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Cancer cells possess specific properties, such as multidrug resistance or unlimited
proliferation potential, due to the presence of specific proteins on their cell membranes.
The release of proliferation-related proteins from the membrane can evoke a loss of
adaptive ability in cancer cells and thus enhance the effects of anticancer therapy. The
upregulation of cancer-specific membrane antigens results in a better outcome of
immunotherapy. Moreover, cytotoxic T-cells may also become more effective when
stimulated ex-vivo toward the anticancer response. Therefore, the modulation of
membrane proteins may serve as an interesting attempt in anticancer therapy. The
presence of membrane antigens relies on various physical factors such as temperature,
exposure to radiation, or drugs. Therefore, changing the tumor microenvironment
conditions may lead to cancer cells becoming sensitized to subsequent therapy. This
paper focuses on the therapeutic approaches modulating membrane antigens and
enzymes in anticancer therapy. It aims to analyze the possible methods for modulating
the antigens, such as pharmacological treatment, electric field treatment, photodynamic
reaction, treatment with magnetic field or X-ray radiation. Besides, an overview of the
effects of chemotherapy and immunotherapy on the immunophenotype of cancer cells is
presented. Finally, the authors review the clinical trials that involved the modulation of cell
immunophenotype in anticancer therapy.
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INTRODUCTION

‘Membrane antigens’ is a term used by researchers to refer to the
molecules present on the cell membrane that may be recognized
by immune system cells. Modulation of membrane components
remains a unique approach in anticancer therapy (1). By the
sensitization of cancer, scientists aim to overexpress tumor-
specific molecules found on cell membranes (2–6). This
method attempts to overcome the immune escape of cancer
cells and aims to make single cancer cells visible to the immune
system. The controlled regulation of the immunophenotype of
cells can overexpress or downregulate the expression of specific
plasma membrane-associated antigens (7, 8). The method opens
a new perspective for sensitizing the cells to the subsequent
standard therapy and expecting a better clinical outcome (5).

Immunotherapy focuses on targeting cancer-related antigens
on the cell surface (4). The more an antigen is specific to cancer,
the fewer side effects occur. For instance, when targeting CD20 in
leukaemia therapy, it is blood and bone marrow that are most
affected (9). However, when MAGE receptors are targeted in
melanoma therapy, testes and blood are affected as well (10). The
efficacy of the treatment also depends on the abundance of
the targeted antigen on cancer cells. Specifically, the more
targets, the higher the probability of recognizing cancer cells by
antibodies or T-cell receptors (TCR) (11).

Tumor immunotherapy may be based on cellular therapeutics
or typical immunotherapy agents such as antibodies (12, 13).
Both options rely on targeting tumor cells by binding to a specific
epitope. When a specific antigen is targeted with an antibody, the
cell with the attached antibody might become an ideal target for
immune cells (14). Moreover, the antibody-antigen interaction
alone may reduce the activity of the targeted protein or even
decrease its enzymatic activity (15). Sometimes the antibody
remains conjugated with the radioisotope or chemotherapy agent
(16, 17). In such cases, the cytotoxic effect is stronger and more
specific than in systemic therapy. Conversely, when the reaction
with the antigen depends on the interaction of TCR or
membrane-bound immunoglobulin with the antigen, then the
whole T-cell is involved in the interaction with the target (18).
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The abundance of the target of immunotherapy affects the
immune recognition of the alien cell (19).

There are at least three mechanisms that affect the targeting of
cancer cells. The first one involves the loss of human leukocyte
antigen (HLA) in the least differentiated cancers. Here, the alien cell
should be eliminated by NK cells due to the lack of the major
histocompatibility complex (MHC) I molecules in the missing-self
mechanism (20). However, in some cases, NK cells might not kill a
cell lacking MHC (21). The second factor is the presence of cancer-
specific molecules that may become targets of the therapy (22). An
ideal target should be specific to cancer and highly abundant on
cancer cells. However, tumors differ in the expression of cancer-
specific molecules (23–27). In general, high expression of cancer
antigen is required for effective therapy and may be effectively
treated with targeted immunotherapy (19). The third option – the
PD-1 and CTLA-4 molecule pathways show that the effects of
the expression of specific target molecules might be depleted by
the immune escape of the cancer cell (28). The cell induces the
expression of molecules that prevent/inhibit the activation of the
lymphocyte and thus anticancer activity. Interestingly, some studies
showed an attempt to target the tumor microenvironment, even
presenting the advantages of this method over the blockade of
immune checkpoints in the tumor (29, 30).

The paper reviews various methods for the regulation of
membrane antigens. First, it presents an overview of the effects of
chemotherapy on immunotherapy-related antigens on cancer cells.
In the next paragraphs, electroporation, photodynamic therapy, x-
ray radiation, and the application of ultrasounds or magnetic fields
are reviewed in case of the modulatory effects on membrane
antigens. Finally, the authors present the clinical trials involving
the modulation of membrane antigens in anticancer therapy.

Methods for Modulation of
Membrane Antigens
Chemotherapy and Pharmacotherapy
Chemotherapy may modulate the expression of membrane
antigens via several distinct pathways. First, some drugs can
interact with transcription factors, directly affecting the
expression of the protein (31). Second, chemotherapy agents
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might interact with the already synthesized protein. The
interaction can inhibit or stimulate the protein’s function
(32, 33). When a chemotherapy drug enhances the activity of
the membrane protein, no additional units of the protein are
required. Conversely, when the interaction remains inhibitory or
the ligand blocks the receptor’s binding pocket and when units of
a new protein are required for cell functioning, the new protein
may be biosynthesized, and thus the overall expression of the
protein may increase (34). However, when a negative interaction
between ligand and the receptor occurs, sometimes no additional
protein is synthesized. For instance, when the chemotherapy
agent blocks the receptor, which transmits the biological signal,
the cell might shift toward the alternative signaling pathway and
then the ligand-receptor interaction does not affect the
expression of the protein (35).

SERMs
The first group of chemotherapy drugs that modulate the
expression of hormone receptors on cells is hormone agonists or
antagonists. Hormone agonists, via binding to the receptor, may
stimulate the receptor and transduce the hormonal signal to the
nucleus (36). On the other hand, the binding of the agonist might
lead to the blockage of the receptor, and therefore, the hormones
cannot act at the cellular level. Overexpression of the receptor may
overcome the blockage of the receptor and result in the cell
becoming sensitive to hormonal stimulation. Such tendencies are
mostly observed in prostate and breast cancers (37–39). The latter is
connected with the expression of estrogen receptor which is a
predictive and prognostic marker in hormone-dependent cancers.

Selective estrogen receptor modulators (SERMs) are
commonly used in breast tumors expressing estrogen receptor-
a (ERa) (40). One of them, tamoxifen, is a prodrug metabolized
by the cytochrome P450 system to 4-hydroxytamoxifen – a
pharmacologically active molecule. The estrogen receptor
consists of two subunits: a (ERa) and b (ERb) and their
proportions depend on the tissue. ERa plays a significant role
in the development of the mammary gland, bone mineral density
and the hypothalamic-pituitary axis, while ERb, among others,
regulates ovulation. The ligand (estrogen) binds to the ER and
leads to receptor activation, next step is the recruitment of
coactivators or corepressors involved in the transcription
process. The ligand-receptor complex ultimately activates or
inhibits the production of a specific protein by the cell (41). In
breast cancer, estrogens stimulating ERa increase proliferation,
while activating ERb inhibits the ability to reproduce. Reduced
proliferation is associated with the activation or inhibition of the
expression of genes regulated by estrogen receptors and the
modulation of cell signaling pathways (42, 43). A study by Saji
et al. suggests that the presence of ERb is beneficial in the
hormonal treatment of ER-positive breast cancer (44). Long-
term blockade of the estrogen receptor by SERMs (especially
tamoxifen) results in the development of resistance that may also
engage cross-talk pathways. It leads to increased ER expression
in breast cancer cells associated with receptor activation and
hypersensitivity to low estrogen levels (45). Overexpression of
membrane antigens such as ERBB2 (HER2/neu) and/or
Frontiers in Immunology | www.frontiersin.org 3
epidermal growth factor receptor (EGFR/HER1) is associated
with a significant reduction of response to treatment with
tamoxifen but greater sensitivity to letrozole (46). Long-term
stimulation of estrogen receptors in the endometrium may
induce proliferation and increase the risk of uterine cancer (41).

The expression of ERb in cancer may lead to the inhibition of
tumor growth (47). For this reason, ERb agonists may find
application in the prevention or treatment of colorectal cancer
in which the levels of these receptors are reduced compared to
normal expression in the colorectal epithelium (42, 48).
Prinaberel (ERB-041, strong and selective ERb stimulator)
inhibits proliferation, increases tumor cell death by modulating
the expression of specific genes (49). Studies show that CXC
motif chemokine receptor 4 (CXCR4) expression is decreased
during treatment with two selective ERb agonists: ERB-041 and
liquiritigenin (47). CXCR4 is a transmembrane protein and,
together with ligand stromal cell-derived factor-1 (SDF-1) is
relevant in the invasion of cancer cells (50). Stimulation of the b
subunit of the estrogen receptor has the same effect in prostate
cancer (51). Therefore, tamoxifen and raloxifene reduce cell
migration, prevent the development of prostate cancer and the
formation of metastases (52). It is worth noting that cell death in
prostate cancer occurs as a result of androgen-independent
apoptosis connected with the activation of ERb (51). The
activation of ERb by a selective ERb agonist diarylpropionitrile
(DPN) increases the adhesion of breast cancer cells by enhancing
the surface expression of integrin a1 and integrin b1 (53). The
effect also reduces the migration of neoplastic cells (53). ERb1
affects the up-regulation of E-cadherin expression by inhibiting
its transcriptional repressors ZEB1/2 and up-regulating miR-
200a, miR-200b and miR-429 in basal-like breast cancer (54).
Cadherins are adhesion proteins that are important for
maintaining tight cell connections. Stimulation of the b
subunit of the estrogen receptor in androgen-independent
prostate cancer cells leads to the modulation of the expression
of adhesion proteins. DPN downregulates N-cadherin expression
in PC-3 cells and increases the expression of E-cadherin and b-
catenin in the cell membrane of the DU-145 line (55). This
promising result prompted a search for more ERb agonists which
may have important therapeutic significance. Besides, ERb
downregulates EGFR transcription (56).

Estrogen receptor antagonists are effective drugs in hormone-
dependent breast cancer. One of them, fulvestrant (ICI 182,780)
is a pure antagonist with a high binding affinity, devoid of agonist
activity in other tissues as compared to SERMs. As a result of
impaired dimerization, the receptor cannot stimulate or inhibit
the transcription of target genes (57). It inhibits the nuclear
transport of ER and contributes to proteasome-mediated ER
destruction, therefore it is classified as a selective estrogen
receptor degrader (SERD) (58, 59). The advantage of
fulvestrant over tamoxifen is that it reduces the level of
estrogen receptors (ER) and progesterone receptors in cancer
cells (57). Fulvestrant is indicated especially in locally advanced
or metastatic hormone receptor-positive (HR+) and human
epidermal growth factor 2 negative (HER2-) breast cancer in
postmenopausal women (60, 61).
July 2022 | Volume 13 | Article 889950
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Aromatase Inhibitors
Aromatase inhibitors (AI) are essential in treating ER-positive
breast cancer in women after menopause. Aromatase is an
enzyme that is involved in the final step in steroid biosynthesis,
which is the conversion of androgens into estrogens (62). Third-
generation AI are divided into steroidal or type I (structural
similarity to androstenedione – a natural ligand) and non-
steroidal (type II) aromatase inhibitors. Type I steroidal drugs
include formestane and exemestane. Exemestane binds directly to
the androstenedione binding site and consequently has an
irreversible inhibitory effect. It competes with androstenedione
and testosterone (63), reducing estrogen levels, which inhibits
hormone-stimulated breast cancer cells. Exemestane exhibits
modest androgenic activity, which may prevent increased bone
loss compared to non-steroidal aromatase inhibitors (64).
Anastrozole and letrozole are classified as nonsteroidal type II
inhibitors. They effectively and reversibly inhibit the activity of
aromatase. Meta-analyses of phase 3 randomized controlled trials
prove that with aromatase inhibitors, progression-free survival
(PFS) is longer, although no significant change in overall survival
in postmenopausal women with HR+ advanced breast cancer has
been noted (65).

Aromatase inhibitors are considered effective second-line agents
following the occurrence of tamoxifen-induced drug resistance (66).
However, breast cancer cells may also exhibit resistance to
aromatase inhibitors. Drug-induced estrogen deprivation results
in hypersensitivity of estrogen receptors to residual estrogen
levels. One of the reasons for the decreased response to treatment
is the adaptive increase in the expression of estrogen receptors.
Stimulation of ER is also connected with the intensified expression
of ERBB2 (HER2/neu)/ERBB3, mitogen-activated protein kinases
(MAPKs) and insulin-like growth factor IGF-receptor signaling
caused by long-term estrogen deprivation (LTED) (45). ERs are
mainly nuclear receptors, but it is worth noting that they are also
present in the cytoplasm and cell membrane, because they originate
from the same transcript (67). Extranuclear ER after binding
estrogen interacts with transmembrane EGFR and insulin-like
growth factor-I receptor (IGF-IR) to initiate signaling for cell
proliferation (68). As a result of activation of the membrane
receptor, neoplastic cells will proliferate and increase the tumor
mass (68).

Androgen Deprivation Therapy
Androgen deprivation therapy (ADT) can lead to the
modulation of prostate-specific membrane antigen (PSMA)
levels in prostate cancer patients. The reason is the use of
drugs that reduce the concentration of androgens, including
luteinizing hormone-releasing hormone (LHRH) agonists, such
as leuprolide or goserelin LHRH antagonists, for example,
degarelix. Androgen receptor (AR) inhibitors such as
bicalutamide, flutamide or enzalutamide, and androgen
synthesis inhibitors – abiraterone, also cause androgen
deprivation. Previous studies suggest that short-term ADT
increases PSMA expression, while long-term ADT has the
opposite effect (7, 8, 69). The up-regulation of prostate-specific
membrane antigen expression may be an attractive target of
therapy in the future. Phase 1 of the clinical trial proves that an
Frontiers in Immunology | www.frontiersin.org 4
antibody-drug conjugate (ADC) targeting PSMA has specific
anti-tumor activity not only in the preclinical model. PSMA
ADC consists of a fully human monoclonal IgG1 antibody
conjugated to monomethyl auristatin E (MMAE) through a
dipeptide linker (valine-citrulline) that disintegrates inside the
tumor cell. MMAE selectively binds to PSMA-positive cells, it
inhibits microtubule polymerization, resulting in cell cycle arrest
and cell death (70). The quick internalization of membrane
antigen improves the transport of the conjugate into the cell (71).
Standard Chemotherapy Agents and
Natural Compounds
Docetaxel increases surface expression of the carcinoembryonic
antigen (CEA), calreticulin (CRT), mucin-1 (MUC-1) and Fas in
cancer cells. CRT is expressed on the surface of dying cells, which
allows dendritic cells to present antigens. A higher concentration
of CRT enables a faster and more effective response of the
immune system (72). Docetaxel-resistant cells also showed
elevated levels of Fas or CEA and were lysed by cytotoxic
T lymphocytes (CTL) after exposure to docetaxel. This proves
that cancer cells, despite not responding to this drug, are
immunogenically modulated. In the case of prostate cancer in
humans, the presence of docetaxel resulted in increased levels of
prostate-specific antigen (PSA), prostate stem cell antigen
(PSCA) and PSMA. This drug leads to high sensitivity to
antigen-specific CTL killing (1).

The effects of chemotherapeutics on the expression of
membrane proteins are summarized in Figure 1.

Anthracyclines can regulate the expression of antigens on the
cell membrane surface. Doxorubicin reduces the surface
expression of B7-H1 in breast cancer cells to a minimum while
upregulating nuclear expression (73). B7-H1 has an anti-
apoptotic effect, correlates with tumor invasion and predicts
patient survival (74, 75). Therefore, its downregulation and
transport of the molecule to the nucleus plays an important
role in initiating cancer cell death (73).

Cell death in head and neck squamous cell carcinoma
(HNSCC) is mediated by the perforin/granzyme pathway
associated with the activity of the membrane pro-apoptotic
protein Bcl-2. Tumor resistance correlates with the expression
of this protein, which is confirmed experimentally (76). The
concentration of the anti-apoptotic protein Bcl-2 was reduced
using the combination of cisplatin with 5-fluorouracil (5-FU)
indicating the intensification of apoptosis of neoplastic cells (77).

The expression of CEA and MUC-1 increased sharply after
treatment with 5-FU (78). CEA is a member of a family of highly
related cell surface glycoproteins. It is involved in the adhesion of
cancer cells and leads to increased metastasis (79, 80). Upregulation
of MUC-2 synthesis is also observed in human colon cancer cells
after 5-fluorouracil treatment (81). The use of 5-FU, mitomycin-C
or oxaliplatin leads to higher expression of epithelial cell adhesion
molecule (EpCAM) and LeY antigen, which is a blood group
antigen with a potent expression on the surface of epithelial
tumors, including small cell lung cancer (13, 82).

Both betulinic acid (BA) and curcumin inhibit specificity protein
(Sp) transcription factors that modulate EGFR expression. The
July 2022 | Volume 13 | Article 889950
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effect reduces the amount of EGFR mRNA produced in bladder
cancer cells (83). Downregulation of receptor levels induces cell
death through autophagy (84).

Nonsteroidal Anti-Inflammatory Drugs
Nonsteroidal anti-inflammatory drugs (NSAIDs) can modulate the
expression of membrane molecules. E-cadherin, a transmembrane
protein is responsible for the sequestration of b-catenin to the cell
membrane and cell adhesion. Its absence leads to the spread of
cancer cells as a result of epithelial-mesenchymal transition (EMT)
(85). In colon cancer, sulindac protects against the loss of E-
cadherin and the accumulation of nuclear b-catenin (86).
In contrast, indomethacin and celecoxib reduce E-cadherin
expression. This is associated with the invasion and
chemoresistance of non–small cell lung cancer (NSCLC) cells
following treatment with celecoxib. Results are not optimistic as
to the use of celecoxib and indomethacin in lung cancer (87–89).

NSAIDs reduce the expression of the membrane protein EGFR.
This results in the inhibition of cell proliferation (90). Sulindac
metabolites – sulindac sulfide (SS) and sulindac sulfone (SF) – also
downregulate EGFR activation and/or expression in cancer cells,
leading to attenuation of EGFR signaling in colon cancer cells (91).
Sulindac and celecoxib are involved in the modulation of the
physicochemical properties of the cell membrane, which may be
associated with anti-cancer properties (89). Licofelone (a novel dual
5-LOX/COX inhibitor) leads to changes in the proportions of
saturated, monounsaturated and polyunsaturated fatty acids and
increases the cholesterol content of the cell membrane in HCA-7
colon cancer cells. The compound acts via the inhibition of EGFR
Frontiers in Immunology | www.frontiersin.org 5
kinase activity, p44-42 MAPK and AKT cascades, which results in a
transition to the apoptotic cell-death pathway (92). Indomethacin
causes increased E-cadherin expression in colon cancer and up-
regulation in pancreatic cancer. It suppresses proliferation and
intensifies cell adhesion (93, 94). In summary, regular use of
nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with
a decreased mortality from colorectal cancer (95).

The effects of chemotherapeutics on the expression of
membrane proteins are summarized in Figure 2.

Regulation of Multidrug Resistance
Proteins by Pharmacotherapy
Multidrug resistance (MDR) is a serious problem that hampers
the effective treatment of cancer. It may also increase mortality
among cancer patients. MDR is associated with the insensitivity
of cancer cells to several groups of drugs. The members of the
superfamily of ABC transporters called ATP-binding cassette
transporters pump drugs out of the cell. The best-described efflux
protein is P-glycoprotein (P-GP) encoded by the gene ABCB1
(MDR1 – multidrug resistance 1). Multidrug resistance-
associated protein 1 (MRP1/ABCC1) or ABCG2 also plays a
significant role in multidrug resistance (96). Drugs related to
ABC transporters include taxanes (e.g., docetaxel and paclitaxel)
and vinca alkaloids (vinblastine and vincristine), anthracyclines
(daunorubicin and doxorubicin), topoisomerase inhibitors
(etoposide and topotecan), and tyrosine kinase inhibitors
(dasatinib and gefitinib) (97).

As an integral membrane protein, P-GP is overexpressed on the
surface of cancer cells. This is one of the major barriers to achieving
FIGURE 1 | Effects of hormonal therapy of the tumour on the expression of membrane antigens. Long-term therapy with both selective estrogen receptor modulators
(SERMs) and aromatase inhibitors (AI) leads to the development of drug resistance. In response, cancer cells increase the expression of several receptors: ER, ERBB2
(HER2/neu), ERBB3 and EGFR (HER1). Prinaberel and liquiritigenin downregulate CXCR4 expression, reducing tumour growth, cell proliferation and invasion. DPN as
a selective agonist of the b subunit of the estrogen receptor enhances integrin a and b1, E-cadherin and b-catenin expression, while suppressing the expression of
N-cadherin. It leads to intensified adhesion and impaired migration of cancer cells. ER, estrogen receptor; ERBB2, erb-b2 receptor tyrosine kinase 2; ERBB3, erb-b3
receptor tyrosine kinase 3; EGFR, epidermal growth factor receptor; CXCR4, CXC motif chemokine receptor 4; DPN, diarylpropionitrile.
July 2022 | Volume 13 | Article 889950
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a therapeutic drug concentration. Overcoming this barrier would
reduce the doses of the chemotherapeutic drug, the number of side
effects and shorten the treatment time. Blockers should act
selectively on ABC transporters in the tumor. Their efficiency
depends on the expression of the transporters. There are several
mechanisms of P-GP inhibition. One of them is competitive
inhibition that blocks drug binding. Other mechanisms are
connected with noncompetitive inhibitors, disturbing the
membrane lipid bilayer and downregulating the expression of P-
GP (98). Three generations of P-GP inhibitors that inhibit the efflux
of drugs have been distinguished. The first generation is not used in
cancer therapy but rather in treating high blood pressure, bacterial,
fungal and viral infections or allergies (99). Unfortunately, these
drugs have to be taken in high doses, which leads to toxicity. The
second-generation drugs are more potent and less toxic but interact
with the CYP3A4 enzyme and other ABC transporters (100, 101).
The third generation of inhibitors is the most specific for P-GP.
These compounds have been examined in clinical studies, but with
no spectacular results both in reducing toxicity and effectiveness in
increasing the overall survival of the patients (102, 103).
Investigators are currently researching the fourth generation
which involves natural sources/derivatives, peptidomimetics and
dual-activity ligands (104, 105).
Frontiers in Immunology | www.frontiersin.org 6
The limited success of ABC transporter inhibitors in clinical
trials is related to the multitude of elements that contribute to
multidrug resistance. The use of modulators in clinical trials
leads to a slight improvement in the therapy of patients.
Importantly, many serious side effects have been reported,
making their safety questionable (99). For this reason, the high
toxicity of the generation of P-gp inhibitors encourages the study
of natural products that can be used as MDR modulators. Recent
studies indicate that natural products, such as vegetables, fruits
and their components (especially polyphenols or flavonoids), can
be used as MDR modulators (106, 107).

Some anti-cancer drugs can regulate the expression of
proteins from the MRP family. Under the influence of
doxorubicin, the expression of MRP1 transporter increases in
small lung cancer. This drug also leads to MRP2 overexpression,
which is not detected before treatment (108). In breast cancer
resistance protein/ATP-binding cassette sub-family G member 2
(BCRP/ABCG2), expression is upregulated with an increase in
the concentration of mitoxantrone used. This correlates with the
degree of drug resistance of cancer cells (109). Reduced response
to methotrexate treatment is also associated with BCRP protein
expression (110). Vincristine resistance results from increased
expression of ABCB1 (MDR1), ABCC1 (MRP1), ABCC2
FIGURE 2 | Effects of chemo- and pharmacotherapy of the tumour on the expression of membrane antigens. Doxorubicin, through the inhibition of surface anti-
apoptotic B7-H1 expression in breast cancer, is involved in the initiation of cell death. 5–fluorouracil enhances CEA, MUC-1 and MUC-2 expression, which is
associated with sensitization of the immune system. Indomethacin and celecoxib decrease the expression of E-cadherin in NSCLC, which leads to amplified invasion
and drug resistance development. In contrast, indomethacin in colon cancer increases E-cadherin expression. Therefore, tumour cells have a stronger capacity for
adhesion but diminished proliferation. The reduction of EGFR expression by NSAIDs contributes to the inhibition of cell proliferation. Docetaxel upregulates the
expression of CEA, CRT, MUC-1, Fas, PSCA and PSMA. The result is a high sensitivity to killing by cytotoxic T cells. carcinoembryonic antigen (CEA), mucin-1
(MUC-1), mucin-2 (MUC-2), non–small cell lung cancer (NSCLC), nonsteroidal anti-inflammatory drugs (NSAIDs), calreticulin (CRT), prostate stem cell antigen (PSCA),
prostate-specific membrane antigen (PSMA).
July 2022 | Volume 13 | Article 889950
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(MRP2) and ABCC3 (MRP3) genes, which may depend on cell
type, exposure time, and drug concentration (111).

P-glycoprotein overexpression can be observed as a result of
paclitaxel and docetaxel treatment (112). Interestingly, in the
cisplatin-resistant ovarian cancer cell line, the expression of P-GP
is increased even though the drug is not a substrate of P-GP.
Generalized stress response to long-term cisplatin treatment and
reactive oxygen species (ROS) production results in P-GP
overexpression that induces paclitaxel resistance (113). Lee et al.
found that selective cyclooxygenase inhibitors inhibit MDR1
expression and P-glycoprotein in taxane-resistant ovarian cancer,
thus sensitizing cells to paclitaxel (114). The effects of
chemotherapeutics on the expression of MDR-related proteins are
summarized in Figure 3.
PHYSICAL METHODS AND
THEIR MECHANISMS

Treatment With Electric Field
Treatment of the cells with a pulsed electric field (PEF) leads to
various biological effects. These include electroporation – both
Frontiers in Immunology | www.frontiersin.org 7
reversible and irreversible (IRE), electrostimulation and changes
in membrane properties (115).

Electroporation is the formation of water pores in biological
membranes. Depending on cell integrity after PEF treatment, two
types can be distinguished: reversible and irreversible
electroporation (115). The electric field has to exceed the
electroporation threshold to electroporate the membrane. For
most human cell lines, 1300 V/cm PEF leads to high-level cell
permeabilization (116). In the case of smaller cells, such as human
erythrocytes, the EP threshold is much higher (117). In vitro,
plasmalemma electroporation is analyzed by fluorochrome uptake
studies. Depending on the size of the fluorochrome, different pore
sizes are analyzed. For instance, Yo-Pro-1 may be used to analyze
wider pores than fluo-8 aided calcium ion detection (118). During
reversible electroporation, the electropore becomes smaller in time
after the end of pulse delivery (119). Therefore, cells are permeable
even for a short time after PEF treatment. Flow cytometry makes it
possible to analyze the time dependence of the electropore
annihilation. On the other hand, irreversible electroporation
includes instant induction of necrosis after PEF treatment (115).
The reversibility of the process might be analyzed by the long-term
assessment of cell permeability. For instance, a previous work by the
FIGURE 3 | The modulation of multidrug resistance proteins by pharmacotherapy. Expression of P-GP can be increased or decreased by many drugs. Quinidine,
tetrandrine, hydrocinchonine, cinchonine, valspodar, toremifene and selective COX inhibitors downregulate P-GP expression, which leads to enhanced transport of
the drug into tumour cells and therapeutic effect. In contrast, when the expression of P-GP is downregulated by paclitaxel, docetaxel and cisplatin, it is connected
with decreased drug sensitivity and treatment failure. Doxorubicin amplifies MRP1 and MRP2 expression. Methotrexate and mitoxantrone intensify BCRP expression.
Vincristine upregulates MDR1, MRP1, MRP2 and MRP3 expression. The modulation effects described above are associated with reduced treatment response.
Breast Cancer Resistance Protein (BCRP), P-glycoprotein (P-GP), cyclooxygenase (COX), multidrug resistance 1 (MDR1), multidrug resistance-associated protein
1-3 (MRP1-3).
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present authors showed the potency of trypan blue kinetic staining
studies in the differentiation between reversible and irreversible
electroporation protocols (115).

Treatment with electric field may be used to modulate
membrane antigens in two distinct attempts. The first includes
the electroporation of the cells with the plasmid encoding a
specific molecule (for instance, a cytokine such as IL-12),
followed by cytokine expression and release (120–122). In this
case, electroporation does not directly affect the membrane, but
via the stimulation with an exogenous molecule, it modulates the
systemic response to cancer antigens and sensitivity of the
immune cells to the paracrine signal (123). Similarly, Pen et al.
showed that electroporation with mRNA encoding constitutively
active TLR4 may be used to activate dendritic cells (124). Besides,
the immune response of the cell might also be modulated by
electroporation with siRNA. Dannull et al. showed that it is
possible to modify the antigen processing system in dendritic
cells by electroporation with immunoproteasome-targeting
siRNA (125). DNA encoding a variety of other molecules may
also be electroporated to induce specific modifications to the
immune response. For instance, when Tanning et al.
electroporated HIV-1 antigen with the ectodomain of PD-L1,
anti-HIV-1 response was enhanced in comparison to control
samples (126). There is an entirely new concept in which
electroporation supports the action of DNA vaccines via an
additional stimulation of the immune system (127). All the
abovementioned effects arise from the changes in the
composition of membrane antigens.

Interestingly, aside from the cellular effects of PEF treatment,
irreversible electroporation is involved in the increased
concentration of cancer-specific molecules in the tumor
microenvironment. This allows the immune cells infiltrating
the tumor to process cancer molecules and extensively work as
antigen-presenting cells, therefore increasing the immune
recognition of the tumor. The method is currently widely
examined due to its simplicity and possible use as an adjuvant
cancer therapy. The mechanism of IRE is slightly different from
reversible electroporation. Here, the release of cancer-specific
molecules to the tumor microenvironment induces the immune
response against cancer. In this case, the immunophenotype of
immune cells changes to one set to kill the alien cells (128).
Hester et al. proved that IRE may transiently alleviate the
immune suppression and enables the activation of T-cells in
the tumor site (129). Curiously enough, Zihao Dai et al. proved
that IRE of post-ablation hepatocellular carcinoma induces
CD8+ cell response against cancer via the release of danger-
associated molecular patterns (DAMPs) and the downregulation
of Treg and PD-1+ cells in the tumor tissue (130). However, the
release of damage-associated molecular patterns to the
extracellular compartment activates cytotoxic T-cells, thus
modifying their cell membrane antigens toward the cytotoxic
phenotype of the membrane. There are several types of DAMPs,
including histones, genomic DNA, HMGB1, IL1a, IL33, ATP, F-
actin, Cyclophilin A, HSP, uric acid, mitochondrial DNA and
calreticulin (131). Molecules originate from different
compartments of the cell, like nucleus, cytosol or mitochondria
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(132). These flow out from the cells after cell damage to the
extracellular space. Afterward, mentioned DAMPs are
recognized mostly by Toll-like receptors (TLR) as well as
RAGE, TIM3, P2Y2, P2X7, DNGF1, CD147, CD91, SERC1,
FEEL1 and NLRP3 molecules (131). Interestingly, Yimingjiang
et al. claim that the effects of nsPEF are similar to PD-1 blockade
in the treatment of hepatocellular carcinoma (133).

When EP is combined with the administration of
chemotherapeutics, the process is called electrochemotherapy
(ECT) (134). The therapeutic agent might be administered
intravenously or locally to the tumor site. Some of the most
commonly used chemotherapeutics include bleomycin for
melanoma treatment or calcium chloride for clinical trials in
pancreatic cancer management (135, 136). The effects of ECT on
the modulation of membrane antigens in the anticancer response
are similar to those achieved in standalone electrochemotherapy.
Gerlini et al. proved the activation of dendritic cells following
electrochemotherapy of melanoma (137). However, the
difference between ECT and EP in terms of modulation of
membrane antigens is the higher cytotoxicity induced by ECT
related to the administration of the chemotherapeutic agent
(118). The cytotoxicity may also affect the composition of
membrane antigens.

Intracellular effects of PEF treatment include the
permeabilization of intracellular organelles, stimulation of the
biosynthesis of specific proteins and modulation of antigens.
The first effect was widely described in the Jurkat cell line, in
which the nanosecond pulses induced the permeabilization of the
mitochondrial outer membrane and, therefore, the release of
cytochrome c and reactive oxygen species to the cytoplasm (138).
After the disruption of cell membrane integrity, the cell increases the
biosynthesis of the components of its cytoskeleton (139). However,
in short-term response, Kiełbik et al. proved that reorganization of
actin fibers occurs after electroporation (118). The effect might be a
response of the cell to unfavorable conditions. Besides, nanosecond
pulsed electric field may also affect the formation of enhanced
speckle (140). A similar effect relates to the permeabilization of the
endoplasmic reticulum. Conversely, protein biosynthesis requires
high amounts of energy, thus the PEF stress-induced inhibition of
translation serves as a mechanism for cell survival (141). Moreover,
several biological effects also arise from the application of electric
fields, for instance, eIF2a phosphorylation and 4E-BP1
dephosphorylation (142). Moreover, other studies suggest that
nsPEFs activate the major MAPK kinase downstream signaling
pathways via p38, JNK and ERK (143, 144). From the mechanistic
point of view, however, the mechanisms through which nsPEF
modulates the activity of membrane kinases remain unknown.
Some authors hypothesize that the effect occurs via the induction
of cell stress and thus the activation of kinases. Also, studies by
Vernier et al. prove that the biological changes may arise from the
increased concentration of cytoplasmic calcium (145). A similar
tendency was observed by Morotomi-Yano et al. who proved the
activation of AMPK with the increased content of cytoplasmic Ca2+

(146). The study introduces an entirely new mechanism in which
the stimulation with nsPEFs may modulate the immunophenotype
of the cells. AMPK is one of the critical regulators of vesicle
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trafficking, which is why its inhibition disallows the proper
membrane-vesicle interaction and thus in the long term affects
the composition of membrane antigens (147). Moreover, nsPEFs
may regulate the phenotype of the membrane and presumably the
content of antigens in chondrocytes via theWnt/b-catenin pathway
(148). Interestingly, an example of direct modulation of membrane
antigen by nsPEF is the CD95 death receptor which could be
modulated in Jurkat and U937 cell lines (149). Significant effects and
high expectations based on the aforementioned studies prove that
much research has yet to be done in this field.

nsPEF also exerts an effect on protein antigens and changes
membrane lipid composition via the interaction with scramblase
(150), an enzyme responsible for the transport of negatively
charged phospholipids between the inner and outer leaflet of the
membrane. As a consequence, the lipid profile of the
plasmalemma alters.

All the mentioned mechanisms in which the electric field
modulates the immunophenotype of the cells are summarized
in Figure 4.

Photodynamic Reaction
Photodynamic reaction (PDT/PDR) includes the irradiation of
the photosensitizer with an adequate wavelength light. The
physical mechanism of PDR includes the shift of electrons to
the high-energy state forwarded by the emission of excess energy
to biomolecules (151). The process is responsible for the
irreversible oxidation of intracellular components and even
redox changes in the DNA. Without proper genome editing
and cell repair system, cancer cells die from the accumulation of
invalid proteins and genetic material (152). In the case of the
cellular changes induced by the photodynamic reaction, various
membrane proteins undergo alternations. For instance, actin
bound to the membrane by zyxin was proved to change its
structure dramatically after the irradiation of melanoma cells
with curcumin (153, 154). Moreover, PDT/PDR induces the
stress response of the irradiated cells and therefore changes in the
cytoskeleton which prevents the cells from physical disruption of
their integrity (153).

In PDT, an inactive anticancer agent is administered
systemically or locally. Even in systemic administration, PDT
is a highly selective treatment as the local light irradiation goes in
parallel with the accumulation of photosensitizer within a tumor.
Still, if the local administration of the photosensitizer to the
tumor site is possible, it decreases the systemic side effects (151).

PDT influences the immunostimulatory attributes of antigen-
presenting cells, thus alleviating autoimmune diseases (155).
Mroz et al. described the effects of PDT on cancer cells and the
immune system in vivo (156). The authors demonstrated that
PDT induces the increased killing of cancer and the production
of TNFa and IFNg in the tumor tissue. Moreover, PDT elicited
the development of epitope-specific CD8+ cells followed by the
destruction of distant untreated antigen-positive tumors. The
much lower CTLs-related effects on antigen-negative cells prove
that PDT induces changes in immune cell membranes thus
allowing for the higher cytotoxicity toward the tumor. High
selectivity and specificity of PDT toward the antigen was
demonstrated also by other authors, for example, Kabingu
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et al. The group showed that PDT enhances the systemic
recognition of Hip1, a tumor antigen associated with basal cell
carcinoma (157). In another study, Mroz showed that PDT
induces a potent epitope-specific response against testis antigen
P1A and simultaneously toward cancer (158). Reginato et al.
presented a method of combining Treg depletion by
cyclophosphamide with PDT to potentiate PDT-mediated
immunity (159). Wang et al. also presented an interesting
attempt to enhance the immunomodulatory effects of PDT.
The authors engineered an antigen-photosensitizer nanocarrier
to facilitate ROS-triggered immune response to PDT (160).
Remarkably, the antitumor effect of antigen-specific
immunization may be enhanced by the use of antigen-specific
conjugates – as demonstrated by Wang et al. in their successful
attempts of targeting PSMA on prostate cancer cells (161).

Concerning the mechanism of PDT-aided immunity and
therefore the activation of immune cell cytotoxicity (also
membrane cytotoxicity-related antigen expression), Korbelik
suggested that the vigorous innate immune reaction arises
from the intensified phagocytosis of dead tumor cells (162).
Zhang et al. provided evidence that PDT also induces
presentation of surface MHC I related antigens and enhances
antigen processing through the restoration of TAP1 protein
expression in glioma cells (163). TAP1 can potentiate the
transport of new antigen peptides and therefore is involved in
PDT-related immunomodulation (163). The generation of ROS
plays a significant role in PDT-induced immunity (160).
Interestingly, some photosensitizers, such as protoporphyrin
IX, may be selectively accumulated only in activated
lymphocytes. The same authors proved the functional
alternations in antigen-specific and nonspecific immune
components (164).

Aside from cancer-related changes in the cell membrane,
PDT may also be used to induce the immunosuppression of
contact hypersensitivity (165). Light radiation was proved to
induce genomic changes, leading to the induction of POMC
expression (166). When keratinocytes are irradiated with UVB
light, POMC is extensively biosynthesized via a p53-related
pathway and converted to aMSH or ACTH afterward
(167, 168). Therefore, aside from the local effects, the light
might induce systemic effects – such as the increased
biosynthesis of corticosteroids (169).

The mechanisms in which light affects the immunophenotype
of the cells are summarized in Figure 5.

Radiation Therapy
Radiation therapy involves the application of high-energy waves
(like X-ray or g-waves) or particles (like electrons, a particles, b
particles or protons) against cancer. Early clinical attempts
showed the advantages of X-rays and alpha particles over the
beta particles, thus more research studies concerned the more
effective techniques.

X-Ray Radiation
X-ray radiation rises from the emission from the atomic nuclei.
Roentgen radiation involves the emission of X-ray waves
(wavelengths ranging from 0.01 to 10 nm) and the
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administration of the radiation dose to the tissue (170, 171).
There is no evidence that X-ray induces the poration of the
membrane – instead, it exerts effects on the genetic material of
the cell and the redox potential in the cytoplasm (172, 173).

In non-cancerous cells, the genetic material repair system is valid
and radiation effects are reversible (174–176). The only side effects
of X-ray treatment include skin burns and the induction of
neoplasms in susceptible patients (177, 178). Conversely, in
cancer cells, DNA-repair systems are often impaired, therefore X-
ray treatment induces irreversible damage to the genetic material
(179, 180). Neoplasms develop and the abnormal cells accumulate
in the irradiated site. The changes in the genetic material induce the
biosynthesis of redox-related proteins as well as free radical
Frontiers in Immunology | www.frontiersin.org 10
scavengers (181). The composition of surface antigens is also
changing. Irreparable changes occur in the cell, and the neoplasm
induces the expression of death-related molecules (182).

Studies on a murine model demonstrated that the immune
response following irradiation relates to the locus of the antigen
affinity (183). Namely, antigens associated with the H-2 locus
were much more resistant to irradiation than those related to H-
1 and H-3 loci. The author shows the modulatory role of X-ray
on membrane antigens in relation to transplantation immunity
(183). Other papers also prove decreased rejection rates (ratio of
unsuccessful transplantations) in patients after Total Body
Irradiation (TBI) (184). The mechanism of the effect of X-rays
on cell immunophenotype may also be related to changes in
FIGURE 4 | Effects of electric field on the expression of membrane antigens. Mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), Extracellular
signal-regulated kinase (ERK), Eukaryotic Translation Initiation Factor 2A (eIF2a), Eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), 5’ AMP-
activated protein kinase (AMPK), Programmed death-ligand 1 (PD-L1), Toll-like receptor 4 (TLR-4).
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proliferating cell nuclear antigen (PCNA) and thus the
proliferation phenotype in V79 hamster fibroblasts (185). Also,
Miura et al. showed that PCNA is involved in the repair
mechanisms after X-ray radiation and thus in the proliferation
properties of human fibroblasts (186). Since cells change
membrane antigens as they proliferate, all the mentioned
processes have to relate to changes in the composition of
membrane antigens. On the other hand, Shreder et al.
described the lack of the effects of X-rays on transcription
factors such as PPARg, C/EBPa and C/EBPb in human pre-
adipocytes (187). However, the authors claim the modulation of
cells by inflammatory mediators rather than genomic factors
(187). Interestingly, studies on osteoblasts demonstrated that
X-ray irradiation induces the differentiation of cells via the RhoA
pathway and the change in the cytoskeleton (188).
Frontiers in Immunology | www.frontiersin.org 11
X-ray radiation also had a direct effect on cancer-related
molecules on the cell membrane of human gastric cancer cells
causing an increase in CEA membrane content and elevating the
level of MHC I (189). Wittenborn et al. showed an autoimmune
phenotype achieved in mixed chimaera models after ionizing
X-ray radiation and Cesium-137 treatment (190). Finally, Tandl
et al. show that X-ray elicited calcium ion signaling cascade and,
in consequence, activated human T-lymphocytes (191).

The mechanisms in which X-rays modulate membrane
antigens of cells are summarized in Figure 6.

Gamma Radiation
Gamma radiation may be generated with isotope-based
generators, like Cobalt 60 (192). g radiation exerts dualistic
effects on human cells, depending on the dose of the radiation
FIGURE 5 | Effects of light on the expression of membrane antigens. Proopiomelanocortin (POMC), Tumour Necrosis Factor a (TNFa), Interferon g (IFNg),
Transporter associated with antigen processing 1 (TAP1), Major Histocompatibility Complex I (MHC I), Photodynamic therapy (PDT).
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and the expression of REG4, BIRC5 and NEIL2 genes (193).
Long term low doses of g waves exposure induces carcinogenesis
in the healthy organism. Daniels et al. showed that the protracted
exposure to low-dose gamma radiation is significantly associated
with leukemia (194). Conversely, annual outdoor ambient
gamma dose rate is not associated with childhood leukemia in
German population nor increased the risk in United Kingdom
children (195, 196). However, when the dose significantly
increases and is administered to the tumor site, it induces
apoptosis in cancer cells and is being used in the anticancer
therapy. Interestingly, both effects are observed during the
therapy and not only cancer is affected by the radiation, but
the non-cancerous cells as well (192). Cancer cells gain
susceptibility to the g radiation therapy, when it is combined
with other modalities of treatment. For instance, studies by
Hofmanova et al. proved the increased susceptibility to g
radiation when the cells were simultaneously treated with
lipoxygenase inhibitors (197). Besides, curcumin enhances the
cytotoxic effect of radiation in MCF-7 cells (198). According to
the molecular changes induced by gamma radiation, CuZnSOD
and MnSOD proteins expression increases in the time-
dependent manner (199).

Nuclear Medicine
Like X-ray radiation, nuclear medicine involves the irradiation of
cancer cells, however, in this case with a particles instead of X-
ray waves (200, 201). In the past, b radiation was used for studies
on therapeutic applications (200). In nuclear medicine therapy, a
radioactive isotope emits radiation, driving cancer cells to
apoptosis and causing damage to the genetic material of
the tumor.

Depending on the stage of tumor differentiation, the isotopemay
be administered locally or systemically. In well-differentiated
cancers, such as hyperthyroidism and differentiated thyroid
cancer, the most commonly applied isotope – I-131 – is captured
nearly fully in the thyroid cells (202). Radioisotope might be
conjugated with a molecule specifically captured by the organ. For
instance, adrenal cortex cells uptake 131I-6-b-iodomethyl-19-
norcholesterol or 6-methyl-75Se-methyl-19-norcholesterol which
Frontiers in Immunology | www.frontiersin.org 12
is used in the diagnostic scintigraphy of the adrenal cortex (203).
The method allows for the synthesis of more specific therapeutics
and decreases the number of systemic side effects of the therapy.
Moreover, highly effective iodine conjugates, such as I-
Metaiodobenzylguanidine (131I-MIBG) are applied in targeted
radiotherapy for children with neuroblastoma (204). Aside from
tumors, radioiodine might be used for the therapy of Graves’
Disease (205).

Hyperthermia and Hypothermia
Hyperthermia is a state of the body where the temperature is
elevated to induce a specific response. In pathology, it occurs
systemically in fever (206–208). However, studies by Muckle
et al. prove that hyperthermia may also be artificially induced as
part of anticancer therapy (209). Several methods may be used to
elevate the body’s temperature – electric field, light radiation and
heat convection. When the temperature remains exceptionally
high, the cancer tissue undergoes necrotic death and
immunization is similar to that obtained in IRE or other
ablation techniques (210–214). The parameters of the applied
heat suppliers have to be carefully set (215). Depending on the
applied temperature, heating methods may be divided into lethal
and sub-lethal hyperthermia. Both processes drastically differ in
biological response of the cancer cells. Sublethal temperatures
induce the epithelial to mesenchymal transition in breast cancer
cells, simultaneously increasing the chemosensitivity of the cells
(216). Henle et al. proved that sub-lethal radiation or heat
damage may become lethal when treated with 40oC after the
damage or may be repaired when treated with lower
temperatures (217). The tendency that sub-lethal hyperthermia
increases the cytotoxic effect of radiation damage was also proved
by the other authors (218). The control of quiescent cells by
sublethal hyperthermia is useful for suppressing the repair of
both potentially lethal and sublethal damage (219). Like in IRE,
lethal hyperthermia-aided ablation induces systemic response to
tumor antigens and may be potentially used in the treatment of
metastatic disease (220). The effects of hyperthermia may be
enhanced by dendritic cell immunotherapy following
hyperthermia (221). Moreover, the release of DAMPs to the
FIGURE 6 | Effects of X-ray radiation on the expression of membrane antigens. Carcinoembryonic antigen (CEA), Major Histocompatibility Complex I (MHC I).
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extracellular space induces an enhanced cytotoxic phenotype of
immune cells and an increased infiltration of the tumor
microenvironment (222). Moreover, photothermal ablation
modulates the intratumoral myeloid population toward tumor
immunogenicity (223). On the other hand, multiple exposures to
radiofrequency radiation hyperthermia suppressed cell-mediated
immunocompetence (224). The immune system response is not
evoked exclusively by extremely high temperatures. Also, studies
by Umar et al. proved that febrile temperature induces CD4 T-
cell differentiation regulated by the TRPV channel and the Notch
signaling pathway (225). Hyperthermia also increases the
presentation of HLA-DR in NK and NKT cells (226). The
mechanism of action of hyperthermia also relies on Heat
Shock Proteins (HSP) and thus indirectly on MHC I (227).
Extracellular HSP70 serves as a link between NK and dendritic
cells via the induction of NKG2D ligand and MHC class I chain-
related protein A overexpression and the augmentation of IFN-g
release (228).

On the other hand, hypothermia is known to inhibit the classical
complement pathway. Besides, it is associated with decreased
expression of pro- and anti-inflammatory effectors (229).
Frontiers in Immunology | www.frontiersin.org 13
All the abovementioned mechanisms in which temperature
affects the membrane antigens are summarized in Figure 7.

Magnetic Field
Treatment of cells with magnetic field (MF) is not fully covered
in the literature yet. There are three types of MF – alternating
(AMF), pulsating (PMF) or static magnetic field (SMF). In the
case of PMF, the effects are nearly identical to the ones in the
electroporation technique (230). On the other hand, AMF and
static MF have not been analyzed in anticancer therapy yet. Only
a few papers show the potential of magnetic field in the induction
of cell death (231, 232).

Several authors combined MF treatment with other anticancer
modalities, such as electroporation, and obtained favorable results in
permeabilizing cells (233). Besides, specific MF-dependent
nanovesicles are synthesized to enhance the anticancer effect of the
therapy severely targeting melanoma (234). Aside from the effects on
ferromagnetic metal-containing enzymes, MF also induces local
hyperthermia and results in the ablation of the tissue (231). All the
cytotoxic effects relate to the change of membrane antigen
composition to the one connected with cell death.
FIGURE 7 | Effects of temperature on the expression of membrane antigens. Human leukocyte antigen DR (HLA-DR), transient receptor potential cation channel
(TRPV), Damage-associated molecular pattern (DAMP).
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Ultrasound Treatment
Sonodynamic reaction (SDR) takes place when ultrasounds act
on the cells in a medium containing ultrasound-activated
compounds – sonosensitizers (235, 236). The effects of
ultrasounds on human tissues are much more complex than in
PDR. Ultrasounds act both on the sonosensitizer (in SDR) and
systemically (237, 238). When the sono-active compound gets to
the cell, ultrasound treatment induces implosion and
sonoluminescent light emission (239–241). Moreover, the
collection of diffused gases leads to forming a high-volume gas
bubble in a process called cavitation (242).

Aside from specific antigen response, the cell prevents itself from
future disruption, and therefore the increased biosynthesis and
organization of the cytoskeleton takes place. Mechanisms in
which ultrasounds modulate membrane antigens may relate to a
ROS burst after SDR or the activation of autophagy (243, 244). Li
et al. proved that autophagy in the case of SDR may relate to the
translocation of TFEB induced by a ROS burst following SDR (245).
Also, hypoxia may relate to the modulatory effects of SDR (246).
Several attempts were made to stimulate immunity after SDR. One
of them was the generation of a two-dimensional coordination
nanosheet which additionally activated the immune response via
the utilization of the TLR9 agonist in its structure (247).

Boiling histotripsy of the tumor tissue via the application of
ultrasounds is similar to the effects of IRE (248). The mechanism is
similar and the methods seem complimentary and both modulate
the immunophenotype of CD8+ cells to a phenotype which is more
cytotoxic toward cancer cells. Also, high-intensity focused
ultrasound therapy seems to modulate the activation of CD8+
and CD4+ cells infiltrating the tumor tissue (249). Moreover,
HIFU induced the increased expression of Nlrp3, Jun, Mefv, Il6
and Il1b and alterations in macrophage polarization in studies by
Fite et al. The authors also described the upregulation of several
immune pathways involving Nod1, Nlrp3, Aim2, Ctsb, Tlr1/2/4/7/
8/9, Oas2, and RhoA (250). Studies by Ji et al. showed a shift from
polarized M2 macrophages into M1 phenotype and depletion of
myeloid-derived suppressors in the tumor microenvironment
following the application of ultrasounds (251). In the case of
immune cells, nitric oxide (NO) is responsible for the shift in the
functioning of immune cells (251).

At the other end of the spectrum of ultrasound use is
sonoporation (252). The process involves the formation of a pore
in the cell membrane with the use of ultrasounds. Mechanisms
involved in sonoporation include cavitation, shear stress to the
membrane, endocytosis and finally mechanical stress to the
membrane (253). The method seems very promising; however,
due to its novelty, only several studies concern the application of
ultrasounds in the modulation of membrane antigens. The first
attempt includes the transport of antigen mRNA to dendritic cells,
which afterward, via the expression of antigenic peptide, can act as
DC vaccines against tumor cells in vivo (254). Research also
concerned the transport of siRNA molecules to the primary T
cells which resulted in a decreased methylation-controlled J protein
expression (255). The Golgi-associated transmembrane protein
downregulation is involved in increased resistance to specific
drugs by inducing expression of the ABCB1 drug transporter via
Frontiers in Immunology | www.frontiersin.org 14
the c-Jun-related pathway. Therefore, sonoporation may be used to
modulate drug-resistant proteins (256).

All the mentioned mechanisms in which ultrasounds modulate
the membrane antigens of the cells are summarized in Figure 8.

Modulation of Membrane Antigen in
Clinical Practice
Modulation of membrane antigens has found a variety of clinical
applications. Affected membrane proteins and receptors might
be used in the production of lymphocytes used in cell-based
therapies or sensitization of the tumor toward chemotherapy. In
general, the modulatory effect is, in most cases, the side effect of
the used therapy. Sometimes the result is profitable – for instance
after PDT or PEF treatment and in some cases, the effect is
negative and leads to the increase in aggressiveness of cancer –
like sometimes after hormonal therapy.

CAR-T or CAR-NK cells therapies target cancer-specific antigens
with the use of T- or NK-cells with a newly introduced CAR receptor.
In the process of CAR design, the new receptor has to be specific to
the targeted cells and not self-destroy the CAR-T/NK cells. The
therapeutic cells easily find their application in leukaemia or in the
treatment of other haematological malignancies. For instance, in B-
ALL, cytotoxic cells often target CD20 or CD19 antigens (12). Most
T-ALL CAR target the CD7 molecule which is also present on CAR-
T cells (257). Therefore, to avoid fratricide during the production of
anti-CD7 CAR-T cells, self-reactive CD7 molecules are depleted by
gene silencing methods or deleted with the CRISPR-Cas system. A
similar approachmay be implemented in the production of anti-CD5
or anti-CD2 CAR-T cells. Cell-based immunotherapy presents
several limitations in terms of antigen expression. First, the efficacy
of immunotherapy depends on the number of targeted receptors.
Second, the therapy has to be personalized – the cells should be
compatible with the HLA system of the patient, and thus most of
CAR-T cells are produced from patients’ own T-cells. The third
problem is the low efficacy of targeting solid tumors. There are a few
factors that contribute to it – a low abundance of solid-tumor specific
antigens and low infiltration of CAR-T cells to the tumor site. To
overcome the problems, researchers investigated the methods for
increasing cancer-specific molecules and their immunogenicity. The
attempt was applied in clinical practice, and several clinical trials
involved the modulation of membrane antigens via the application of
pharmacotherapy and biological therapeutics. Table 1 summarizes
completed clinical trials in the modulation of membrane antigens.

Sensitization of the tumor to chemotherapy is mostly
connected with mitosis inhibition or induction of additional
mutations in the tumor site using radiotherapy or irradiation. In
this case, the tumor is less aggressive and viable, therefore the
effects of additional chemotherapy are achieved more easily and
fewer tumors are resistant to the therapy. However, the
modulation of membrane antigens as a supportive method
before chemo- or immunotherapy remains a novel idea. The
first attempts at the therapy came with the use of photodynamic
therapy as an adjuvant method for cancer treatment. The tumor
site is irradiated with a photosensitizer after the excision of the
vast majority of the tumor. The radiation involves increased
infiltration of the tumor site by immune cells and thus prevents
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the rebuilding of the tumor from the local metastatic cells. The
process is related to the increased abundance of DAMPs in the
tumor site and the effect of PDT on tumor-associated immune
cells. Similarly, treatment with a pulsed electric field in the
irreversible electroporation protocol is associated with an
increased release of DAMPs to the tumor microenvironment
and the sensitization of APCs to tumor-associated molecules.
However, in this case, PEF treatment also directly affects the
Frontiers in Immunology | www.frontiersin.org 15
T-cells, making them more cytotoxic toward the tumor. Table 2
presents the currently ongoing clinical trials in this area.

SUMMARY

Modulationofmembraneantigensisapromisingattemptinanticancer
therapy. Modern oncology should not only focus on the induction of
celldeath intumorcellsbutalsoaimtosensitize thebodytowardcancer
FIGURE 8 | Effects of ultrasounds on the expression of membrane antigens. NLR Family Pyrin Domain Containing 3 (Nlrp3), Jun Proto-Oncogene (Jun),
Mediterranean fever gene for marenostrin (MEFV), Dendritic cell (DC), Nucleotide-binding oligomerization domain-containing protein 1 (Nod1), Absent In Melanoma 2
(Aim2), Cathepsin B (Ctsb), Toll-like receptor 1/2/4/7/8/9 (Tlr1/2/4/7/8/9), 2’-5’-Oligoadenylate Synthetase 2 (Oas2), Ras homolog family member A (RhoA), High-
intensity focused ultrasound (HIFU).
TABLE 1 | Summary of antigen loss or modulation found in published clinical trials.

Number
of
Patients

Therapy Protocol Target
Antigen

Short Description Ref.

10 Biological: INO-3112

Device: CELLECTRA™-5P

CD 107a,
granzyme B
and perforin

Immunogenicity of INO-3112 DNA vaccine delivered
by electroporation to participants with HPV
associated with HNSCC

Bagarazzi et al.
(258),
NCT02163057

170 Drug: gp100:209-217 (210M)
Drug: Montanide ISA-51
Drug: IL-2
Drug: MART-1:26-35(27L)
Biological: Abl cells
Drug: Fludarabine
Drug: Cyclophosphamide

FoxP3,
CD25 and
CTLA-4

The impact of CD4(+)FoxP3(+) regulatory T cells on
human antitumor immune responses

Yao et al.
(259),
NCT00001832,

(Continued)
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TABLE 1 | Continued

Number
of
Patients

Therapy Protocol Target
Antigen

Short Description Ref.

Biological: GCSF (Growth colony-stimulating factor)
Procedure: Apheresis

53 Biological: Anti-Cluster of Differentiation (CD)19-Chimeric antigen
receptor (CAR)

CD19 CD19-CAR T-Cell Therapy in Children and Young
Adults With B-ALL

Kowolik et al.
(260),
NCT01593696

8 Drug: indium-111-ibritumomab tiuxetan
Drug: 90Y Zevalin

CD20 Modulation of CD20 Expression in Plasma Cells of
Patients with Multiple Myeloma

Treon et al.
(261),
NCT01207765

112 Biological: CART-TnMUC1
Drug: Cyclophosphamide
Drug: Fludarabine

TnMUC1 CART-TnMUC1 in Patients with TnMUC1-Positive
Advanced Cancers

Gutierrez et al.
(262),
NCT04025216

30 Biological: GPC3 and/or TGFb targeting CAR-T cells GPC3 GPC3-CAR-T Cells for Immunotherapy of Cancer
with GPC3 Expression

Pang et al.
(263),
NCT03198546

1260 Biological: Pembrolizumab PD-1 Pembrolizumab (MK-3475) in Patients with
Progressive Locally Advanced or Metastatic
Carcinoma, Melanoma, or Non-small Cell Lung
Carcinoma

Patnaik et al.
(264),
NCT01295827

30 Biological: Anti-B-cell maturation antigen (BCMA) chimeric antigen
receptor (CAR) T cells

BCMA T Cells Targeting B-Cell Maturation Antigen for
Previously Treated Multiple Myeloma

Abbas Ali et al.
(265),
NCT02215967

73 Biological: CART-19 CD19 Chimeric antigen receptor T cells for Patients with
CD19+ Leukemia and Lymphoma

Shannon et al.
(266),
NCT01626495

26 Biological: CART-19 CD19 CART19 to Treat B-Cell Leukemia or Lymphoma Frey et al.
(267),
NCT01029366

208 Biological: CD22-CAR CD22 Anti-CD22 Chimeric Receptor T Cells in Pediatric and
Young Adults with CD22-expressing B Cell
Malignancies

Fry et al. (268),
NCT02315612

93 Biological: gene-modified T cells targeted CD19 CD19 CAR Therapy in Acute Lymphoblastic
Leukemia

Park et al.
(269),
NCT01044069

21 Biological: Anti-MAGE-A3-DP4 TCR PBL
Drug: Cyclophosphamide Drug: Fludarabine
Drug: Aldesleukin

MAGE-A3 T Cell receptor immunotherapy targeting MAGE-A3
for patients with metastatic cancer

Yong et al.
(270),
NCT02111850

11 Biological: ETBX-051; adenoviral brachyury vaccine Biological:
ETBX-061; adenoviral Mucin-1 (MUC1) vaccine Biological: ETBX-
011; adenoviral Carcinoembryonic antigen (CEA) vaccine

CEA, MUC1,
Brachyury

Multitargeted recombinant Adenovirus 5 (CEA/
MUC1/Brachyury) ‐based Immunotherapy vaccine
regimen in patients with advanced cancer

Gatti‐Mays
et al. (271),
NCT03384316

28 Biological: Prevnar- Pneumococcal Conjugate Vaccine (PCV)
Other: Activated/costimulated autologous T-cell
Drug: Revlamid® (Lenalidomide)
Biological: MAGE-A3/GM-GSF, Hiltonol® (Poly-ICLC)

MAGE-A3 Combination Immunotherapy and Autologous Stem
Cell Transplantation for Multiple Myeloma

Rapoport et al.
(272),
NCT01245673

22 Biological: monoclonal antibodyDrug: chemotherapy HLA-DR Immunostimulant Antibody in Combination with
Chemotherapy for Advanced Cancer of the Pancreas

Beatty et al.
(273),
NCT00711191

17 Genetic: 1RG-CART
Drug: Cyclophosphamide
Drug: Fludarabine
Other: Leukapheresis

GD2 Anti-GD2 Chimeric Antigen Receptor (CAR)
Transduced T-cells (1RG-CART) in Patients with
Relapsed or Refractory Neuroblastoma

Straathof et al.
(274),
NCT02761915

30 Drug: Cyclophosphamide Drug: Fludarabine Biological: Anti-B-cell
maturation antigen (BCMA) chimeric antigen receptor (CAR) T cells

BCMA Cells Targeting B-Cell Maturation Antigen for
Previously Treated Multiple Myeloma

Abbas Ali et al.
(265),
NCT02215967

12 Drug: Fludarabine
Drug: Cyclophosphamide
Biological: E6 TCR
Drug: Aldesleukin

PD-1 T Cell Receptor Gene Therapy Targeting HPV-16 E6
for HPV-Associated Cancers

Hinrichs et al.
(275),
NCT02280811

16 Biological: 2 vaccine injections in 1 limb
Biological: 2 vaccine injections in distinct limbs
Biological: 2 “vaccine injections” in distinct limbs

LAG3
MAGE-3
NA-17
NY-ESO-1

Immunotherapy of HLA-A2 Positive Stage II-IV
Melanoma Patients (LAG-3/IMP321)

Legat et al.
(276),
NCT01308294
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cells and prepare the targeted tumor for anticancer therapy to increase
its efficiency. The variousmethods that could be used tomodify tumor
antigens include pharmacotherapy or treatment with ultrasounds, X-
rays, electric and magnetic field. Not only changes in the tumor
membrane may be beneficial in the therapy – also alternations in
immune system cells may result in a better therapeutic outcome.
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197. Hofmanová J, Musilová E, Kozubıḱ A. Suppression of Human Cancer Cell
Proliferation by Lipoxygenase Inhibitors and Gamma-Radiation In Vitro.
Gen Physiol Biophys (1996) 15:317–31.

198. Girdhani S, Ahmed MM, Mishra KP. Enhancement of Gamma Radiation-
Induced Cytotoxicity of Breast Cancer Cells by Curcumin. Mol Cell
Pharmacol (2009) 1:208–17. doi: 10.4255/MCPHARMACOL.09.25
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