitoring,
which aims to detect structural damage and provide early warnings when a possible risk of failure is
detected. Many structural health monitoring systems employ accelerometers, displacement sensors,
or piezoelectric sensors located at selected locations to monitor changes in the structure’s deformation,
natural frequencies, and modal shapes [1,2]. These systems then evaluate possible failure modes,
damage levels, and locations. While accelerometers are typically employed for beam-column-based
structures such as buildings, these are not the optimal sensors for structures whose failure modes
are insensitive to the structure’s vibration characteristics. For some types of structures such as dams,
tunnels, and reinforced concrete vessels, or shear-critical components such as reinforced concrete (RC)
walls, the detection and evaluation of cracks is a relatively practical approach for safety assessment
and monitoring.
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Several structural damage indices have been proposed. Park et al. [3] proposed a damage index for
a structural system according to its largest system displacement, ultimate displacement, accumulated
strain energy, cyclic loading effect, and system yield force and displacement. Based on the calculated
damage index, the structural system can be classified into one of the following damage levels: slight,
minor, moderate, severely damaged, and collapsed. Roufaiel and Meyer [4] proposed a damage index
that uses the initial stiffness, current stiffness, and failure stiffness. Powell and Allahabadi [5] proposed
an index based on the current displacement, yield displacement, and ultimate displacement. These
damage indices consider a structure as a single-degree-of-freedom system to simplify damage level
estimations. However, in practical applications, these damage indices are difficult to use, as the stiffness
and the displacement of a structure is sometimes difficult to measure for real, multiple degrees of
freedom, and partially damaged structures. Detailed structural performance and safety may require
advanced structural analyses based on finite element analysis tools [6,7] or structural experiments [8,9]
which are specific to a certain type of structure. For the purpose of structural health monitoring, the
displacements of certain locations can be monitored by pre-installed displacement devices; however,
current stiffness and other structural properties are difficult to accurately measure or estimate.

Alternatively, for easy to implement and quick structural safety assessments of reinforced concrete
(RC) structures, several evaluation methods have been proposed that instead consider the surface
cracks of concrete structures. The Japan Building Disaster Prevention Association (JBDPA) provides a
guide based on the visible cracks in the concrete surface of beams, columns, or walls, and categorizes
damage into five classes according to the maximum opening width of the cracks [10]. According
to the JBDPA criterion, structures with a maximum crack width larger than 0.2 mm, 1 mm, and
2 mm are categorized as showing light damage, moderate damage, and heavy damage classes,
respectively. The International Atomic Energy Agency (IAEA) uses a more conservative standard
that categorizes cracks with an opening width larger than 0.2 mm and 1 mm as moderate and severe
damage, respectively [11]. The bridge inspector’s reference manual, published by US Department
of Transportation [12], categorizes cracks into structural cracks, flexural cracks on a tee beam, shear
cracks on a slab, temperature cracks, shrinkage cracks, longitudinal cracks, etc.

For surface damage detection and evaluation, image-based measurement is an automatic and
cost-efficient method in terms of hardware cost. As the aforementioned structural health monitoring
or damage detection methods have different features, advantages, and limits, no single method can be
used to replace another, nor can it be used as the sole means of structural health monitoring or damage
detection. Image-based measurements, and their potential for damage detection, are not intended
to replace any of the aforementioned methods. Instead, the image-based method aims to provide an
area-based measurement method to measure or monitor cracks [13], strain fields [14,15], multi-axial
displacement [16], or structural vibrations [17], where technology for conventional displacement
measurements is inadequate [18]. The hardware cost may be relatively low [19], and may even
employ existing surveillance cameras in the structure, thus eliminating the need to install additional
cameras [20]. With recent dramatic improvements in digital image processing techniques, image
analysis algorithms, accuracies, reliability, and computing speed have improved as well; thus, image
measurement has a strong potential for practical structural health monitoring applications [21].

This work develops an image analysis-based damage indexing method following a previously
developed image-based crack measurement method. This method is tested using two cyclic tests of
RC containment vessels [22]. The vessels are shear critical with a large number of shear cracks induced
by only a small displacement. A fractal dimension method [23] is modified and employed in this work
to quantify the number of cracks. Based on the number of cracks, as well as their opening widths
and orientations, a method for calculating damage indices is proposed. This method modifies the
previous image analysis method [24], such that concrete surface crack orientations can be determined
automatically. In addition, the fractal dimension crack analysis method [23] is modified so that the
damage index can be separated into a shear damage index and a flexural damage index to distinguish
between the different types of failure. The combination of these methods will make it possible to carry
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out structural health monitoring in an automatic manner in practical applications in the future. This
paper further demonstrates the image measurement and damage indices calculation procedure based
on the aforementioned RC containment vessel experiments.

2. Image Measurement of Cracks on Concrete Surfaces

Image-based monitoring and damage identification consists of two major procedures: image
measurements and damage quantification. Image measurements analyze the image(s) of the
measurement regions of interest and provide details, such as locations, lengths, opening widths,
sliding displacements, and the orientation of the cracks. The damage evaluation procedure estimates
the damage level or index of the measurement region according to the analyzed results from the
image measurement.

Many image measurement algorithms and methods have been proposed to detect cracks on
measurement regions, such as on concrete surfaces or pavements. These methods can be classified
into two groups: (1) edge detection-based methods, and (2) displacement field-based methods. Edge
detection-based methods are capable of finding cracks that appear as dark lines in an image. The cracks
need to be of sufficient width to appear as dark lines, which is theoretically the width of a pixel. Edge
detection methods [25–28] or machine learning methods [29–32] are typically employed to identify the
locations or widths of cracks. A review of crack detection methods can be found in [33].

Alternatively, the displacement field-based method identifies cracks according to the displacement
field of the measurement region, where the displacement field is analyzed by image analysis
techniques [24,34]. Due to the high precision of image-based displacement field measurements,
displacement field-based methods are capable of detecting thin cracks with widths of much less than
one pixel. Yang et al. [34] detected cracks as thin as 0.2 pixels in photos in an outdoor experiment
where images contained environmental light noise. The same image analysis technique detected thin
cracks whose width was equivalent to 0.03 pixels in photos in a structural laboratory [24]. This type of
method estimates the cracks’ opening widths, sliding displacements, and orientations, according to the
change in the displacement field between each set of photos taken before and after cracks occurred,
respectively. Thus, the first set of photos is used as a reference for the displacement field. Compared
with edge detection-based methods, displacement field-based crack detection methods are suitable for
thin crack detection, monitoring the early stages of crack development, or monitoring large regions
where pixels are relatively coarsened. However, it should be mentioned that most edge detection-based
methods used are tailored for inspection, rather than health monitoring. They are more suitable for
that purpose than displacement field methods. In addition, displacement field methods tend to be
more computationally expensive.

This work employs a displacement field-based method for crack measurement. However, this
does not mean that edge detection-based methods cannot be applied to the damage evaluation method
proposed in this work. The displacement field-based method is employed here because it is capable
of detecting thin cracks that occur in the early stages of structural damage. In addition, the image
measurement software, ImPro Stereo, is publicly available on the internet [35], and is further integrated
with the damage evaluation computer codes developed in this work.

The displacement field-based method for crack measurement includes five main steps: camera
calibration, measurement region positioning, metric rectification, displacement field analysis, and
crack analysis. A detailed procedure can be found in [34,36]. This work only focuses on the analysis
results as related to the follow-up damage evaluation procedure which is proposed herein.

Camera calibration is the process of finding the intrinsic and extrinsic parameters of the camera.
The intrinsic parameters are essentially its optical properties, such as the fields of view and optical
distortion coefficients. The extrinsic parameters describe the camera position and its orientation.
Typically, the camera calibration process is only carried out once, by taking more than 10 pairs of photos
of calibration objects (such as a chessboard of known size) during camera installation (see Figure 1).
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Figure 1. Stereo calibration of two cameras.

Measurement region positioning tracks the updated position of the measurement by precisely
tracking the 3D positions of the control points that are used to define the measurement surface.
Defining an ideal planer rectangle measurement requires at least three control points, while a
cylindrical measurement region requires at least four, as shown in Figure 2. The positions of control
points P1 to P4 describe the movement and deformation of the overall measurement region. Details of
the process can be found in [24].

Figure 2. Measurement region positioning by tracking control points.

The image rectification process generates a rectangular image that represents the image pattern on
the measurement region. The perspective and lens distortion effects are removed during this process.
The metric rectified image can be seen as an expanded planer surface of the measurement region so
that the ratio of a pixel to its physical length is constant over the entire measurement region; thus, it is
essentially an image that represents the unfolded plane from the measurement region. The constant
pixel-to-physical length ratio is an important property for the subsequent displacement field-based
crack analysis. The rectified image is generated pixel-by-pixel, while the image intensity of each pixel
is estimated by mathematically projecting a 3D point onto the surface to its image position in the
photo according to the intrinsic and extrinsic parameters of the camera. Its image intensity is acquired
through the numerical interpolation of neighboring pixels, as shown in Figure 3.
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Figure 3. Metric rectification of the region of interest on a cylindrical structural component.

The displacement fields of the measurement region can be estimated by comparing the initial and
current rectified images (see Figure 4a,b) using an object tracking method, such as template matching,
digital image correlation, an enhanced correlation coefficient, or the optical flow method. Details of the
process can be found in [24]. The example presented in Figure 4 was obtained from an experiment
that had a measurement region of approximate dimensions of 1.4 m × 0.9 m. Each rectified image
in Figure 4a is approximately 2400 × 1600 pixels. The displacement field in Figure 4b is a vector
field with 90 × 60 cells, that is, each cell is represented by a sub-image with a size of 27 × 27 pixels
(rounded from 2400 / 90 = 26.67). The crack opening in Figure 4c is a scalar field with the same
refinement. The refinement is assigned by users, and should be tuned according to the image quality
of photos when this method is being applied in practical applications. The displacement field of the
rectified images is obtained by optical flow analysis [37]. The resolution of the rectified images and the
refinement of the displacement and crack fields are adjusted by the user, and typically depend on the
resolution and quality of the experimental photos.

Figure 4. Estimating a displacement field by comparing initial and current rectified images. (a) Rectified
images; (b) Displacement fields u (ux and uy); (c) Crack opening (co).

Crack analysis converts a displacement field to a crack distribution. Crack analysis is suitable
for thin cracks that are too thin to display as a dark line in photos, thus requiring the use of the
displacement field to estimate the crack’s opening width. Each cell of the crack opening width co (see
Figure 4c) and crack sliding displacement cs of any arbitrary cell in the grid is estimated according
to the displacement of its four neighboring cells. Crack sliding is the relative displacement of part
A with respect to part B, i.e., parallel to the crack orientation. By using the formulation presented
in [24], as shown in Equations (1)–(3), the crack distribution can be estimated by a displacement field.
The crack analysis method is only suitable for brittle materials such as concrete, as it assumes that the
deformation in the displacement field is mainly caused by cracks, rather than strains [34]. In addition,
since the image is the appearance of the material surface, it does not represent the crack opening or
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sliding under beneath the surface; these are the limitations of this method. The crack distribution is
a field of crack opening widths, sliding displacements, and crack orientations. It is discretized to a
grid with the same grid density as the displacement. Each cell of the crack opening width co and crack
sliding displacement cs of any arbitrary cell in the grid can be calculated by Equations (1)–(3).(

co

cs

)
=

(
cosθ sinθ
− sinθ cosθ

)
(uA − uB) (1)

where

uA =


uU·|cosθ|+uL·|sinθ|
|cosθ|+|sinθ| , if 0 ≤ θ < 0.5π

uD·|cosθ|+uL·|sinθ|
|cosθ|+|sinθ| , if 0.5π ≤ θ < π

(2)

uB =


uD·|cosθ|+uR·|sinθ|
|cosθ|+|sinθ| , if 0 ≤ θ < 0.5π

uU·|cosθ|+uR·|sinθ|
|cosθ|+|sinθ| , if 0.5π ≤ θ < π

(3)

uU, uD, uL, and uR are the displacement vectors of the upper, lower, left, and right neighboring cells of
any arbitrary cell in the displacement field, respectively (see Figure 5). The orientation of the crack
of the analyzed cell is determined by iteratively testing θ within 0 and 180 degrees with a step of
15 degrees (i.e., 0, 15, 30, 45, . . . , 165 degrees). To be conservative, the θ which leads to the largest
crack opening is selected in this method. If there is no crack on the cell, cs and co would be very small
compared with those with cracks. Small values of cs and co are caused by either noise, image analysis
errors, or relatively small strains, and are ignored in the crack analysis. Figure 4c demonstrates the
discretized grid of a crack pattern estimated from its displacement in Figure 4b. It should be noted that
the size scale in Figure 5 is only for demonstration. A crack is typically much thinner than the size of a
cell. The cracks shown in Figure 4c are actually as thin as 0.02–0.2 mm, i.e., much thinner than the
size of a cell in Figure 4b,c. In Figure 4c, the size of a cell is equivalent to a 27 × 27-pixel sub-image.
While a 0.02-mm crack can be recognized by the naked eye at a close distance when inspecting damage
in structural experiments, it cannot be recognized by most of the edge detection-based methods, as
the crack is typically too thin to appear as a dark line in photos. In addition, human inspection is not
practical for automatic structural health monitoring.
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Figure 5. Crack opening calculation according to the analyzed displacement field.

3. Damage Indices based on Image Analysis of Cracks

The quantification of cracks in this work is based on a Fractal Analysis of Cracks (FAC) [23].
The quantification of the total length of cracks within a measurement region can be scale dependent;
the smaller the scale and the more refined the crack pattern, the more likely it is that a longer total
length of cracks would be measured. A typical scale-dependent example is the measurement of a
coastline, which depends on the measurement scale. This method aims to quantify the number of
cracks in a more objective and scale-invariant manner, rather than directly measuring the total lengths
of cracks. The FAC method adopts a fractal analysis as a benchmark method to quantify a crack by
estimating its fractal dimension. While mathematically, a line is one-dimensional and a filled rectangle
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is two-dimensional, the dimensions of a crack distribution over a measurement region are typically a
real number between 1 and 2, and do not need to be an integer. The FAC method quantifies a crack by
its fractal dimension. The details of FAC can be found in [23].

The crack analysis method proposed in this paper modifies the FAC method. The main
modifications made in this work include the following:

(1) The crack data for FAC is based on a hand-sketched crack pattern. The crack data for the modified
FAC is based on an image analyzed crack pattern.

(2) The modified FAC is capable of differentiating between the damage induced by shear cracks
and that of flexural cracks according to crack orientation. In this work, the crack orientation is
automatically determined by finding the orientation that results in the largest crack opening.

In this work, a framework for determining the damage indices by image analysis is proposed.
In this framework, the damage indices include a flexural damage index dF and a shear damage index
dS. The modified FAC method to determine these damage indices is composed of seven steps. All steps
have been implemented in a public software implementation developed by the authors [35].

a. Analyze the crack opening pattern (see Figure 6a) using the image analysis approach described
above, as shown in Figure 4. In this step, the crack opening field co is generated.

b. Define a threshold of crack opening width, such as 0.05 mm, and convert the crack opening
pattern to a binary crack pattern (see Figure 6b). The crack opening width threshold is subjective
and must be determined on the basis of the actual situation. While the image analysis method in
this work is capable of observing cracks as thin as 0.02 mm (see cracks shown in Figure 4c, while
some of the shown cracks are as thin as thin as 0.02 mm), a threshold of 0.05 mm was chosen in
this work as it is the minimum crack width in a typical crack width ruler.

c. Analyze the fractal dimension by the FAC method. The FAC method is a multi-level discretization
of the binary crack pattern. In each level, the crack pattern is discretized into a mesh composed of
many square cells, with the number of cells that contain cracks then being counted (N). The width
of each cell is ε. At each level, log(1/ε) and log(N) can be calculated, as shown in Figure 6c.
Further details of calculating the fractal dimension can be found in [26]. Note that, typically,
the actual meshes in FAC analyses are more refined, and the number of discretization levels is
greater (e.g., 4 levels or higher) than as shown in Figure 6.

d. By applying multi-level mesh refinements (i.e., different sizes of ε), log(N) versus log(1/ε) can be
plotted on a 2D plot. The fractal dimension f of the crack pattern is the slope of the line found
by linear regression. Since the dimension of surface crack f is between 1 (that is, an ideal line)
and 2 (a filled area), the damage index is estimated by f − 1 in the FAC method. A damage index
d, defined by Equation (4), is calculated, with a value between zero and one (see Figure 6d).

d = f − 1 (4)

e. According to the crack orientation of each crack field cell, separate the crack opening field into a
shear crack opening field and a flexural crack opening field, as shown in Figure 6e,f. The crack
orientation is the angle of the crack. A crack orientation of zero degree means a horizontal crack;
An orientation of 45 or 135 degrees means a diagonal crack. The range of the angle is from 0
to 180 degrees. The crack orientation of each crack field cell was calculated during the crack
image analysis, as shown in Figure 4. In this work, the horizontal cracks, whose orientation
is between 0 to 22.5 degrees or 157.5 to 180 degrees, are classified into flexural cracks and are
assigned to the flexural crack opening field, while the remaining cracks are assigned to the shear
crack opening field.

f. Separately calculate the total crack areas in the flexural crack opening field AF and the shear
crack opening field AS. Since the crack opening field represents the crack opening widths, AF is
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the summation of all values in the flexural crack opening field multiplied by the width of each
cell. AS is calculated in the same manner.

g. Calculate the flexural damage index dF and a shear damage index dS using Equations (5) and (6).

dF = d·
AF

AS + AF
(5)

dS = d·
AS

AS + AF
(6)

Figure 6. Demonstration of the proposed modified fractal analysis of cracks method. (a) crack opening;
(b) binary crack pattern; (c) FAC analysis of crack; (d) linear regression; (e) flexural cracks; (f) shear
cracks; (g) calculation of shear and flexural damage indices.

In most RC structures or components, crack orientation is a typical factor used to classify a
crack as either flexural or shear. For RC columns or components that are subjected to bending and
horizontal shear forces, horizontal cracks are typically classified as flexural, while the remaining
cracks are classified as shear. This classification method is followed here. Furthermore, since the
displacement field-based image analysis method provides not only the positions, opening widths, and
sliding displacements of cracks, but also their orientations, it is practical to classify cracks according to
their orientations. It should be noted that the classification of flexural and shear cracks by orientation
is one of several classification methods, and is not necessarily applicable to all structure types. More
details can be found in [10,12].

The proposed method not only integrates the previous crack image analysis [24] and FAC
methods [23], but also makes some modifications. While the previous crack image analysis method
requires analyzers to assign a crack orientation, the proposed method determines the crack orientation
of each analyzed cell by finding the orientation that leads to the largest opening crack. While this is a
conservative way to estimate crack orientation and opening width, it makes this method automatic,
and does not require the orientation to be input manually. In addition, while the FAC method was
originally designed for manually plotted cracks, this method uses automatically analyzed crack data
for the FAC method. In the proposed method, the analyzed damage index is further separated into
shear and flexural parts, providing more information on the failure mode for further safety evaluation.
The integration of these methods and modifications makes it possible to carry out structural health
monitoring based on crack information in practical applications.

4. Experiments

The proposed image-based shear and flexural damage indices were tested using two RC structural
experiments [22]. The specimens were reduced-scale RC containment vessels (RCCVs), i.e., relatively
short and wide tubular structures. They are denoted as RCCV #1 (Figure 7a) and RCCV #2 (Figure 7b),
respectively. The specimens were identical in terms of geometry. The specimens were subjected to
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a constant vertical force of 160 kN, and a cyclic horizontal displacement history imposed through
hydraulic controlled actuators, as shown in Figure 7c. The outer and inner diameters were 2500 mm
and 2200 mm, respectively. The height of the structures was 2250 mm. The concrete strengths of the
two specimens were 37.0 and 43.4 MPa, respectively. The yields and ultimate strength of steel rebars
were 379 MPa and 572 MPa, respectively. Four cameras were set up to take photos of the measurement
regions, as shown in Figure 7d. The photos from the two northern cameras were used in this work.

Figure 7. Experimental configuration and photos of both RCCV #1 and RCCV #2. (a) Photo of RCCV
#1; (b) Photo of RCCV #2; (c) Elevation; (d) Plan.

The two RCCVs had slightly different rebar designs. Four cylindrical layers of rebars were
constructed in the concrete tubular structures. Each layer contained up to 90 rebars. The steel ratio of
RCCV #1 was 0.02 with reinforcement extending into the top and bottom for strong interfaces between
the roof, the specimen, and the foundations. RCCV #2 had gradually increasing vertical steel ratios ρv

near the top and bottom, as shown in Figure 8. The increased vertical steel reinforcement in RCCV #2
was designed to prevent sliding shear failure at the boundaries between the tubular structures and the
top/bottom of the RC blocks, which occurred in the RCCV #1 test.
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Figure 8. Steel rebar ratios in RCCV # 1 and RCCV # 2.

Four cameras were set up in both experiments; two were positioned to the north side and two
to the south, as shown in Figure 7d. Two cameras were set up for each image measurement region,
because stereo image analysis was employed, as described in the previous section. The measurement
regions were painted with randomly striped patterns that provided image features for the displacement
fields. The lightening conditions at the top and button regions of the specimens were not as good
as those in the middle regions. In addition, the middle regions had better focal conditions in the
experiments. Figure 9 shows the initial photos taken by the north cameras in both experiments.

Figure 9. Initial photos of the two RC containment vessels (RCCV) taken from the north cameras.
(a) RCCV #1 left photo; (b) RCCV #1 right photo; (c) RCCV #2 left photo; (d) RCCV #2 right photo.

The experimental results show that the shear strength of the RCCV #2 was slightly higher than
that of the RCCV #1 (see Figure 10a,b). The shear strengths of RCCV #1 and RCCV #2 were 5805 kN
and 5580 kN, respectively. In addition, RCCV #1 and RCCV #2 had different ductilities. While both
vessels reached their shear strengths for a displacement cycle of 16.9 mm (i.e., a drift ratio of 0.75%
with respect to the specimen height of 2250 mm), RCCV #1 rapidly lost its shear strength after the
16.9 mm displacement cycle. In contract, RCCV #2 retained its shear capacity to 22.5 mm (i.e., a drift
ratio of 1%), which was significantly higher because of the increased reinforcement at the top and
bottom, as shown in Figure 10. The hysteresis loops of these specimens (see Figure 10c,d) show that
the tangential stiffness did not significantly change until the cyclic displacements reached +/−3 mm.
Details of the experimental results and explanations can be found in [22].
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Figure 10. Shear/drift histories and hysteresis of RC containment vessels (RCCV) RCCV#1 and RCCV
#2. (a) Shear and displacement history of RCCV #1; (b) Shear and displacement history of RCCV #2;
(c) Hysteresis of RCCV #1; (d) Hysteresis of RCCV #2.

There were 163 and 1399 pairs of photos taken by the north cameras in the RCCV #1 and RCCV
#2 experiments, respectively. Each pair of photos included a photo taken by the left camera and a
photo taken by the right camera. The cameras were Canon EOS 5D Mark III with photo resolution
of 3840 × 5760 pixels. Measurement regions were illuminated using a 100 W light-emitting-diode
(LED). Figure 11 shows several north left camera photos of RCCV #1 and RCCV #2. The u in Figure 11
is the horizontal displacement at the top of the specimen. The displacements are so minor that the
deformations are difficult to visually recognize in the figure. Since the RCCVs are shear-critical
structures, a small displacement can cause significant shear failure. In addition to the experimental
facilities and measurement devices, such as the load cells, the major way that we could observe the
damage and the failure of the structure was to inspect the cracks on the surface. Diagonal (45-degree)
shear cracks appeared on the north and south sides of the specimens, while the horizontal flexural
cracks appeared at the top and bottom on the east and west sides. These cracks could be observed by
human eyes only when we paused the testing, allowing people to get closer to the specimen to inspect
the cracks. Details of the comparison of the manually plotted cracks and image analyzed cracks can be
found in [24].

Figure 11. Selected experimental photos of RC containment vessels (RCCV) RCCV #1 and RCCV #2.
(a) RCCV #1; (b) RCCV #2.
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While both specimens underwent shear failures, different shear failure modes were observed for
each vessel. RCCV #1 had a sliding shear mode at the top of the specimen, as shown in Figure 12a.
A horizontal crack occurred at the top, where the shear stiffness dramatically changes, typically
inducing a stress concentration. The red lines in Figure 12 represent the locations of the cracks. Sliding
shear did not occur in RCCV #2 due to the gradual change in rebar density (the steel ratio was from 2%
to 4%). RCCV #2 had a web shear failure in which the major shear crack passed through the specimen
at a diagonal (45-degree) angle, as shown in Figure 12b.

Figure 12. Failure modes of RC containment vessel (RCCV) RCCV#1 and RCCV #2. (a) Sliding shear
failure of RCCV #1; (b) Web shear failure of RCCV #2.

The crack patterns of the experimental photos, as shown in Figure 11, can be obtained by
displacement field-based crack analysis. By using the displacement-based analysis, cracks as thin
as 0.03 mm (approximately 0.06 pixels wide in the photos) that appeared at the very beginning of
the failure could be detected. The crack patterns of the selected displacement peaks are shown in
Figure 13. The crack patterns were analyzed and presented in a field discretized with a grid containing
90 × 60 cells. The size of each cell is equivalent to a sub-image with 27 × 27 pixels. In both cases, from
the beginning of the tests, the cracks were distributed over almost the entire measurement region.
The widths of the cracks then gradually increased from 0.03 mm (for the 2.3-mm displacement cycle)
to up to 0.4 mm (for the 11.3-mm displacement cycle).

Figure 13. Displacement field-based crack analysis of RC containment vessel (RCCV) RCCV#1 and
RCCV #2. (a) RCCV #1; (b) RCCV #2.

The proposed crack-based damage indices are calculated on the basis of the crack pattern obtained
by the displacement field-based analysis (see Figure 14). In both experiments, the shear damage
increased from 0 to approximately 0.75 for the displacement cycle of 8.4 mm (i.e., drift ratio of 0.375%),
and did not significantly increase after that. The shear damage indices present a warning index that is
capable of capturing the early stages of shear failure. Since both RCCVs #1 and #2 are shear critical, the
cracks were mostly either at 45 degrees or 135 degrees, or typical shear cracks, with relatively fewer
horizontal cracks observed in the measurement regions.
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Figure 14. Image based damage index analysis of RC containment vessel (RCCV) RCCV#1 and RCCV
#2. (a) RCCV #1; (b) RCCV #2.

This work examined the linear regression plots of several selected actuator control steps when
analyzing the fractal dimension (as shown in Figure 6d). The plots showed that these points were
very close to the line, and that the residual values were small. A selected plot of the linear regression
of each specimen is shown in Figure 15. The crack pattern is a grid containing 90 × 60 cells, and is
converted to different refinement of meshes with ε of 1, 2, 4, 8, 16, 32, 64, and 128 (while the most
refined one is slightly more refined than the crack pattern), seven points were calculated in each of the
fractal analyses.

Figure 15. Selected fractal analysis plots of RC containment vessel (RCCV) RCCV#1 and RCCV #2.
(a) RCCV #1; (b) RCCV #2.

The computing speed of the proposed method is great enough for static structural health
monitoring, but still not sufficient for non-stop real-time dynamic analysis. For each step of the analysis,
including image rectification, displacement field analysis, crack opening and orientation analysis,
fractal analysis of cracks, and damage indices calculation, it takes about 40 seconds of computing
time using a laptop equipped with an Intel i5-7300HQ 2.5 GHz processor and 32GB main memory.
Sufficient computing speed may allow us to carry out automatic, non-stop crack detection and health
monitoring with a sampling rate of 0.025 Hz, that is, once or twice per minute. It is still insufficient
for detecting dynamic responses during a vibration event such as an earthquake, which typically
requires a sampling rate of 200 Hz to 1000 Hz. To achieve non-stop dynamic analysis for structural
health monitoring, this method requires not only a significant improvement in camera and computing
hardware, but also further optimization of the algorithms and programming code.

5. Conclusions

This work proposed a damage indexing method based on crack image analysis, with the aim of
indicating the early stage failure of shear critical RC structures. This method is based on a displacement
field-based crack image analysis method, which is capable of detecting early stage, thin cracks on
concrete surfaces. It is especially practical when displacement sensors and load cells are not applicable
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in real structures. Early stage, thin cracks can be detected when they are as thin as 0.03 mm, which is
considerably thinner than the width of a pixel in a digital photo, and cannot be visually seen as a dark
line. Based on the crack image analysis, a previously proposed fractal analysis of cracks was employed
to estimate the overall damage index. According to the crack orientations, this method separates the
fractal analysis damage index into a shear damage index and a flexural damage index to distinguish
between the different types of failure. The software implementation method is publicly available.

The results of two RCCV experiments were used to verify the proposed damage indexing method.
Since both RCCV specimens were shear critical structures, the analyzed damage indices showed that
the shear cracks dominated the major failure. The flexural crack indices were relatively low throughout
the experiments. In both experiments, the shear damage indices reached a relatively high value (i.e.,
0.7) at a displacement of only 8.4 mm on the top of the specimen (i.e., a drift ratio of 0.375%). Earlier
damage could be detected when the displacement was only 3.4 mm (i.e., a drift ratio of 0.15%) or even
earlier, while the stiffness was still unchanged. This indicates that the crack image analysis-based
damage indexing method is capable of indicating early stage failure in shear critical structures.

While this method estimates the damage indices of a structure, damage indices obtained from
different types of structures are not comparable. The safety of a structure depends on many factors,
including complicated design details such as the design of ties and stirrups, which are not visually
observable. A non-ductile structure having a lower damage index does not mean it is safer than a
ductile structure with a higher damage index. The practical health monitoring application of this
method to other structures still requires sufficient experiments and investigations based upon the
specific structure type.
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