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Abstract: Fibrosis is a common pathological feature in most kinds of chronic kidney disease.
Transforming growth factor β1 (TGF-β1) signaling is the master pathway regulating kidney fibrosis
pathogenesis, in which mothers against decapentaplegic homolog 3 (SMAD3) with signal transducer
and activator of transcription 3 (STAT3) act as the integrator of various pro-fibrosis signals. We
examine the effects of pomolic acid (PA) on mice with unilateral ureteral obstruction (UUO) and
TGF-β1 stimulated kidney fibroblast cells. UUO mice were observed severe tubular atrophy, and
tubulointerstitial fibrosis and extracellular matrix (ECM) deposition at seven days postoperatively.
However, PA-treated UUO mice demonstrated only moderate injury, minimal fibrosis, and larger
reductions in the expression of ECM protein and epithelial-mesenchymal transition (EMT) progress.
PA inhibited the SMAD-STAT phosphorylation in UUO mice. PA effects were also confirmed in
TGF-β1 stimulated kidney fibroblast cells. In this study, we first demonstrated that PA ameliorates
fibroblast activation and renal interstitial fibrosis. Our results indicate that PA may be useful as a
potential candidate in the prevention of chronic kidney disease.
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1. Introduction

Renal interstitial fibrosis is the destruction of renal parenchyma and the progressive loss of
kidney function to end-stage renal disease and is characterized by fibroblast activation and the
excessive production and deposition of extracellular matrix (ECM) [1]. A key step in the evolution
of chronic kidney disease is the transformation of renal fibroblasts to α-smooth muscle actin (SMA)
positive myofibroblasts [2]. These activated fibroblasts are the cells that are principally responsible
for ECM production, and their activation is regarded as a significant event in the pathogenesis of
renal fibrosis [3]. The progression of renal disease in UUO (unilateral ureteral obstruction) mice is
associated with epithelial-to-mesenchymal transition (EMT) in which there is reciprocal upregulation
of α-SMA expression and decrea in E-cadherin expression [4]. With the loss of epithelial cell
properties, myofibroblasts proliferate, migrate, and produce and deposit large amounts of ECM
in the renal interstitium [5]. However, the molecular mechanisms underlying fibroblast activation are
not fully understood.
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Transforming growth factor β1 (TGF-β1) plays a central role in the pathogenesis of renal fibrosis
through the activation of a cascade of intracellular signaling pathways [6]. TGF-β1 signaling is among
the most intensively studied causes of fibrosis, employing SMAD and non-SMAD pathways that
induce the gene expression needed for resting fibroblast activation to myofibroblasts [7]. Among the
signaling pathways associated with renal tubulointerstitial injury, the SMAD and non-SMAD mediated
TGF-β1 pathway occupies a crucial position in this process [8]. TGF-β1 is markedly upregulated and
SMAD and STAT is highly activated in the fibrotic kidney [2,9]. Evidence suggests that activation
of the SMAD signaling cascade is important in the regulation of ECM protein expression and tissue
fibrosis [6,10]. Furthermore, STAT3 activation mediates the stimulation of renal interstitial fibroblasts
and the progression of renal fibrosis in UUO models [11]. Thus, inhibition of SMAD and STAT signaling
is important in renal fibrosis.

Pomolic acid (PA) is a pentacyclic triterpene isolated from Euscaphis japonica (Tunb.) Kantiz
(Staphyleaceae) which is found in China, Japan, and Korea [12]. A previous study reported that
PA exhibited a protective effect against hepatic stellate cells [13] and it has also demonstrated
antiproliferative activity against human gastric adenocarcinoma, human uterine carcinoma, and
murine melanoma [14]. Additionally, we previously demonstrated that PA inhibits the invasion of
breast cancer cells through the NF-κB, MAPK, and mTOR signaling pathways [15,16]. However, the
molecular mechanisms of the anti-fibrotic potential of PA in renal fibrosis have not yet been elucidated.

The present study was established to test the possible renoprotective effect of PA through its
activation of inhibitory fibroblasts in obstructive nephropathy. We found that PA suppresses fibroblast
activation by affecting multiple TGF-β1-mediated molecules involved in kidney injury.

2. Results

2.1. PA Improves Histopathological Changes in UUO Mice

We investigated the effects of pomolic acid (PA) in the renal interstitial fibrosis using UUO mice.
Hematoxylin and eosin (H&E) staining observed normal renal cortex in the Sham and PA groups
(Figure 1a). In the UUO group, interstitial inflammatory cell infiltration, swollen epithelial cells, partial
tubular expansion, and severe tubular atrophy cells were observed. These features of UUO group was
diluted strongly in PA/UUO group. In the glomerulus of the UUO group, extensive mesangial matrix
expansion was observed by PAS staining. The PA/UUO group significantly decreased the mesangial
area (Figure 1b).
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Figure 1. The effects of pomolic acid (PA) on histological alterations in unilateral ureteral obstruction 
(UUO) mice. Histopathological alterations in the hematoxylin and eosin (H&E)-stained (a) and the 
periodic acid–Schiff (PAS)-stained slides (b). H&E: Scale bar 50 μm. PAS: Scale bar 20 μm. 

Consistent with the changes in the glomerulus, Masson’s trichrome staining showed that the 
PA/UUO group exhibited a marked reduction from the increased collagen deposition levels observed 
in the UUO group (Figure 2a). A similar suppressive effect on collagen and ECM deposition was 
confirmed by immunoblot analysis (Figure 2b). The PA/UUO group exhibited strongly attenuated 
type-I collagen, fibronectin, and PAI-1 expression as compared to the UUO group. This indicates that 
PA may attenuate obstructive nephropathy in vivo. 

 

Figure 1. The effects of pomolic acid (PA) on histological alterations in unilateral ureteral obstruction
(UUO) mice. Histopathological alterations in the hematoxylin and eosin (H&E)-stained (a) and the
periodic acid–Schiff (PAS)-stained slides (b). H&E: Scale bar 50 µm. PAS: Scale bar 20 µm.

Consistent with the changes in the glomerulus, Masson’s trichrome staining showed that the
PA/UUO group exhibited a marked reduction from the increased collagen deposition levels observed
in the UUO group (Figure 2a). A similar suppressive effect on collagen and ECM deposition was
confirmed by immunoblot analysis (Figure 2b). The PA/UUO group exhibited strongly attenuated
type-I collagen, fibronectin, and PAI-1 expression as compared to the UUO group. This indicates that
PA may attenuate obstructive nephropathy in vivo.
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Figure 2. PA suppresses collagen and extracellular matrix (ECM) accumulation in UUO mice. (a) The 
kidney sections are stained with Masson’s trichrome, which accentuates interstitial fibrosis by staining 
the collagen blue. Scale bar 50 μm. The semi-quantitative analysis of collagen blue areas of the 
obstructed kidney in each group. These are representative images from each study group. (b) 
Immunoblot results show the effects of PA on ECM accumulation in UUO mice. β-Actin was used to 
confirm equal sample loading. The data are representative of three independent experiments and 
quantified as mean values ± SEM. Tukey’s multiple comparison test, * p < 0.05, ** p < 0.01, *** p < 0.001 
compared to control. 

2.2. PA Attenuates UUO-Induced EMT Progression 

A key feature of renal fibrosis, EMT is characterized by the loss of intracellular epithelial 
adhesion molecules (E-cadherin) and the generation of mesenchymal phenotypes (α-SMA) [16]. As 
shown in Figure 3a, the UUO group exhibited downregulation of E-cadherin and upregulation of α-
SMA occurred, whereas the PA/UUO group exhibited increasing resistance to the progression of 
EMT. This resistance to the progression of EMT was also confirmed by immunofluorescence staining. 
The Sham and PA group observed expression of E-cadherin localized at the cell border and low levels 
of α-SMA expression (Figure 3b). The UUO group exhibited a loss of E-cadherin accompanied by an 
increased α-SMA expression. The PA/UUO group observed resistance of UUO-mediated EMT 
progression. 

 

Figure 2. PA suppresses collagen and extracellular matrix (ECM) accumulation in UUO mice.
(a) The kidney sections are stained with Masson’s trichrome, which accentuates interstitial fibrosis
by staining the collagen blue. Scale bar 50 µm. The semi-quantitative analysis of collagen blue areas
of the obstructed kidney in each group. These are representative images from each study group.
(b) Immunoblot results show the effects of PA on ECM accumulation in UUO mice. β-Actin was used
to confirm equal sample loading. The data are representative of three independent experiments and
quantified as mean values ± SEM. Tukey’s multiple comparison test, * p < 0.05, ** p < 0.01, *** p < 0.001
compared to control.

2.2. PA Attenuates UUO-Induced EMT Progression

A key feature of renal fibrosis, EMT is characterized by the loss of intracellular epithelial adhesion
molecules (E-cadherin) and the generation of mesenchymal phenotypes (α-SMA) [16]. As shown
in Figure 3a, the UUO group exhibited downregulation of E-cadherin and upregulation of α-SMA
occurred, whereas the PA/UUO group exhibited increasing resistance to the progression of EMT. This
resistance to the progression of EMT was also confirmed by immunofluorescence staining. The Sham
and PA group observed expression of E-cadherin localized at the cell border and low levels of α-SMA
expression (Figure 3b). The UUO group exhibited a loss of E-cadherin accompanied by an increased
α-SMA expression. The PA/UUO group observed resistance of UUO-mediated EMT progression.
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double staining for E-cadherin (green) and α-SMA (red) localization. Cells were counterstained with 
Hoechst 33342 (blue). Scale bar 100 μm. The data are representative of three independent experiments 
and quantified as mean values ± SEM. Tukey’s multiple comparison test, * p < 0.05, ** p < 0.01, *** p < 
0.001 compared to control. 

2.3. PA Inhibits TGF-β1 Stimulated Fibroblast Activation 

The above data demonstrates that PA inhibited obstructive nephropathy in vivo. To further 
investigate the role of PA in kidney fibroblast activation, we administered PA to a TGF-β1-treated rat 
interstitial fibroblast cell line (NRK-49F). First, to determine the cytotoxic effect of PA on the 
activation of NRK-49F cells, we treated them with PA for 24 h and then conducted MTT assays. We 
found that PA exhibited mild growth inhibitory activity with a 10% decrease in cell proliferation at 5 
μM (Figure 4a). Subsequent experiments were performed using non-toxic PA concentrations of 0.5, 
1 and 5 μM. As shown in Figure 4b, the TGF-β1 treatment stimulated type-I collagen expression. In 
addition, downregulation of E-cadherin and upregulation of vimentin occurred. The PA abrogated 
the TGF-β1-mediated upregulation of type-I collagen and fibronectin, and cellular resistance to the 
expression of EMT markers, in a dose-dependent manner. 

Figure 3. Effect of PA on E-cadherin and α-SMA expression in UUO mice. (a) Immunoblot results show
the effects of PA on the inhibition of UUO-induced changes in EMT markers, including E-cadherin and
α-SMA. β-Actin was used to confirm equal sample loading. (b) Immunofluorescence double staining
for E-cadherin (green) and α-SMA (red) localization. Cells were counterstained with Hoechst 33342
(blue). Scale bar 100 µm. The data are representative of three independent experiments and quantified
as mean values ± SEM. Tukey’s multiple comparison test, * p < 0.05, ** p < 0.01, *** p < 0.001 compared
to control.

2.3. PA Inhibits TGF-β1 Stimulated Fibroblast Activation

The above data demonstrates that PA inhibited obstructive nephropathy in vivo. To further
investigate the role of PA in kidney fibroblast activation, we administered PA to a TGF-β1-treated
rat interstitial fibroblast cell line (NRK-49F). First, to determine the cytotoxic effect of PA on the
activation of NRK-49F cells, we treated them with PA for 24 h and then conducted MTT assays. We
found that PA exhibited mild growth inhibitory activity with a 10% decrease in cell proliferation at
5 µM (Figure 4a). Subsequent experiments were performed using non-toxic PA concentrations of 0.5,
1 and 5 µM. As shown in Figure 4b, the TGF-β1 treatment stimulated type-I collagen expression. In
addition, downregulation of E-cadherin and upregulation of vimentin occurred. The PA abrogated
the TGF-β1-mediated upregulation of type-I collagen and fibronectin, and cellular resistance to the
expression of EMT markers, in a dose-dependent manner.
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double staining for E-cadherin (green) and vimentin (red) localization. Cells were counterstained with 
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and quantified as mean values ± SEM. Tukey’s multiple comparison test, * p < 0.05, ** p < 0.01, *** p < 
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We also performed immunofluorescence staining to examine the expression of E-cadherin and 
vimentin in the NRK-49F cells (Figure 4c). PA maintained high localized expression of E-cadherin 
and showed no increase in vimentin levels in TGF-β1 treated NRK-49F cells. These results 
demonstrate that PA may elicit its antifibrotic effect by suppressing the fibroblast activation by TGF-
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Figure 4. Suppression of TGF-β1-induced ECM and EMT by PA. (a) Cells were treated with PA for 24 h,
and then MTT assays were conducted. (b) Immunoblot results show the effect of PA on the inhibition
of TGF-β1-induced type-I collagen expression and changes in EMT markers, including E-cadherin and
vimentin. β-Actin was used to confirm equal sample loading. (c) Immunofluorescence double staining
for E-cadherin (green) and vimentin (red) localization. Cells were counterstained with Hoechst 33342
(blue). Scale bar 50 µm. The data are representative of three independent experiments and quantified
as mean values ± SEM. Tukey’s multiple comparison test, * p < 0.05, ** p < 0.01, *** p < 0.001 compared
to control.

We also performed immunofluorescence staining to examine the expression of E-cadherin and
vimentin in the NRK-49F cells (Figure 4c). PA maintained high localized expression of E-cadherin and
showed no increase in vimentin levels in TGF-β1 treated NRK-49F cells. These results demonstrate
that PA may elicit its antifibrotic effect by suppressing the fibroblast activation by TGF-β1.
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2.4. PA Inhibits TGF-β1 Induced Canonical and Non-Canonical Signaling

To suppress the expression of TGF-β1 in fibrogenesis, a strategy has been proposed to block of
signaling [17]. Recently our reported that SMADs are important intracellular mediators for TGF-β1
induced responses through their regulation of the transcription of target genes [18,19]. Elsewhere, the
selective inhibitor STAT3 inhibited activating interstitial fibroblasts in an obstructive nephropathy
model [20].

To elucidate the molecular mechanism underlying the action of PA within TGF-β1 treatment, we
investigated whether it alters the phosphorylation of the SMAD3-STAT3 signaling involved in renal
fibrosis. As shown in Figure 5a, PA significantly inhibited TGF-β1 induced phosphorylation of SMAD3
and STAT3 in a dose-dependent manner.

To clarify the molecular mechanism underlying the action of PA in our UUO model, we
investigated whether it altered the SMAD3-STAT3 signaling involved in renal fibrosis. The PA/UUO
group exhibited significantly suppressed expression of pSMAD3 and pSTAT3 compared to the
UUO group (Figure 5b). This similar suppressive effect of PA on pSMAD3 and pSTAT3 expression
was confirmed using immunoblotting (Figure 5c). These results demonstrate that PA efficiently
downregulates SMAD and STAT activation, resulting in a lasting reduction of phosphorylation in
obstructive nephropathy.
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3. Discussion

Renal fibrosis is a common pathological consequence of chronic kidney disease with tissue
fibrosis closely associated with chronic inflammation in numerous pathologies [21]. The UUO model
is a representative animal model of obstructive nephropathy that is characterized by progressive
tubular-interstitial fibrosis [22]. This model provides the opportunity to investigate disease-specific
mechanisms and molecular pathogenesis, and to assess potential novel therapies. In our previous
study, UUO was recognized as an established model of progressive tubulointerstitial fibrosis associated
with chronic kidney disease of various etiologies [1,23].

Previous studies reported that PA has been shown to have anti-cancer activities, and act
against hepatic stellate cells activation, neuroprotective, antioxidant effects, anti-inflammatory and
anti-proliferative activity [24–26]. Recently, we demonstrated that PA suppresses angiogenesis and
invasion of breast cancer cells by mammalian target of rapamycin (mTOR) inhibition [15,16]. Several
signals, including mTOR, have also been reported to be involved in fibrogenesis [27]. However,
the molecular mechanisms of the anti-fibrotic potential of PA in chronic kidney fibrosis have not
been elucidated.

TGF-β signaling regulates a few biological properties in cancer, including growth, apoptosis,
differentiation, migration, invasion, angiogenesis, ECM production, and cancer cell interactions with
the immune system [28]. Several studies have reported that TGFβ is an anti-inflammatory cytokine
that plays a protective role in immune inflammation and autoimmune diseases [7,29,30]. TGF-β1 is a
key mediator in renal fibrosis39, and SMAD and non-SMAD signaling is a major intracellular signaling
pathway of TGF-β action in progressive renal fibrosis [31]. Recently study focus on TGF-β1 signal
pathways and describe small molecule inhibitors that are used in phase I/II clinical trials to treat
fibrosis or fibrotic cancers [7]. Therefore, inhibition of TGF-β1 and regulation of downstream signaling
pathways play an important role in fibrosis.

In this study, we obtained the first evidence that PA inhibits obstructive nephropathy and
TGF-β1-stimulated kidney fibroblast cell activation through downregulation of SMAD and non-SMAD
signaling, thereby inhibiting renal fibrosis.



Molecules 2018, 23, 2236 9 of 13

Extracellular matrix (ECM) deposition and epithelial-to-mesenchymal transition (EMT) progress
are major causes of fibrosis in the kidney [32]. In humans with fibrotic kidneys, strong mesenchymal
marker expression is accompanied by deposition of type-I collagen among the renal tubules and
massive interstitial fibrosis in the renal cortex [33].

Studies of UUO mice have shown that fibroblasts and myofibroblasts, identified by the markers
FSP-1 and α-SMA respectively, increase after 7 days, thus indicating EMT activation [9]. Decreased
E-cadherin and increased α-SMA expression are typical EMT features [32]. In this study, PA suppressed
UUO-induced tubular interstitial fibrosis by reducing the deposition of type-I collagen and increasing
resistance to the expression of EMT markers.

TGF-β1 mediators progress renal fibrosis by stimulating ECM deposition and EMT [34]. It is
considered the most important pathway in fibrosis and appears to be dependent on SMAD-STAT
signaling [8].

Our previous studies have shown that inhibition of pSMAD has a protective effect against
liver fibrosis [17]. Elsewhere, the selective inhibitor STAT3 attenuated renal fibrosis by inactivating
interstitial fibroblasts in vivo [20]. In accordance with these findings, our results showed that
PA effectively inhibits pSMAD3 and pSTAT3 through obstructive nephropathy. Consequently,
TGF-β1-induced renal fibroblast cell activation was suppressed through the inhibition of pSMAD3
and pSTAT3 by PA.

Our findings show that PA plays a protective role against UUO-induced tubular interstitial fibrosis
and against TGF-β1 induced renal fibroblast cell activation, specifically through the inhibition of the
SMAD3-STAT3 signaling pathway. Based on the literature and our findings, PA should be considered
a novel therapeutic agent for chronic kidney disease.

4. Materials and Methods

4.1. Cell Cultures and Reagents

NRK-49F cells (CRL1570) were obtained from America Tissue Culture Collection (ATCC, VA,
USA). Cells were cultured in DMEM supplemented with 10% fetal bovine serum (FBS) and 1%
antibiotic (Ab). DMEM, FBS, Ab, and trypsin-EDTA were obtained from Gibco BRL (Grand Island,
NY, USA). NRK-49F cells were pretreated with PA for 1 h and then treated with TGF-β1 for 24 or 48 h.
Recombinant TGF-β1 was purchased from R&D System Inc. (Minneapolis, MN, USA). Pomolic acid
(PA) was purified and received from Dr. Ki Yong Lee, a professor of the College of Pharmacy, Korea
University [13,15,16]. PA was dissolved in dimethylsulfoxide (DMSO) as a 10 mM stock solution and
stored at 4 ◦C. NRK-49F cells were pretreated with PA for 1 h and then treated with TGF-β1 for 24 or
48 h.

4.2. Cytotoxicity Assay

Cells were plated in 96-well culture plates at 1 × 106 cells/mL in culture medium and
allowed to attach for 24 h. Media were then discarded and replaced with new medium
containing various concentrations of PA. The cells were cultured for an additional 24 h, and then
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylterazolium bromide (MTT, 5 mg/mL; Sigma-Aldrich, St Louis,
MO, USA) was added 1/10 volume MTT reagent of medium to each well, and the samples were
incubated at 37, 35 ◦C in a 5% CO2 incubator for 4 h. The formazan precipitate was dissolved in
dimethyl sulfoxide (DMSO), and absorbance was measured at 540 nm using a microplate reader
(Bio-Rad Laboratories, Richmond, CA, USA).

4.3. Induction of UUO Injury

Male BALB/c mice (Orient, Sungnam, Korea), were randomly divided into four groups of six mice
per group: the group was anesthetized and underwent a similar surgical procedure of UUO but was
not subjected to ureteral ligation (Sham), a Sham group with a PA treatment (PA), group underwent
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a vehicle treatment for UUO (UUO); and the fourth group consisted of UUO mice treated with PA
(PA/UUO). We have previously reported the UUO models [1,23,35]. An intraperitoneal injection of PA
at a concentration of 0.4 mg/kg was given immediately after ureteral ligation. Then, PA was given with
an intraperitoneal injection 2 days after the UUO operation. The kidneys were collected for protein
analyses, including a histologic examination, on day 7 post-UUO surgery. All experimental procedures
used in the current study were approved by the institutional animal care and use committee at the
Daegu Catholic University Medical Center (EXP-IRB number: DCIAFCR-160726-9-Y).

4.4. Pathology

Tissue sections were routinely fixed in 4% phosphate-buffered paraformaldehyde and paraffin
embedded. Hematoxylin and eosin (H&E), Masson’s trichrome, and periodic acid–Schiff (PAS) staining
were performed according to a previously described procedure [1]. The H&E staining were observed
for the extent of interstitial fibrosis, tubular atrophy and interstitial inflammatory cell infiltration.
Thirty glomeruli were randomly selected in the section from each kidney, and PAS-positive areas
were observed. To evaluate tubulointerstitial collagen deposition, ten randomly selected fields in
each section stained with Masson’s trichrome. The area stained in light blue in the interstitium was
semiquantitatively calculated using i-Solution Lite V.9.1 Image Analysis Software (IMTechnology,
Vancouver, BC, Canada).

For immunofluorescent staining, sections were incubated with anti-E-cadherin (#3195, Cell
signaling, Danvers, MA, USA), α-SMA (#48938, Cell signaling), pSMAD3 (#9520, Cell signaling),
pSTAT3 (#9145, Cell signaling) for 1 h at 37 ◦C, and secondary antibodies conjugated with Alexa Flour
488 (excitation/emission = 495/519 nm, green, Invitrogen, Carlsbad, CA, USA) and Alexa Flour 594
(excitation/emission = 590/617 nm, red, Invitrogen) were purchased from Invitrogen. Cells were
counterstained with Hoechst 33342 (excitation/emission = 330 − 380 nm/460 nm, ImmunoChemistry,
Bloomington, MN, USA). Slides were mounted using ProLong®Gold antifade reagent (Molecular
Probes® by Life Technologies™, Carlsbad, CA, USA). Immunolabeling was examined using an Eclipse
Ti-U and confocal microscope (Nikon, Tokyo, Japan).

4.5. Immunoblot Analysis

The tissues and cell protein were obtained as previously described [1,17]. The protein
concentration was determined with a Bio-Rad Bradford kit (Bio-Rad Laboratories, Hercules, CA,
USA). The samples were boiled for 5 min, and equal volumes were loaded on a sodium dodecyl sulfate
polyacrylamide gel electrophoresis. The resolved proteins were transferred onto a nitrocellulose
membrane (Millipore Corporation, Bedford, MA, USA) and probed with type-I collagen (#ab34710,
Abcam, Cambridge, UK), fibronectin (#sc71113, Santa Cruz, CA, USA), PAI-1 (#sc8979, Santa Cruz),
E-cadherin (#3195, Cell signaling), α-SMA (#48938, Cell signaling), vimentin (#5741, Cell signaling),
SMAD3 (#9523, Cell signaling), pSMAD3 (#9520, Cell signaling), STAT3 (#9139, Cell signaling),
pSTAT3 (#9145, Cell signaling), and β-Actin (#4970, Cell signaling) followed by a secondary antibody
conjugated to horseradish peroxidase and detected with enhanced chemiluminescence reagents
(Amersham Bioscience, Buckinghamshire, UK). The luminescent signals were analyzed using an
ImageQuant LAS 4000 Scanner of GE Healthcare (Piscataway, NJ, USA).

4.6. Statistical Analysis

All data were analyzed using ANOVA with GraphPad Prism 5 software (GraphPad Software,
Inc., San Diego, CA, USA). Post hoc tests were completed with Tukey’s multiple comparison test
significance set at p < 0.05. All values are expressed as mean ± standard error of the mean (SEM).
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Abbreviations

TGF-β1 Transforming growth factor β1
SMAD3 Mothers against decapentaplegic homolog 3
STAT3 Signal transducer and activator of transcription 3
PA Pomolic acid
ECM Extracellular matrix
EMT Epithelial-mesenchymal transition
α-SMA α-Smooth muscle actin
mTOR Mammalian target of rapamycin
DMSO Dimethylsulfoxide
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