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The digitization of health records and growing availability of tumour DNA sequencing
provide an opportunity to study the determinants of cancer outcomes with
unprecedented richness. Patient data are often stored in unstructured text and siloed
datasets. Here we combine natural language processing annotations*? with structured
medication, patient-reported demographic, tumour registry and tumour genomic
datafrom 24,950 patients at Memorial Sloan Kettering Cancer Center to generate

aclinicogenomic, harmonized oncologic real-world dataset (MSK-CHORD).
MSK-CHORD includes data for non-small-cell lung (n =7,809), breast (n = 5,368),
colorectal (n =5,543), prostate (n = 3,211) and pancreatic (n = 3,109) cancers and
enables discovery of clinicogenomic relationships not apparent in smaller datasets.
Leveraging MSK-CHORD to train machine learning models to predict overall survival,
we find that models including features derived from natural language processing,
such as sites of disease, outperform those based on genomic data or stage alone as
tested by cross-validation and an external, multi-institution dataset. By annotating
705,241 radiology reports, MSK-CHORD also uncovers predictors of metastasis to
specific organsites, including a relationship between SETD2 mutation and lower
metastatic potential inimmunotherapy-treated lung adenocarcinoma corroborated
inindependent datasets. We demonstrate the feasibility of automated annotation
from unstructured notes and its utility in predicting patient outcomes. The resulting
dataare provided as a public resource for real-world oncologic research.

The ubiquity of electronic health records offers a largely untapped
datasubstrate for translational medicine. Although abstraction of key
elements from free-text patient visit, radiology, histopathology and
procedural notes has traditionally limited analysis, natural language
processing (NLP) now allows for automatic annotation of such fea-
tures'?. Massive, context-aware transformer architectures?, including
those pretrained on health records*®, have reshaped the NLP landscape
and have shown promise atanumber of medical tasks including predict-
ing hospital readmission*and providing medical advice®. In oncology,
immunohistochemistry’ and clinical tumour sequencing®® are standard

of care for many patients because of their potential to guide therapy.
Combining real-world data (RWD) has enormous potential to aid in
prediction of tumour trajectories.

The separation of hospital, academic and commercial entities
responsible for genomic sequencing, radiology, histopathology and
electronic health record datais a hurdle to integrative analysis'. Sev-
eral studies have begun to overcome thesesilos (for example, through
the integration of tumour sequencing with treatment data to uncover
genomic modifiers of response”, or the integration of billing codes to
uncover mutations associated with specific organsites of metastasis™).
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Fig.1|Study overview. a, Creating MSK-CHORD. p, probability; DFCI, Dana
Farber Cancer Institute; UHN, University Health Network; VICC, Vanderbilt-
Ingram Cancer Center.b, NLP modellibrary performance assessed by either
cross-validation or held-out validation in the MSK-BPC cohort (Methods).
Sourcetextincludes radiology impressions (R), medical oncology notes (M) or
histopathology reports (P). Randomly selected false positive (FP) and false
negative (FN) cases were independently reviewed to audit reasons for model
failure; inseveral cases (purple), the original curation labels were incorrect.
Raw numbers are givenin Supplementary Table1.NA, not applicable; thatis,
anindependent curator determined that the source documentdid not actually
containsufficientinformation to determine the status of the variablein question.
¢, MSK-CHORD characteristics overview. Age box plots show median, quartiles
and +95th percentile. Bar charts show proportion of patients with agiven
feature. Genomic alterationsinclude only those annotated as oncogenic by

Models incorporating more detailed clinical, genomic, radiomic and
histopathologic data® have shown promise in better risk stratification
(for example, following immunotherapy'**), although these efforts
frequently rely on and are limited by manual extraction of key data
elements and are studied in cohorts of modest size.

Inthis study, we used alarge, integrated dataset to develop improved
models of cancer outcome. Specifically, we sought to overcome bot-
tlenecks of manual extraction for RWD by developing methods to
automatically annotate free-text clinician notes as well as radiology
and histopathology reports, and then to combine these annotations
with structured treatment, survival, tumour registry, demographic
and tumour genomic data to create MSK-CHORD; test whether
MSK-CHORD can uncover clinicogenomic associations not apparent
in smaller datasets; study whether integrated, multimodal models
would outperform traditional single-modality models, including
American Joint Committee on Cancer stage, at predicting overall

OncoKBand were derived from tumour biopsy sequencing by MSK-IMPACT.
Age, sex (malereference) and survival outcomes were derived from structured
data.Kaplan-Meier survival curves for theindividual cohorts are shown with
median survival denoted by ared hash mark. Bar charts represent the percentage
of patients with a given characteristic at time of cohort entry. Additional
characteristics in MSK-CHORD such as tumour stage, specific institutional
treatments and tumour markers are not shown.d, Visualizing patient-level data
incBioPortal, inthis case a patient (P-0050196) with prostate adenocarcinoma
whowas treated with definitive radiation for stage Il disease, and then developed
metastaticrecurrencein thelungand received treatment with multiple lines of
therapy including pembrolizumab for MSI found on MSK-IMPACT. m, months;
PSA, prostate-specific antigen; AJCC, AmericanJoint Committee on Cancer;
RT, radiation therapy.

survival (OS); and identify genomic features associated with metastasis
to specific organs.

Automatic annotation of free-text notes

To develop algorithms that automatically annotate free-text reports,
we leveraged the Project GENIE Biopharma Collaborative (BPC) data-
set of the American Association for Cancer Research’, a structured
curation of electronic health records including those for patients with
non-small-cell lung (NSCLC), breast, colorectal, prostate and pancre-
atic cancer at four cancer centres using the PRISSMM method”. We
trained and validated NLP transformer models using BPC-curated
annotations derived from specific radiology, histopathology or clini-
cal notes with corresponding records at Memorial Sloan Kettering
Cancer Center (MSK), an academic cancer centre in New York, NY
(MSK-BPC, n =3,202 patients with 38,719 corresponding radiology
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reports; Fig.1a), to annotate features requiring nuanced interpretation
of language such as negation or context: cancer progression, sites of
tumours and the presence of any cancer from the impression section
ofradiology reports; prior outside treatment from clinician initial visit
notes; and hormone receptor and HER2 receptor status from clini-
cian initial visit or follow-up notes. We created additional rule-based
models to annotate features stored in a more structured format (that
is, smoking status from clinician notes, as well as Gleason score, PDL1
(also known as CD274) status and mismatch repair (MMR) deficiency
from histopathology reports).

Transformers were validated using fivefold cross-validation;
rule-based models were created on the basis of annotations from previ-
ously published cohorts*'®'? and validated with MSK-BPC annotations
(Methods section NLP models). All NLP models had an area under the
curve (AUC) of >0.9 and precision and recall of >0.78 when treating
manually curated labels as ground truth, with several models achiev-
ing precision and recall of >0.95 (Fig.1b and Supplementary Table1). A
random sample of instances in which model predictions and curation
labels were discrepant were retrospectively reviewed by clinicians, who
found that many of the original curation labels were incorrect, with the
NLP annotationsinferred correctly (Fig. Iband Supplementary Table1).
More ‘confident’ transformer probability scores (that is, closer to O
or 1) were associated with a greater likelihood of curator error across
radiographic annotation tasks (Supplementary Fig. 1). In annotating
HER2 and hormone receptor status, we observed multiple instances
among discrepant cases that could be explained by complex clinical
situations, highlighting challenges for both human and NLP curation
methods for certain tasks (Supplementary Discussion).

We tested the extent to which NLP model choice affected annotation
quality, evaluating several models. Transformer architectures consist-
ently outperformed logistic regression and feed-forward neural net-
work approaches (Supplementary Fig.2 and Supplementary Table 3).
Model performance was dependent on training sample size and the
number of positive samples per class (Supplementary Figs. 3 and 4
and Supplementary Discussion); tumour site models for reproduc-
tive organs, for example, had worse performance as aresult of fewer
positive examples in training data. Tumour site annotation was also
modestly improved by using a single joint classifier rather than sepa-
rate, individual classifiers (Supplementary Fig. 5). We also compared
the accuracy of NLP-derived annotations for metastatic sites to those
of billing codes for those sites. In a patient-wise analysis, NLP-derived
annotations had better accuracy for metastatic site involvement than
billing codes, with precision and recall improvements ranging from
0.03t0 0.32 (Supplementary Table 3).

We assessed heterogeneity in NLP model performance in specific
individual cancer types. In general, models performed comparably
well across cancer types, except for identification of prior treatment
inNSCLC, for which the precision was 0.78 although the AUC was 0.98
and the recall was 0.92 (Supplementary Table 4).

Totest the extent to which our NLP models generalize to cancer types
absent fromtraining data, we performed hold-one-cancer-out experi-
ments in which NLP models were trained on four out of the five cancer
type cohorts in the MSK-BPC dataset and validated in the held-out
cancer type. In these experiments, models had similar precision and
recall to those in fivefold cross-validation (Supplementary Table 5),
suggesting potential generalizability to out-of-distribution datasets. In
summary, NLP can annotate free-text oncologic notes with anaccuracy
approaching that of manual curation across cancer types.

Assembling MSK-CHORD

To allow for integration of data at scale, we sought to create a single
cohort containing clinical, radiographic, histopathologic, labora-
tory and tumour genomic sequencing data. MSK-CHORD combines
NLP-derived features with institutional demographic, treatment and
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tumour registry data, along with tumour genomic profiling using
MSK-IMPACT, a Food and Drug Administration-authorized, targeted
sequencing assay*° with matched blood sequencing to filter germline
and clonal haematopoiesis variants. MSK-CHORD is at least six times
larger than the underlying BPC training data across NSCLC, breast, colo-
rectal, prostate and pancreatic cancer while containing its core clinical
dataelements (Fig. 1cand Supplementary Table 6). NLP-derived patient
characteristics, such as metastatic site incidence, were similaramong
BPC and MSK-CHORD, suggesting the validity of our NLP approach.
However, as a more modern cohort, MSK-CHORD had more modern
diagnostic and therapeutic characteristics, such as higher rates of PDL1
testing, than BPC (Supplementary Table 7). MSK-CHORD is available
through cBioPortal, allowing for additional visualization and cohort
selection” (Fig.1d).

Discovery of associations in MSK-CHORD

The modest size of many manually curated cohorts often leads to
insufficiently powered analyses, impeding discovery of meaningful
associations. For example, PDL1 expression is a known biomarker of
response toimmunotherapy in NSCLC; however, of patients with NSCLC
in MSK-BPC treated with immunotherapy and PDL1 testing (n =29),
there was equivocal evidence that PDL1 (1% ‘positive’ versus <1% ‘nega-
tive’) was associated with longer OS (hazard ratio 0.58, 95% confidence
interval (CI) 0.11-1.1, P= 0.07). MSK-CHORD showed a similar magni-
tude of benefit, but with 754 patients with NSCLC receiving immuno-
therapy at time of cohort entry with PDL1 testing, statistical power
was greater (hazard ratio 0.64,95% Cl 0.54-0.77, P< 0.001; Fig. 2a).

Genomic alterations may be associated with prior treatment, but
the size of the MSK-BPC cohort precluded discovery of enrichment of
several known post-treatment alterations (Fig. 2b). At the same time,
many patients receive treatment at multiple centres, making analysis
based on prior treatment challenging. Using MSK-CHORD, we found
that, as expected, ESR1, CCNDI and NFI mutations in breast cancer®,
EGFR™°M and MET amplifications in EGFR-mutant NSCLC?®, AR and
TPS3mutationsin prostate cancer?, and clonal haematopoiesis CHEK2,
PPMI1D and TP53 mutations® were enriched in patients exposed to
prior systemic therapy as annotated by NLP (Fig. 2b). As expected,
patients with known, institutionally administered treatments before
sample acquisition also had enrichment in those alterations (Fig. 2b).
Thus, MSK-CHORD’s size enables adequately powered identification
of post-treatment mutations across multiple cancers, and NLP-derived
prior treatmentis animportant complement toinstitutional treatment
records insuch analyses.

Similarly, small studies have suggested a higher incidence of TP53
and PTEN loss and homologous recombination deficiency in patients
with prostate cancer of high Gleason grade®. After multiple-hypothesis
correction, the MSK-BPC was underpowered to discover significant
associations between tumour genomics and Gleason score (Fig. 2c).
InMSK-CHORD, we observed adose-dependent relationship between
NLP-annotated highest Gleason grade and several gene-level alterations
including TP53, PTEN and BRCA2 (Fig. 2¢). Thus, our cohort allows for
validation of proposed genomic-histopathologic associations.

MSK-CHORD’s size also enables analyses of patients with less com-
mon combinations of features. For example, among patients with
stage IV colorectal cancer (CRC), microsatellite instability (MSI) on
genomic sequencing or MMR deficiency (AIMMR) on immunohis-
tochemistry are two highly concordant biomarkers of response to
immunotherapy?. However, some patients have a rare combination
of these factors (that is, either MSI on genomic sequencing and pro-
ficient MMR (pMMR) onimmunohistochemistry, a possible result of
MMR gene mutations®, or dMMR and microsatellite stability (MSS)
ongenomic sequencing). Leveraging MSK-CHORD's size, after exclud-
ing patients with equivocal MSI status, we identified ten patients
with such discrepancies between dMMR and MSl status treated with
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Fig.2|Using MSK-CHORD for adequately powered clinicogenomic analysis.
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breast cancer without prior treatmentin MSK-BPC had ESR1 alterations,

and 0/30 patients with EGFR-mutant (EGFRm) NSCLC without prior treatment
had MET alterations; hence, the odds ratiois infinity for these groups.

¢, Proportion of patients with prostate cancer with the listed gene alterations
(oncogenic by OncoKB) as afunction of Gleason score (NLP-derived) in the
MSK-BPC cohort (n =561) and MSK-CHORD cohort (n = 3,211). Volcano plots
showslope coefficients and two-sided Pvalues from linear regression, with
dotsinred showingrelationships with multiple-hypothesis-corrected
gvalues < false discovery rate 0.05 by Benjamini-Hochberg method, and insets
show proportions of the total cohort for selected genes + binomial 95% CI.
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immunotherapy. Manual review of these cases suggests that these
discrepancies could not be explained by NLP errors or sequencing
artefacts such as low tumour purity (Supplementary Table 8). As
expected, patients with dMMR and MSI had better survival than those
with pMMR and MSS. Patients with discordant MMR and MSI status
had alonger time onimmunotherapy than those with pMMR and MSS
butashorter time onimmunotherapy than those withdMMR and MSI
(Extended Data Fig.1). Together, these results indicate that patients
with discrepant genomic and immunohistochemical results do benefit
fromand should be offeredimmunotherapy, but the absence of either
positive biomarker may have prognostic importance.

Similarly, MSK-CHORD included patients with lung cancer who were
current or former smokers'® but whose tumours lacked smoking muta-
tional signatures®. In these cases, EGFR and KRAS drivers, classically
associated with non-smokers and smokers, respectively*’, were seenin
similar proportions, suggesting that neither genomic nor clinical data
are sufficient on their own to predict tumour biology in these cases
(Extended Data Fig. 2 and Supplementary Discussion).

MSK-CHORD also has important differences compared with previ-
ous large-scale tumour genomic profiling efforts such as The Cancer
Genome Atlas including size, modernity and clinical annotations®
(Supplementary Table 9). These differences allow for discovery of
relationships between, for example, tumour genomic alterations and
OSinlungadenocarcinoma (LUAD) not apparentin The Cancer Genome
Atlas (Extended Data Fig. 3). These results show that NLP-derived fea-
tures in MSK-CHORD have meaningful biologic correlations, although
caution should be taken to ensure that confounders are considered.
For example, in MSK-CHORD, EGFR is associated with better OS in
LUAD, but in multivariate analysis, it was receipt of targeted therapy
thatis associated with better survival, not EGFR mutation statusitself
(see Supplementary Discussion on OS modelling). MSK-CHORD ena-
bles adequately powered discovery of clinicogenomic associations
including those among patients with less common characteristics.

Integrated multimodal models for OS

To study whether models combining the orthogonal dataelementsin
MSK-CHORD improve prediction of cancer outcomes, we constructed
random survival forest (RSF) models to predict OS from time of cohort
entry (thatis, sequencing report date; see the Methods section OS
modelling). We systematically tested the performance of models
trained on related subsets of variables (that is, stage, demographics,
genomic drivers, pathology, tumour markers, treatment and tumour
sites) and compared them with models with access to all variables to
assess the benefit of multimodal integration. We tested these models
using both fivefold internal cross-validation and external validation
on the non-MSK portion of BPC.

As expected, among patients with stage I-1ll disease and no pro-
gression event before cohort entry, most RSFs trained on tumour
stage-related variables (that is, stage at diagnosis and time since diag-
nosis) had prognostic value. The fivefold cross-validation c indices for
tumour stage-related variables ranged from 0.53 (95% CI 0.51-0.55)
for pancreatic cancer to 0.78 (95% C1 0.76-0.80) for breast cancer.
However, in all cancer types, combined multimodal models that used
all variables outperformed those based on tumour stage and prior
progression alone (Fig. 3a and Supplementary Table 10).

Among patients with stage IV disease, models trained only on tumour
site data, an NLP-derived feature, had greater prognostic value than
models based on genomic drivers alone across all cancer types. In pros-
tate, colorectal and pancreatic cancer, tumour markers were the single
modality with the greatest prognostic value; however, in all cancer
types, a full multimodal model had greater prognostic power than
models trained on tumour marker or site data alone (Fig. 3a). Different
specific features were key to multimodal prognostication for different
cancer types, although because of frequent correlation of variables
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across classes, nosingle class of variables emerged as the most neces-
sary for OS predictionacross cancer types (Supplementary Discussion
and Supplementary Figs. 6 and 7).

The performance of full multimodal models varied by cancer type,
ranging from a cindex of 0.58 for stage IV pancreatic cancer to 0.83
for stage I-1ll breast cancer (Fig. 3a). Model performance was gener-
ally consistent in both fivefold internal and external validation, apart
from tumour markers as a single-modality category in colorectal,
pancreatic and breast cancer (Fig. 3b). In these cancer types, because
of sparser tumour marker data among BPC patients relative to those
in MSK-CHORD, fivefold cross-validation showed substantial prog-
nostic value in tumour marker data, but these models achieved lower
performance in the non-MSK BPC validation cohort (Fig. 3b and Sup-
plementary Table 10).

Model architecture and start time selected for OS analysis may influ-
ence model results. We performed sensitivity analyses examining OS
using a variety of different time-to-event machine learning architec-
tures with a start time of diagnosis left-truncated at time of cohort
entry. In these analyses, model performance per cancer type and the
importance of multimodal variables for predicting OS were observed
despite differences in start time and architecture (Supplementary
Discussion and Supplementary Table 11).

Thus, models incorporating multiple data streams including
NLP-derived variables had superior discriminative power for predict-
ing OS. MSK-CHORD can serve as a core dataset to which numerous
other variables might be feasibly added for OS analysis (Extended Data
Fig.4 and Supplementary Discussion). Our results indicate that multi-
modal biomarkers are superior to disease stage for prognostication.
For example, inboth NSCLC and pancreatic cancer, a high-risk subset
of patients with stage I-1ll disease is predicted to have a higher risk of
mortality than alow-risk subset of patients with stage IV disease (Fig.3c
and Extended DataFig. 5). Among patients with stage [IVNSCLCin those
cancer types, thereis adifferenceinsurvival of several years captured
indifferent risk quartiles (Fig. 3c).

Direct application of transformers to radiology report text may
improve prognostication when compared to moreinterpretable models
trained on asmallnumber of annotated variables such as tumour sites
and disease stage. We fine-tuned a transformer pretrained on clinical
text (radLongformer) to predict mortality within 6 months from radi-
ology reports of computed tomography scans of the chest, abdomen
and pelvis (Methods section radLongformer). In all five cancer types,
this model had prognostic power for OS. In stage IV CRC, it had supe-
rior prognostic power to metastatic sites for predicting OS; however,
in no other instances did radLongformer have superior prognostic
power to tumour sites alone in predicting OS (Extended Data Fig. 4b).
Adding risk scores from radLongformer as a variable to our RSFs did
notimprove prognostic power. Our results indicate that for predicting
cancer mortality, aninterpretable model with sufficient variables can
perform comparably to a ‘black box’ neural network model trained
directly on free text.

Multimodal models may improve prediction of OS compared to
traditional models based on a single modality such as stage. By using
aninterpretable, late-fusion® framework, we identify specific classes
of variables, such as metastatic sites, that are an important source of
prognostic information.

Genomic predictors of metastatic sites

Metastasis is the leading cause of cancer mortality, and metastatic
colonization has clinical implications, such as the frequency of sur-
veillance imaging with magnetic resonance imaging for detection
of brain metastases®. However, genomic predictors of metastatic
tropismare poorly understood**’, We used NLP to annotate the pres-
ence or absence of metastatic sites of disease in all 705,241 radiology
reports longitudinally for patients in MSK-CHORD (Methods section
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validation. ‘All’denotes incorporation of all listed modalities into the model.
*P<0.05,unadjusted for multiple hypotheses, by one-sided t-test compared to
nextbest-performing model. For stage IVNSCLC, prostate, CRC, pancreas and
breast cancer, Pvaluesare2 x107,0.0003,0.005,0.003 and 3 x 107, respectively.
Forstagel-llldisease, Pvaluesare 0.003, 0.049,0.008,0.001and 0.002,
respectively. b, Scatter plot comparing mean cindices from fivefold

NLP models). Colonization of specific organs may thus be used as an
endpoint for time-to-event analyses.

We studied time-to-specific organ metastasis from time of tumour
sampling for four specific organsites of disease with clinical relevance
and accurate annotations using NLP: central nervous system (CNS),
bone, liver and lung, adjusting for disease stage, prior treatment
and histologic subtype. The rate at which patients developed radio-
graphic evidence of disease at those sites was similar in the manually
curated BPC versus NLP-derived cohorts (Fig. 4a). We sought to use
MSK-CHORD to study whether oncogenic alterations® in specific genes
were associated with rates of metastasis to those organ sites. We found
several associations between genomic alterations and development of
future organ metastases (Fig. 4b) despite controlling for histologic sub-
type, whichitselfis associated with metastasis to specific organs (Sup-
plementary Fig. 8). Some gene alterations, such as TP53 and CDKN2A
in LUAD, were associated with metastases to all sites. Conversely, RB1
alteration was associated with CNS and liver, but not bone and lung,
metastases in LUAD, hormone-receptor-positive breast and prostate
cancer. Iftumours with RBI alterations are more likely to metastasize to
the brainand liver, tumoursinthose sites may be more likely to harbour
suchalterations. Examination of RB1 alteration prevalence based on site
of disease sequenced revealed enrichment of oncogenic RBI alterations
inbrain and liver metastases (Extended Data Fig. 6).

Aggregating alterations at the pathway* level uncovered further spe-
cificassociations with propensity to metastasize to specific organ sites

b
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among cancer types. TP53 pathway alterations were associated with
higher rates of liver but lower rates of CNS metastasis in pancreatic can-
cer. RTK-RAS pathway alterations in prostate cancer were associated
with higher rates of bone but lower rates of liver metastasis (Extended
Data Fig. 7a). We also investigated the extent to which chromosome
arm-level amplifications or deletions were associated with metastasis
tofuture organsites. In this analysis, arm-level amplifications and dele-
tions were generally associated with multiple sites of metastasis across
cancer types with some notable exceptions (Extended Data Fig. 7b).
CRC with MSS was generally unaffected by these changes except for
1p and1qamplifications and 3p, 11p, 11q and 17p deletions, which were
all prognostic for brain metastases. Prostate cancer arm-level changes
mostly predisposed to brain and liver metastases. Pancreatic cancer
arm-level changes seem to mostly predispose to liver metastases. In
breast cancer,16q and 16p deletions were associated with lower rates
of CNS and lung metastases.

Overall, our analysis confirms several genomic-metastasis site asso-
ciations observed in smaller®**¢ or non-temporal* cohorts but also
identifies new potential genomic changes of prognostic importance
that can be prospectively validated.

SETD2 and immunotherapy in LUAD

0Of 5,957 patients with LUAD, 204 (3%) had SETD2 driver mutations,
and these emerged as predictors of longer OS (Extended Data Fig. 3)
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Fig.4|Analysis of time to metastatic site colonization. a, Time to metastatic
site colonization among patients with LUAD, hormone-receptor-positive breast
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cancer. Cohortsincluded the manually curated BPC and NLP-derived MSK-
CHORD cohorts. b, Hazard ratios (colour), number of patients with alteration
beforesite colonization (size) and statistical significance (Benjamini-Hochberg

and lower rates of CNS metastasis (Fig. 4b). We sought to: corroborate
these findings in independent cohorts; and further study why SETD2
alterations might affect LUAD outcomes using MSK-CHORD. We iden-
tified two non-overlapping cohorts of patients with tumour genomic
sequencing and longitudinal outcomes, one of which also included
annotated metastatic sites of disease' (Methods). In both datasets,
SETD?2 alteration was associated with better OS, and in the dataset in
which CNS metastasis annotations were available, lower rates of CNS
metastasis (Extended Data Fig. 8).

We studied whether SETD2 driver alterations were associated with
specific genomic alterations, histologic subtypes or other features.
SETD?2 alterations were positively associated with BRAF and ARIDIA
alterations and negatively associated with EGFR and MDM2 alterations
and mucinous subtype but not otherwise associated with histologic
subtype, PDL1 or smoking status (Fig. 5a,b and Extended Data Fig. 9).
SETD2mutation was associated with asmall but statistically significant
differencein tumour mutational burden (TMB; Fig. 5¢), consistent with
previous observations¥.

We further examined whether SETD2 mutation was associated with
response to specific antineoplastics. SETD2 mutation was associated
with a longer time to next treatment or death following treatment
with immune checkpoint blockade but not cytotoxic chemotherapy
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false discoveryrate of 0.01, black outline) within MSK-CHORD. Analyses are
adjusted for prior treatment, stage and histologic subtype. Only genes with at
least one significantassociationinatleastone cancer type (Benjamini-Hochberg
g <0.01)areshown. Theinset depicts Kaplan-Meier curves of the cancer type
and metastaticsite highlighted inthe grey rectangle stratified by RBI status.
WT, wild type.

or molecularly targeted therapy (Fig. 5d). The association between
SETD2 mutation and longer immunotherapy response held among
only patients with low TMB (<10 mutations per megabase) and in both
validation cohorts (Fig. 5e). Insummary, leveraging MSK-CHORD’s size
andrich annotations, weidentified SETD2as an uncommon but promis-
ing biomarker ofimmunotherapy response in LUAD not explainable by
other histopathologic, clinical or genomic features. We corroborated
these findings inindependent datasets.

Discussion

RWD may help scientists and clinicians better understand diseases such
as cancer. Storage of RWD in free-text notes and siloed datasets has
previously posed limitations to analysis. The Project GENIE BPC of the
American Association for Cancer Research represents one large-scale
effort to mine RWD by means of manual curation using aninvestment
fromaconsortium of biopharmaceutical companies. Initsinitial years,
the BPC has produced cancer cohorts with data from 2,004 patients
with NSCLC™ and 1,551 patients with CRC published untilnow. We have
leveraged these along with recent advances in NLP, tissue genomic
sequencing and health record digitization to create arichly annotated
dataset including RWD from patients with multiple cancer types that
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ismany times larger than the original BPC, which enabled the findings
shown here. We present this cohort as acommunity resource to aid in
discovery of clinicogenomic relationships.

The NLPtoolsto extract datacanbeupdatedinreal time, with mini-
mal cost relative to that of manual curation. Validation experiments
of NLP models in held-out cancer types suggest that our NLP tools
generalize across solid tumours.

The prognostic models demonstrate the importance of richannota-
tion for predicting OS in most situations. For patients with stage I-III
NSCLC, CRC and pancreatic cancer, models trained on single classes
of data, including American Joint Committee on Cancer stage, which
dictates many adjuvant therapy decisions®, had worse performance
thanthose trained onall classes of data. NLP-derived features, particu-
larly tumour sites, emerged as important for predicting outcomes.
Our results also highlight the challenges in predicting OS in diseases
such as pancreatic cancer. Future studies will explore whether other
modalities, such asliquid biopsy and laboratory data®, further improve
outcome prediction.

ranges with +95th percentile whiskers. Fora-c,n =199 SETD2 mutant cases and
n=5,766wild-type cases.d, OS from time of tumour sequencing and time to
nexttreatmentor death by treatment. Groups compared with Cox proportional
hazards. e, Hazard ratios (mean + 95% CI) for time to next treatment or

death for patients with TMB < 10 mutations per megabase treated with
immunotherapy based on SETD2status. Left dashed line, hazard ratio for all
cohortsinmeta-analysis. Right dashed line, hazard ratio of 1.0.

We explored the utility of neural networks applied to notes to pre-
dict outcomes, but neural networks may also be applied directly to
images®. Further work comparing interpretable ‘late fusion’ models
such asthose explored here to ‘early fusion’ models trained jointly on
higher-dimensional datasuch asimages would elucidate the extent to
which the raw data contain prognostic information not encapsulated
by the features present here.

Our study has limitations. Although we attempted to circumvent
immortality bias using left truncation and controlling for progression
and tumour sites at the start date of cohortentry, cohortentry (thatis,
genomic sequencing) is not random and disproportionately represents
patients with advanced disease or recent progression, which may affect
thegeneralizability of our prognostic models*°. As with any real-world
dataset, there are potential confounders not directly reported here.
Comorbidities and symptoms are two patient features often crucial
to clinical decision-making that have animpact on outcomes but are
not captured in either the BPC or MSK-CHORD. Future iterations of
MSK-CHORD will include these and other data elements. Our cohort
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consists predominantly of patients from a catchment based on New
York and New Jersey. Although the size of our patient base with tumour
sequencing has previously enabled findings in populations of diverse
backgrounds**? careful future work involving multiple centresand a
more diverse patient population is required to disentangle socioeco-
nomic, demographic and geographic effects on outcome models pre-
sented here. Whole-genome and RNA sequencing, as well as single-cell
studiesincorporating the tumour microenvironment*, are necessary to
derive mechanistic insights into the process of metastatic colonization.

NLP combined with results from tissue genomic sequencing, tumour
registry and other siloed datasources canempower RWD analysis. Our
results highlight theimportance of multiple data streamsin predicting
outcomes. Itis our hope that MSK-CHORD will fuel further research into
real-world genotype-phenotype relationships in cancer.
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Methods

Patients

This study primarily analysed data for patients with tumour genomic
sequencing and completed tumour registry entries from two par-
tially overlapping sources: patients with MSK-IMPACT sequencing
(forming the basis of MSK-CHORD) and the Project GENIE BPC cohort
of the American Association for Cancer Research, which includes
patients with tumour genomic profiling and clinical annotation from
four institutions including MSK. Details regarding the BPC have been
published previously’. Here we included patients in the BPC with
single-primary NSCLC, breast, colorectal, prostate or pancreatic can-
cer.The MSK-CHORD cohort comprises patients at MSK, an academic
cancer hospital with tumour genomic sequencing using MSK-IMPACT,
aFood and Drug Administration-authorized tumour genomic profil-
ing assay, which uses matched white blood cell sequencing to filter
clonal haematopoiesis and germline variants. All MSK patients were
enrolled as part of a prospective sequencing protocol (NCT01775072)
oranalysed as part of institutional review board (IRB)-approved retro-
spective research protocols (MSKIRB protocols 16-1463 and 19-368).
The study was independently approved by the IRBs of MSK and DFCI.
Patients provided written, informed consent and were enrolled ina
continuous, non-random fashion. Data here are from a 9 September
2023 snapshot.

Genomic annotation

For all analyses involving tumour genomic alterations aggregated at
the genelevel, aFood and Drug Administration-recognized molecular
knowledge database (OncoKB**) was used to annotate all mutations,
copy number changes and structural variations as oncogenic or not;
any such oncogenic alteration led to a gene being labelled positive
for the purposes of analysis. For OS modelling in which non-MSK
BPC patients were used as an external validation cohort, only genes
present in all sequencing panels across the BPC were used as vari-
ables. For other genomic analyses, the 341 genes included in the first
MSK-IMPACT sequencing panel? were used as variables. The presence
or absence of genomic gains and losses of each chromosome arm
were identified from MSK-IMPACT data. Genomic coordinates for the
chromosome armsin the GRCh37 (also known as hg19) human genome
assembly were considered gained or lost if most of the arm (>50%) is
made up of segments with an absolute value log ratio of >0.2 (ref. 44).

NLP models

Radiology reports. Data preprocessing. Radiology reports for com-
puted tomography (CT), positron emission tomography and magnetic
resonanceimagingexaminations of chest,abdomen, pelvis, head and/or
extremities were queried for all patients within the MSK-CHORD cohort.
Report sections were segmented using regular expression to separate
the ‘impression’ section from the full report, for cases in which it was
available. The pieces of impression text corresponding to the manu-
ally curated MSK-BPC labels for presence of cancer, tumour sites and
cancer progression were merged to create a direct mapping of label
and text that the labels were derived from.

Radiographic progression. We fine-tuned a RoBERTa transformer
model® on impression sections extracted from radiology reports
paired with binarized human-curated progression labels. Labels were
binarized by calling the two GENIE BPC label classes ‘Progressing/
Worsening/Enlarging’ and ‘Mixed’ as positive, and calling other classes
(‘Improving/Responding’, ‘Stable/No change’ and ‘Not stated/Indeter-
minate’) as negative.

Binarized supervision labels were provided at the document level
(that is, the model was trained to predict a single binary variable for
a given impression section). We used the PyTorch* implementation
of ROBERTa and pretrained model weights from the HuggingFace
library and model hub*’. Text was tokenized with the default RoBERTa

tokenizer and report-level predictions are pooled using the default
method of conditioning on the first [CLS] pseudo-token prepended
to the sequence comprising the impression section. We used a batch
size of 128, fine-tuning with the AdamW optimizer*® using a learning
rate of 2 x 107%, and fine-tuning for 20 epochs with a linearly decaying
learning-rate scheduler with a2-epoch warm-up period. Hyperparam-
eter values were selected through a random search using a holdout
validation set of 20% of reports across learning rate values {1 x 107,
2x107%,5x107%,1x107%, batch size values {8, 16, 32, 64,128, 256} and
num-epochs {5,10, 20, 50}. Extrinsic results (thatis, main resultsincor-
porating model predictions) were presented on models trained on the
full MSK-BPC cohort.

Tumour sites. We fine-tuned a ClinicalBERT model*, which is itself a
BioBERT model* fine-tuned on reports from the MIMIC-11l v1.4 data-
base®. We extracted impression sections from radiology reports and
paired them with report-level supervision from the GENIE BPC data-
set. Labels were transformed into ten binary variables corresponding
to aclosed inventory of nine common disease sites (adrenal gland,
bone, CNS or brain, intra-abdominal, liver, lung, lymph nodes, pleura
and reproductive organs), along with one ‘other’ variable, describing
whether the report is labelled as indicating tumour presence in that
organsite.

The model was trained in a multi-labelling setup: pooled transformer
output was input to a single-layer fully connected feed-forward net-
work of width dwithatanh nonlinearity, whose output is linearly trans-
formed to aten-dimensional vector giving ten logits, from which binary
cross-entropy losses were computed against the gold-standard labels
and mean-pooled. In other words, the network computes

f(x) =0 (V(tanh(Wp(x))))

inwhich xis the tokenized document, @(x) is the pooled transformer
output vector, Wis a learned affine transformation outputting a
d-dimensional vector, tanhis applied element-wise, Vis alearned aff-
ine transformation mapping d-dimensional vectors to ten-dimensional
vectors, and o is a plain element-wise sigmoid function; f(x) is
a ten-dimensional vector of values between 0 and 1. Note that the
different per-site predictions are non-mutually-exclusive and are
conditionally independent given the post-pool d-dimensional hidden
state.

The ClinicalBERT model wasimplemented in PyTorch*¢; we used the
model and pretrained model weights in the HuggingFace library and
model hub*’. We pooled transformer model output using the default
method of conditioning on the first [CLS] pseudo-token prepended
to the sequence comprising the impression section. We trained using
AdamW* trained using a batch size of 8, alearning rate of 2x 107, a
dropout probability of 0.2 (applied to the post-pool single-hidden-layer
feed-forward network) and a pre-logit hidden dimension of 1,024, train-
ingfor15epochs withawarm-up period of 1.5 epochs. Extrinsic results
(thatis, main resultsincorporating model predictions) were presented
onmodels trained on the full MSK-BPC cohort.

Cancer presence. We fine-tuned a BERT* base model (uncased)*?
onimpression sections extracted fromradiology reports paired with
binarized human-curated cancer evidence labels. Labels were binarized
by calling the MSK-BPC label class1as ‘yes’ for presence of cancer and
calling label class 0 as ‘no’ for absence of cancer. Binarized supervi-
sion labels were provided at the document level (that is, the model
was trained to predict a single binary variable for a given impression
section). BERT models were trained as described for tumour sites. Text
was tokenized with the default HuggingFace AutoTokenizer for BERT,
and report-level predictions were pooled using the default method
of conditioning on the first [CLS] pseudo-token prepended to the
sequence comprising the impression section. We used a batch size of
32 and fine-tuned for amaximum of 10 epochs. We trained the models
using the AdamW optimizer*® using alearning rate of 1 x 1075, epsilon of
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1x107%, weight decay of 1 x 10™* and no warm-up period. During train-
ing, model weights were optimized to minimize cross-entropy loss.

Clinician notes. Data preprocessing. Clinician notes for patients were
queried and filtered by initial consult (IC) and follow-up notes created
by medical oncologists, radiation oncologists, surgery, inpatient ser-
vices and others. Notes in the institutional database are segmented
into subsections including family history, present illness, comorbidi-
ties and so on. Further filtering or combining of note subsections was
dependentonthe application. Forinferring prior outside medications,
IC notes werefiltered and included sections relevant to external treat-
ments, suchas past medical history, history of presentillness and chief
complaint, while excluding sections mentioning future treatment
plans. Patients with no IC notes in the allowable note categories were
excluded from the training and validation set. We excluded patients
with IC notes dated more than 90 days after their initial visit date. We
selected one note per patient to analyse. If a patient had multiple notes,
the IC note with the earliest creation time was used. Preprocessing
for inference of HER2 and hormone receptor consisted of filtering
notes created by the breast medicine division, for which entire ICand
follow-up notes were used as the input to the model.

Prior external treatment. The other transformer-based models pre-
sented above operate on impression sections that are generally
very short and therefore do not see appreciably degraded marginal
performance from truncating documents to the maximum model
input sequence size of 512 subtokens. This relatively short input limit
is necessary for the full-self-attention parameterizations used by
these models, which require memory scaling quadratically in input
sequence length. However, full IC reports are appreciably longer than
impression sections, and any mention of prior anti-neoplastic treat-
ments occurs withina much longer textual context. We therefore use a
transformer model engineered to have subquadratic memory require-
ments; in particular, we fine-tune a Clinical-Longformer model**,
whichisitselfa Longformer model® fine-tuned on the MIMIC-111 v1.4
database’. This model has amaximum input sequence length of 4,096
subtokens.

The Clinical-Longformer model isimplemented in Py Torch*®; we use
the model and pretrained model weights in the HuggingFace library
and model hub*’. We pool transformer model output using the default
method of conditioning on the first [CLS] pseudo-token prepended to
the sequence comprising the impression section. We train AdamwW*®
using a batch size of 64 and a learning rate of 1 x 107%, training for 20
epochswithawarm-up period of 2 epochs. We upsample minority-class
examples uniformly with replacement to achieve class balance during
training. Extrinsic results (that is, main results incorporating model
predictions) are presented on models trained on the MSK-BPC cohort.
HER2 and hormone receptor. As HER2 and hormone receptor can be
heterogeneous across pathology samples, we sought to create a clas-
sifier based on clinician notes to identify the overall receptor subtypes
for a patient’s cancer used to inform treatment. For training, we used
clinician notes from a cohort of 6,053 patients with single-primary
breast cancer with manually annotated HER2 and hormone receptor
subtypes to train separate HER2 and hormone receptor binary clas-
sifiers. We performed training and testing within this cohort with a
90/10 split. Specifically, the clinician note chronologically closest to
sequencing was used as features and the expert-annotated subtypes
astargets. For final validation, we used a held-out set 0f 1,489 patients
from a previously published breast cancer dataset?. As with the prior
treatment model, we used Clinical-Longformer models for both HER2
and hormone receptor classifiers using a 2,000-subtoken input, pad-
ded as necessary. We used the AdamW optimizer with a batch size
of 64 and a learning rate of 1 x 107, training for 30 epochs without a
warm-up period.

Smoking status. Smoking status (former or current versus never) was
obtained from dedicated smoking or social history sections through

regular expression extraction applied to the first available clinician
assessment for agiven patient. The algorithm was created on the basis
ofapreviously published cohort of 247 patients with NSCLC and previ-
ously annotated smoking status, withholding data from patients also
presentinthe MSK-BPC NSCLC cohort. The model was validated on the
basis of the MSK BPC NSCLC cohort.

Pathology reports. PDL1.PDL1status (positive defined as 1% or higher
versus negative) was obtained through regular expression extraction
applied to the first available clinician assessment for a given patient.
Thealgorithm was created on the basis of a previously published cohort
of 247 patients with NSCLC and previously annotated smoking status™,
withholding data from patients also present in the MSK BPC NSCLC
cohort. The model was validated on the basis of the MSK BPC NSCLC
cohort.

Gleason score. Gleason score (6-10) was obtained through regular
expression extraction applied to pathology reports from either pros-
tatic biopsies or resections. The algorithm was created on the basis of
iterative fine-tuning on a previously published cohort of 451 patients
with prostate cancer and previously annotated Gleason score®, with-
holding data from patients also presentin the MSK BPC Prostate cohort.
The model was validated on the basis of the MSK BPC Prostate cohort.
MMR. Mismatch status (proficient versus deficient) was obtained
through regular expression extraction applied to histopathology
reports. The algorithm was created on the basis of a previously pub-
lished cohort of 224 patients with CRC and previously annotated MMR
status®, withholding data from patients also present in the MSK CRC
cohort. The model was validated on the basis of the MSK BPC CRC
cohort.

Billing code annotation metrics. We sought to assess the accuracy of
structured data elements (thatis, billing codes'?) to recover tumour site
information and to compare this accuracy with that of our NLP algo-
rithms. As the timing of billing codes is not necessarily tied to particular
radiology reports, we aggregated labels at the patient level, wherein
cancer detectioninagiventumour site atany pointin the patient’s his-
tory was considered positive overall for that site. Patient-level billing
code labels and, separately, NLP labels (from radiology impressions
as above) were compared to gold-standard curated BPC labels, all
aggregated at the patient level. The patient-level accuracies for these
annotations are provided in Supplementary Table 2.

0S modelling. RSFs* to predict time to death from time of cohort
entry, right-censored at time of last follow-up, were trained using
pre-assigned hyperparameters (n trees =1,000, minimum n splits =10,
minimumnsamples per leaf =15). In exploratory secondary analyses, a
random hyperparameter grid search to find ‘optimal” hyperparameters
using a20% holdout for evaluation was conducted (n tree range 200~
2,000, minimum nnsplitsrange 5-20, minimum nsamples per leaf range
5-30, nsearchiterations =100, threefold internal cross-validation
for hyperparameter selection); a model trained on optimal hyperpa-
rameters did not yield better results (c-index ‘improvement’ of -0.01
using optimal versus pre-assigned hyperparameters). We included all
variablesinSupplementary Table 6, grouped according to the schema
inthattable.

To predict time to death while accounting for left truncation and
right censoring, we used the OncoCast package (https://github.com/
AxelitoMartin/OncoCast) updated from previous work**® with the
RF (Random Forest) method. In brief, this method fits an elastic
net-regularized Cox proportional hazards model to the data, and
then applies arandom forest to estimate the Martingale residuals;
this correction termis applied when the model is tested on new data.
We created anensemble learning model through cross-validation or by
training on the whole MSK-CHORD dataset and validating the model on
the non-MSK BPC dataset as for the RSF model. The OncoCast model,
configured with 500 trees, 5 terminal nodes and 50 runs, was fitted to
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the training set. Predictions of risk for the test set were made across
alliterations. Model performance was assessed using the concordance
probability index at each iteration.

radLongformer. We fine-tuned a Clinical-Longformer** model to take
asinput the full text of CT chest, abdomen and pelvis (CAP) reports and
predict binarized OS within 6 months, a clinically meaningful endpoint
andatime frameinwhich asingle radiology report might meaningfully
prognosticate. We split all cohorts into training and test sets at the
patientlevel, reserving 20% of the cohort or all patients with a CT CAP
within3 months of cohort entry for testing, whichever was smaller. In
the training set, all CT CAP reports from all patients were annotated
according to survival status within 6 months; those with insufficient
follow-up were excluded. The Clinical-Longformer was fine-tuned in
this dataset using abatchsize of 64 and alearning rate of 1x 10°%, train-
ing for 20 epochs with awarm-up period of two epochs.

Time to metastasis. The association of genomic alterations with time
to metastasis was analysed using Cox proportional hazards models.
Death was treated as a censoring event. Patients with metastasistoa
givensite of interest before the start time (time of sample acquisition;
thatis, the earliest time a given alteration could be confirmed for agiven
tumour) were excluded fromanalysis. Prior treatment (any versus none)
andstage (I-1llversus IV) were included as variables inall multivariable
analyses. Histologic subtype wasincluded as a variable where indicated.

SETD2 validation cohorts. We utilized two validation cohorts of
patients with LUAD and tumour genomic profiling: patients at DFCI;
and patients in a commercial real-world dataset. Details of the DFCI
cohort have been published previously". In the commercial dataset,
formalin-fixed paraffin-embedded samples from patients with NSCLC
were submitted to a commercial Clinical Laboratory Improvement
Amendments-certified laboratory for molecular profiling (Caris Life
Sciences, Phoenix, AZ). Any patient with Caris tumour molecular pro-
filing was eligible for inclusion; patient sources include a variety of
community and academic settings, and patients were non-overlapping
with those in MSK-CHORD. A total of 29,422 NSCLCs with adenocarci-
noma histology were analysed by next-generation sequencing, 592
targeted panel or whole-exome sequencing for genomic features.
Before molecular testing, tumour enrichment was achieved by col-
lecting targeted tissue using manual microdissection techniques.
For NextSeq-sequenced tumours, a custom-designed SureSelect
XT assay was used to enrich 592 whole-gene targets (Agilent Tech-
nologies, Santa Clara, CA). For NovaSeq whole-exome-sequenced
tumours, a hybrid pull-down panel of baits designed to enrich for
more than 700 clinically relevant genes at high coverage and high
read depth was used, along with another panel designed to enrich
for an additional >20,000 genes at a lower depth. A 500-megabase
single-nucleotide polymorphism backbone panel (Agilent Technolo-
gies, Santa Clara, CA) was added to assist with gene amplification and
deletion measurements and other analyses. All variants were detected
with >99% confidence, with an average sequencing depth of coverage
of >500 and an analytic sensitivity of 5%. This test has a sensitivity
to detect as low as approximately 10% population of cells contain-
ing amutation in all exons from the high-read-depth clinical genes
and 99% of all exons in the 20,000 whole-exome regions. Genetic
variants identified were interpreted by board-certified molecular
geneticists and categorized according to the American College
of Medical Genetics and Genomics standards. Real-world OS was
obtained from insurance claims data and calculated from time of
biopsy tolast contact.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

MSK-CHORD is available under the Creative Commons BY-NC-ND 4.0
licence and can be accessed on cBioPortal (https://www.cbioportal.org/
study/summary?id=msk_chord_2024). Data from the GENIE BPC can
be accessed on cBioPortal (https://genie.cbioportal.org/), with addi-
tional data available as previously described" and further instructions
here: https://www.aacr.org/professionals/research/aacr-project-genie/
aacr-project-genie-data/. For questions regarding access to Caris vali-
dation data contact jxiu@carisls.com.

Code availability

Allcodeto performthe analyses presented hereis available at GitHub
(https://github.com/clinical-data-mining).
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Extended DataFig. 8| Metastatic potential of SETD2 mutant lung
adenocarcinoma across multiple datasets. Hazard ratios +/-95%Cl from Cox
proportional hazards models as described in Methods. Combined hazard
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