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Automated real-world data integration 
improves cancer outcome prediction
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The digitization of health records and growing availability of tumour DNA sequencing 
provide an opportunity to study the determinants of cancer outcomes with 
unprecedented richness. Patient data are often stored in unstructured text and siloed 
datasets. Here we combine natural language processing annotations1,2 with structured 
medication, patient-reported demographic, tumour registry and tumour genomic 
data from 24,950 patients at Memorial Sloan Kettering Cancer Center to generate  
a clinicogenomic, harmonized oncologic real-world dataset (MSK-CHORD). 
MSK-CHORD includes data for non-small-cell lung (n = 7,809), breast (n = 5,368), 
colorectal (n = 5,543), prostate (n = 3,211) and pancreatic (n = 3,109) cancers and 
enables discovery of clinicogenomic relationships not apparent in smaller datasets. 
Leveraging MSK-CHORD to train machine learning models to predict overall survival, 
we find that models including features derived from natural language processing, 
such as sites of disease, outperform those based on genomic data or stage alone as 
tested by cross-validation and an external, multi-institution dataset. By annotating 
705,241 radiology reports, MSK-CHORD also uncovers predictors of metastasis to 
specific organ sites, including a relationship between SETD2 mutation and lower 
metastatic potential in immunotherapy-treated lung adenocarcinoma corroborated 
in independent datasets. We demonstrate the feasibility of automated annotation 
from unstructured notes and its utility in predicting patient outcomes. The resulting 
data are provided as a public resource for real-world oncologic research.

The ubiquity of electronic health records offers a largely untapped 
data substrate for translational medicine. Although abstraction of key 
elements from free-text patient visit, radiology, histopathology and 
procedural notes has traditionally limited analysis, natural language 
processing (NLP) now allows for automatic annotation of such fea-
tures1,2. Massive, context-aware transformer architectures3, including 
those pretrained on health records4,5, have reshaped the NLP landscape 
and have shown promise at a number of medical tasks including predict-
ing hospital readmission4 and providing medical advice6. In oncology, 
immunohistochemistry7 and clinical tumour sequencing8,9 are standard 

of care for many patients because of their potential to guide therapy. 
Combining real-world data (RWD) has enormous potential to aid in 
prediction of tumour trajectories.

The separation of hospital, academic and commercial entities 
responsible for genomic sequencing, radiology, histopathology and 
electronic health record data is a hurdle to integrative analysis10. Sev-
eral studies have begun to overcome these silos (for example, through 
the integration of tumour sequencing with treatment data to uncover 
genomic modifiers of response11, or the integration of billing codes to 
uncover mutations associated with specific organ sites of metastasis12). 
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Models incorporating more detailed clinical, genomic, radiomic and 
histopathologic data13 have shown promise in better risk stratification 
(for example, following immunotherapy14,15), although these efforts 
frequently rely on and are limited by manual extraction of key data 
elements and are studied in cohorts of modest size.

In this study, we used a large, integrated dataset to develop improved 
models of cancer outcome. Specifically, we sought to overcome bot-
tlenecks of manual extraction for RWD by developing methods to 
automatically annotate free-text clinician notes as well as radiology 
and histopathology reports, and then to combine these annotations 
with structured treatment, survival, tumour registry, demographic 
and tumour genomic data to create MSK-CHORD; test whether 
MSK-CHORD can uncover clinicogenomic associations not apparent 
in smaller datasets; study whether integrated, multimodal models 
would outperform traditional single-modality models, including 
American Joint Committee on Cancer stage, at predicting overall  

survival (OS); and identify genomic features associated with metastasis 
to specific organs.

Automatic annotation of free-text notes
To develop algorithms that automatically annotate free-text reports, 
we leveraged the Project GENIE Biopharma Collaborative (BPC) data-
set of the American Association for Cancer Research16, a structured 
curation of electronic health records including those for patients with 
non-small-cell lung (NSCLC), breast, colorectal, prostate and pancre-
atic cancer at four cancer centres using the PRISSMM method17. We 
trained and validated NLP transformer models using BPC-curated 
annotations derived from specific radiology, histopathology or clini-
cal notes with corresponding records at Memorial Sloan Kettering 
Cancer Center (MSK), an academic cancer centre in New York, NY 
(MSK-BPC, n = 3,202 patients with 38,719 corresponding radiology 
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Fig. 1 | Study overview. a, Creating MSK-CHORD. p, probability; DFCI, Dana 
Farber Cancer Institute; UHN, University Health Network; VICC, Vanderbilt- 
Ingram Cancer Center. b, NLP model library performance assessed by either 
cross-validation or held-out validation in the MSK-BPC cohort (Methods). 
Source text includes radiology impressions (R), medical oncology notes (M) or 
histopathology reports (P). Randomly selected false positive (FP) and false 
negative (FN) cases were independently reviewed to audit reasons for model 
failure; in several cases (purple), the original curation labels were incorrect. 
Raw numbers are given in Supplementary Table 1. NA, not applicable; that is,  
an independent curator determined that the source document did not actually 
contain sufficient information to determine the status of the variable in question. 
c, MSK-CHORD characteristics overview. Age box plots show median, quartiles 
and ±95th percentile. Bar charts show proportion of patients with a given 
feature. Genomic alterations include only those annotated as oncogenic by 

OncoKB and were derived from tumour biopsy sequencing by MSK-IMPACT. 
Age, sex (male reference) and survival outcomes were derived from structured 
data. Kaplan–Meier survival curves for the individual cohorts are shown with 
median survival denoted by a red hash mark. Bar charts represent the percentage 
of patients with a given characteristic at time of cohort entry. Additional 
characteristics in MSK-CHORD such as tumour stage, specific institutional 
treatments and tumour markers are not shown. d, Visualizing patient-level data 
in cBioPortal, in this case a patient (P-0050196) with prostate adenocarcinoma 
who was treated with definitive radiation for stage III disease, and then developed 
metastatic recurrence in the lung and received treatment with multiple lines of 
therapy including pembrolizumab for MSI found on MSK-IMPACT. m, months; 
PSA, prostate-specific antigen; AJCC, American Joint Committee on Cancer; 
RT, radiation therapy.
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reports; Fig. 1a), to annotate features requiring nuanced interpretation 
of language such as negation or context: cancer progression, sites of 
tumours and the presence of any cancer from the impression section 
of radiology reports; prior outside treatment from clinician initial visit 
notes; and hormone receptor and HER2 receptor status from clini-
cian initial visit or follow-up notes. We created additional rule-based 
models to annotate features stored in a more structured format (that 
is, smoking status from clinician notes, as well as Gleason score, PDL1 
(also known as CD274) status and mismatch repair (MMR) deficiency 
from histopathology reports).

Transformers were validated using fivefold cross-validation; 
rule-based models were created on the basis of annotations from previ-
ously published cohorts14,18,19 and validated with MSK-BPC annotations 
(Methods section NLP models). All NLP models had an area under the 
curve (AUC) of >0.9 and precision and recall of >0.78 when treating 
manually curated labels as ground truth, with several models achiev-
ing precision and recall of >0.95 (Fig. 1b and Supplementary Table 1). A 
random sample of instances in which model predictions and curation 
labels were discrepant were retrospectively reviewed by clinicians, who 
found that many of the original curation labels were incorrect, with the 
NLP annotations inferred correctly (Fig. 1b and Supplementary Table 1). 
More ‘confident’ transformer probability scores (that is, closer to 0 
or 1) were associated with a greater likelihood of curator error across 
radiographic annotation tasks (Supplementary Fig. 1). In annotating 
HER2 and hormone receptor status, we observed multiple instances 
among discrepant cases that could be explained by complex clinical 
situations, highlighting challenges for both human and NLP curation 
methods for certain tasks (Supplementary Discussion).

We tested the extent to which NLP model choice affected annotation 
quality, evaluating several models. Transformer architectures consist-
ently outperformed logistic regression and feed-forward neural net-
work approaches (Supplementary Fig. 2 and Supplementary Table 3). 
Model performance was dependent on training sample size and the 
number of positive samples per class (Supplementary Figs. 3 and 4 
and Supplementary Discussion); tumour site models for reproduc-
tive organs, for example, had worse performance as a result of fewer 
positive examples in training data. Tumour site annotation was also 
modestly improved by using a single joint classifier rather than sepa-
rate, individual classifiers (Supplementary Fig. 5). We also compared 
the accuracy of NLP-derived annotations for metastatic sites to those 
of billing codes for those sites. In a patient-wise analysis, NLP-derived 
annotations had better accuracy for metastatic site involvement than 
billing codes, with precision and recall improvements ranging from 
0.03 to 0.32 (Supplementary Table 3).

We assessed heterogeneity in NLP model performance in specific 
individual cancer types. In general, models performed comparably 
well across cancer types, except for identification of prior treatment 
in NSCLC, for which the precision was 0.78 although the AUC was 0.98 
and the recall was 0.92 (Supplementary Table 4).

To test the extent to which our NLP models generalize to cancer types 
absent from training data, we performed hold-one-cancer-out experi-
ments in which NLP models were trained on four out of the five cancer 
type cohorts in the MSK-BPC dataset and validated in the held-out 
cancer type. In these experiments, models had similar precision and 
recall to those in fivefold cross-validation (Supplementary Table 5), 
suggesting potential generalizability to out-of-distribution datasets. In 
summary, NLP can annotate free-text oncologic notes with an accuracy 
approaching that of manual curation across cancer types.

Assembling MSK-CHORD
To allow for integration of data at scale, we sought to create a single 
cohort containing clinical, radiographic, histopathologic, labora-
tory and tumour genomic sequencing data. MSK-CHORD combines 
NLP-derived features with institutional demographic, treatment and 

tumour registry data, along with tumour genomic profiling using 
MSK-IMPACT, a Food and Drug Administration-authorized, targeted 
sequencing assay20 with matched blood sequencing to filter germline 
and clonal haematopoiesis variants. MSK-CHORD is at least six times 
larger than the underlying BPC training data across NSCLC, breast, colo-
rectal, prostate and pancreatic cancer while containing its core clinical 
data elements (Fig. 1c and Supplementary Table 6). NLP-derived patient 
characteristics, such as metastatic site incidence, were similar among 
BPC and MSK-CHORD, suggesting the validity of our NLP approach. 
However, as a more modern cohort, MSK-CHORD had more modern 
diagnostic and therapeutic characteristics, such as higher rates of PDL1 
testing, than BPC (Supplementary Table 7). MSK-CHORD is available 
through cBioPortal, allowing for additional visualization and cohort 
selection21 (Fig. 1d).

Discovery of associations in MSK-CHORD
The modest size of many manually curated cohorts often leads to 
insufficiently powered analyses, impeding discovery of meaningful 
associations. For example, PDL1 expression is a known biomarker of 
response to immunotherapy in NSCLC; however, of patients with NSCLC 
in MSK-BPC treated with immunotherapy and PDL1 testing (n = 29), 
there was equivocal evidence that PDL1 (≥1% ‘positive’ versus <1% ‘nega-
tive’) was associated with longer OS (hazard ratio 0.58, 95% confidence 
interval (CI) 0.11–1.1, P = 0.07). MSK-CHORD showed a similar magni-
tude of benefit, but with 754 patients with NSCLC receiving immuno-
therapy at time of cohort entry with PDL1 testing, statistical power 
was greater (hazard ratio 0.64, 95% CI 0.54–0.77, P < 0.001; Fig. 2a).

Genomic alterations may be associated with prior treatment, but 
the size of the MSK-BPC cohort precluded discovery of enrichment of 
several known post-treatment alterations (Fig. 2b). At the same time, 
many patients receive treatment at multiple centres, making analysis 
based on prior treatment challenging. Using MSK-CHORD, we found 
that, as expected, ESR1, CCND1 and NF1 mutations in breast cancer22, 
EGFRT790M and MET amplifications in EGFR-mutant NSCLC23, AR and 
TP53 mutations in prostate cancer24, and clonal haematopoiesis CHEK2, 
PPM1D and TP53 mutations25 were enriched in patients exposed to 
prior systemic therapy as annotated by NLP (Fig. 2b). As expected, 
patients with known, institutionally administered treatments before 
sample acquisition also had enrichment in those alterations (Fig. 2b). 
Thus, MSK-CHORD’s size enables adequately powered identification 
of post-treatment mutations across multiple cancers, and NLP-derived 
prior treatment is an important complement to institutional treatment 
records in such analyses.

Similarly, small studies have suggested a higher incidence of TP53 
and PTEN loss and homologous recombination deficiency in patients 
with prostate cancer of high Gleason grade26. After multiple-hypothesis 
correction, the MSK-BPC was underpowered to discover significant 
associations between tumour genomics and Gleason score (Fig. 2c). 
In MSK-CHORD, we observed a dose-dependent relationship between 
NLP-annotated highest Gleason grade and several gene-level alterations 
including TP53, PTEN and BRCA2 (Fig. 2c). Thus, our cohort allows for 
validation of proposed genomic–histopathologic associations.

MSK-CHORD’s size also enables analyses of patients with less com-
mon combinations of features. For example, among patients with 
stage IV colorectal cancer (CRC), microsatellite instability (MSI) on 
genomic sequencing or MMR deficiency (dMMR) on immunohis-
tochemistry are two highly concordant biomarkers of response to 
immunotherapy27. However, some patients have a rare combination 
of these factors (that is, either MSI on genomic sequencing and pro-
ficient MMR (pMMR) on immunohistochemistry, a possible result of 
MMR gene mutations28, or dMMR and microsatellite stability (MSS) 
on genomic sequencing). Leveraging MSK-CHORD’s size, after exclud-
ing patients with equivocal MSI status, we identified ten patients 
with such discrepancies between dMMR and MSI status treated with 
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Fig. 2 | Using MSK-CHORD for adequately powered clinicogenomic analysis. 
a, Kaplan–Meier curves depicting OS and hazard ratios for patients with NSCLC 
treated with immune checkpoint blockade at time of cohort entry to time of 
death, stratified by PDL1 status in the MSK-BPC cohort and MSK-CHORD cohort. 
b, Left: odds ratios ± 95% CI for known post-treatment alterations in the smaller, 
manually curated MSK-BPC cohort. Right: odds ratios ± 95% CI for known post- 
treatment alterations in the MSK-CHORD cohort, stratified by NLP-identified 
or institutionally given prior treatment (tx) or both. inst., institutional. Clonal 
haematopoiesis (CH) analyses are performed using a subset of MSK-CHORD 
with previously published clonal haematopoiesis calls25. *0/34 patients with 

breast cancer without prior treatment in MSK-BPC had ESR1 alterations,  
and 0/30 patients with EGFR-mutant (EGFRm) NSCLC without prior treatment 
had MET alterations; hence, the odds ratio is infinity for these groups.  
c, Proportion of patients with prostate cancer with the listed gene alterations 
(oncogenic by OncoKB) as a function of Gleason score (NLP-derived) in the 
MSK-BPC cohort (n = 561) and MSK-CHORD cohort (n = 3,211). Volcano plots 
show slope coefficients and two-sided P values from linear regression, with 
dots in red showing relationships with multiple-hypothesis-corrected  
q values < false discovery rate 0.05 by Benjamini–Hochberg method, and insets 
show proportions of the total cohort for selected genes ± binomial 95% CI.
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immunotherapy. Manual review of these cases suggests that these 
discrepancies could not be explained by NLP errors or sequencing 
artefacts such as low tumour purity (Supplementary Table 8). As 
expected, patients with dMMR and MSI had better survival than those 
with pMMR and MSS. Patients with discordant MMR and MSI status 
had a longer time on immunotherapy than those with pMMR and MSS 
but a shorter time on immunotherapy than those with dMMR and MSI 
(Extended Data Fig. 1). Together, these results indicate that patients 
with discrepant genomic and immunohistochemical results do benefit 
from and should be offered immunotherapy, but the absence of either 
positive biomarker may have prognostic importance.

Similarly, MSK-CHORD included patients with lung cancer who were 
current or former smokers16 but whose tumours lacked smoking muta-
tional signatures29. In these cases, EGFR and KRAS drivers, classically 
associated with non-smokers and smokers, respectively30, were seen in 
similar proportions, suggesting that neither genomic nor clinical data 
are sufficient on their own to predict tumour biology in these cases 
(Extended Data Fig. 2 and Supplementary Discussion).

MSK-CHORD also has important differences compared with previ-
ous large-scale tumour genomic profiling efforts such as The Cancer 
Genome Atlas including size, modernity and clinical annotations31 
(Supplementary Table 9). These differences allow for discovery of 
relationships between, for example, tumour genomic alterations and 
OS in lung adenocarcinoma (LUAD) not apparent in The Cancer Genome 
Atlas (Extended Data Fig. 3). These results show that NLP-derived fea-
tures in MSK-CHORD have meaningful biologic correlations, although 
caution should be taken to ensure that confounders are considered. 
For example, in MSK-CHORD, EGFR is associated with better OS in 
LUAD, but in multivariate analysis, it was receipt of targeted therapy 
that is associated with better survival, not EGFR mutation status itself 
(see Supplementary Discussion on OS modelling). MSK-CHORD ena-
bles adequately powered discovery of clinicogenomic associations 
including those among patients with less common characteristics.

Integrated multimodal models for OS
To study whether models combining the orthogonal data elements in 
MSK-CHORD improve prediction of cancer outcomes, we constructed 
random survival forest (RSF) models to predict OS from time of cohort 
entry (that is, sequencing report date; see the Methods section OS 
modelling). We systematically tested the performance of models 
trained on related subsets of variables (that is, stage, demographics, 
genomic drivers, pathology, tumour markers, treatment and tumour 
sites) and compared them with models with access to all variables to 
assess the benefit of multimodal integration. We tested these models 
using both fivefold internal cross-validation and external validation 
on the non-MSK portion of BPC.

As expected, among patients with stage I–III disease and no pro-
gression event before cohort entry, most RSFs trained on tumour 
stage-related variables (that is, stage at diagnosis and time since diag-
nosis) had prognostic value. The fivefold cross-validation c indices for 
tumour stage-related variables ranged from 0.53 (95% CI 0.51–0.55) 
for pancreatic cancer to 0.78 (95% CI 0.76–0.80) for breast cancer. 
However, in all cancer types, combined multimodal models that used 
all variables outperformed those based on tumour stage and prior 
progression alone (Fig. 3a and Supplementary Table 10).

Among patients with stage IV disease, models trained only on tumour 
site data, an NLP-derived feature, had greater prognostic value than 
models based on genomic drivers alone across all cancer types. In pros-
tate, colorectal and pancreatic cancer, tumour markers were the single 
modality with the greatest prognostic value; however, in all cancer 
types, a full multimodal model had greater prognostic power than 
models trained on tumour marker or site data alone (Fig. 3a). Different 
specific features were key to multimodal prognostication for different 
cancer types, although because of frequent correlation of variables 

across classes, no single class of variables emerged as the most neces-
sary for OS prediction across cancer types (Supplementary Discussion 
and Supplementary Figs. 6 and 7).

The performance of full multimodal models varied by cancer type, 
ranging from a c index of 0.58 for stage IV pancreatic cancer to 0.83 
for stage I–III breast cancer (Fig. 3a). Model performance was gener-
ally consistent in both fivefold internal and external validation, apart 
from tumour markers as a single-modality category in colorectal, 
pancreatic and breast cancer (Fig. 3b). In these cancer types, because 
of sparser tumour marker data among BPC patients relative to those 
in MSK-CHORD, fivefold cross-validation showed substantial prog-
nostic value in tumour marker data, but these models achieved lower 
performance in the non-MSK BPC validation cohort (Fig. 3b and Sup-
plementary Table 10).

Model architecture and start time selected for OS analysis may influ-
ence model results. We performed sensitivity analyses examining OS 
using a variety of different time-to-event machine learning architec-
tures with a start time of diagnosis left-truncated at time of cohort 
entry. In these analyses, model performance per cancer type and the 
importance of multimodal variables for predicting OS were observed 
despite differences in start time and architecture (Supplementary 
Discussion and Supplementary Table 11).

Thus, models incorporating multiple data streams including 
NLP-derived variables had superior discriminative power for predict-
ing OS. MSK-CHORD can serve as a core dataset to which numerous 
other variables might be feasibly added for OS analysis (Extended Data 
Fig. 4 and Supplementary Discussion). Our results indicate that multi-
modal biomarkers are superior to disease stage for prognostication. 
For example, in both NSCLC and pancreatic cancer, a high-risk subset 
of patients with stage I–III disease is predicted to have a higher risk of 
mortality than a low-risk subset of patients with stage IV disease (Fig. 3c 
and Extended Data Fig. 5). Among patients with stage IV NSCLC in those 
cancer types, there is a difference in survival of several years captured 
in different risk quartiles (Fig. 3c).

Direct application of transformers to radiology report text may 
improve prognostication when compared to more interpretable models 
trained on a small number of annotated variables such as tumour sites 
and disease stage. We fine-tuned a transformer pretrained on clinical 
text (radLongformer) to predict mortality within 6 months from radi-
ology reports of computed tomography scans of the chest, abdomen 
and pelvis (Methods section radLongformer). In all five cancer types, 
this model had prognostic power for OS. In stage IV CRC, it had supe-
rior prognostic power to metastatic sites for predicting OS; however, 
in no other instances did radLongformer have superior prognostic 
power to tumour sites alone in predicting OS (Extended Data Fig. 4b). 
Adding risk scores from radLongformer as a variable to our RSFs did 
not improve prognostic power. Our results indicate that for predicting 
cancer mortality, an interpretable model with sufficient variables can 
perform comparably to a ‘black box’ neural network model trained 
directly on free text.

Multimodal models may improve prediction of OS compared to 
traditional models based on a single modality such as stage. By using 
an interpretable, late-fusion13 framework, we identify specific classes 
of variables, such as metastatic sites, that are an important source of 
prognostic information.

Genomic predictors of metastatic sites
Metastasis is the leading cause of cancer mortality, and metastatic 
colonization has clinical implications, such as the frequency of sur-
veillance imaging with magnetic resonance imaging for detection 
of brain metastases32. However, genomic predictors of metastatic 
tropism are poorly understood12,33. We used NLP to annotate the pres-
ence or absence of metastatic sites of disease in all 705,241 radiology 
reports longitudinally for patients in MSK-CHORD (Methods section 
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NLP models). Colonization of specific organs may thus be used as an 
endpoint for time-to-event analyses.

We studied time-to-specific organ metastasis from time of tumour 
sampling for four specific organ sites of disease with clinical relevance 
and accurate annotations using NLP: central nervous system (CNS), 
bone, liver and lung, adjusting for disease stage, prior treatment 
and histologic subtype. The rate at which patients developed radio-
graphic evidence of disease at those sites was similar in the manually 
curated BPC versus NLP-derived cohorts (Fig. 4a). We sought to use 
MSK-CHORD to study whether oncogenic alterations34 in specific genes 
were associated with rates of metastasis to those organ sites. We found 
several associations between genomic alterations and development of 
future organ metastases (Fig. 4b) despite controlling for histologic sub-
type, which itself is associated with metastasis to specific organs (Sup-
plementary Fig. 8). Some gene alterations, such as TP53 and CDKN2A 
in LUAD, were associated with metastases to all sites. Conversely, RB1 
alteration was associated with CNS and liver, but not bone and lung, 
metastases in LUAD, hormone-receptor-positive breast and prostate 
cancer. If tumours with RB1 alterations are more likely to metastasize to 
the brain and liver, tumours in those sites may be more likely to harbour 
such alterations. Examination of RB1 alteration prevalence based on site 
of disease sequenced revealed enrichment of oncogenic RB1 alterations 
in brain and liver metastases (Extended Data Fig. 6).

Aggregating alterations at the pathway35 level uncovered further spe-
cific associations with propensity to metastasize to specific organ sites 

among cancer types. TP53 pathway alterations were associated with 
higher rates of liver but lower rates of CNS metastasis in pancreatic can-
cer. RTK–RAS pathway alterations in prostate cancer were associated 
with higher rates of bone but lower rates of liver metastasis (Extended 
Data Fig. 7a). We also investigated the extent to which chromosome 
arm-level amplifications or deletions were associated with metastasis 
to future organ sites. In this analysis, arm-level amplifications and dele-
tions were generally associated with multiple sites of metastasis across 
cancer types with some notable exceptions (Extended Data Fig. 7b). 
CRC with MSS was generally unaffected by these changes except for 
1p and 1q amplifications and 3p, 11p, 11q and 17p deletions, which were 
all prognostic for brain metastases. Prostate cancer arm-level changes 
mostly predisposed to brain and liver metastases. Pancreatic cancer 
arm-level changes seem to mostly predispose to liver metastases. In 
breast cancer, 16q and 16p deletions were associated with lower rates 
of CNS and lung metastases.

Overall, our analysis confirms several genomic–metastasis site asso-
ciations observed in smaller33,36 or non-temporal12 cohorts but also 
identifies new potential genomic changes of prognostic importance 
that can be prospectively validated.

SETD2 and immunotherapy in LUAD
Of 5,957 patients with LUAD, 204 (3%) had SETD2 driver mutations, 
and these emerged as predictors of longer OS (Extended Data Fig. 3) 
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and lower rates of CNS metastasis (Fig. 4b). We sought to: corroborate 
these findings in independent cohorts; and further study why SETD2 
alterations might affect LUAD outcomes using MSK-CHORD. We iden-
tified two non-overlapping cohorts of patients with tumour genomic 
sequencing and longitudinal outcomes, one of which also included 
annotated metastatic sites of disease1 (Methods). In both datasets, 
SETD2 alteration was associated with better OS, and in the dataset in 
which CNS metastasis annotations were available, lower rates of CNS 
metastasis (Extended Data Fig. 8).

We studied whether SETD2 driver alterations were associated with 
specific genomic alterations, histologic subtypes or other features. 
SETD2 alterations were positively associated with BRAF and ARID1A 
alterations and negatively associated with EGFR and MDM2 alterations 
and mucinous subtype but not otherwise associated with histologic 
subtype, PDL1 or smoking status (Fig. 5a,b and Extended Data Fig. 9). 
SETD2 mutation was associated with a small but statistically significant 
difference in tumour mutational burden (TMB; Fig. 5c), consistent with 
previous observations37.

We further examined whether SETD2 mutation was associated with 
response to specific antineoplastics. SETD2 mutation was associated 
with a longer time to next treatment or death following treatment 
with immune checkpoint blockade but not cytotoxic chemotherapy 

or molecularly targeted therapy (Fig. 5d). The association between 
SETD2 mutation and longer immunotherapy response held among 
only patients with low TMB (<10 mutations per megabase) and in both 
validation cohorts (Fig. 5e). In summary, leveraging MSK-CHORD’s size 
and rich annotations, we identified SETD2 as an uncommon but promis-
ing biomarker of immunotherapy response in LUAD not explainable by 
other histopathologic, clinical or genomic features. We corroborated 
these findings in independent datasets.

Discussion
RWD may help scientists and clinicians better understand diseases such 
as cancer. Storage of RWD in free-text notes and siloed datasets has 
previously posed limitations to analysis. The Project GENIE BPC of the 
American Association for Cancer Research represents one large-scale 
effort to mine RWD by means of manual curation using an investment 
from a consortium of biopharmaceutical companies. In its initial years, 
the BPC has produced cancer cohorts with data from 2,004 patients 
with NSCLC16 and 1,551 patients with CRC published until now. We have 
leveraged these along with recent advances in NLP, tissue genomic 
sequencing and health record digitization to create a richly annotated 
dataset including RWD from patients with multiple cancer types that 
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is many times larger than the original BPC, which enabled the findings 
shown here. We present this cohort as a community resource to aid in 
discovery of clinicogenomic relationships.

The NLP tools to extract data can be updated in real time, with mini-
mal cost relative to that of manual curation. Validation experiments 
of NLP models in held-out cancer types suggest that our NLP tools 
generalize across solid tumours.

The prognostic models demonstrate the importance of rich annota-
tion for predicting OS in most situations. For patients with stage I–III 
NSCLC, CRC and pancreatic cancer, models trained on single classes 
of data, including American Joint Committee on Cancer stage, which 
dictates many adjuvant therapy decisions38, had worse performance 
than those trained on all classes of data. NLP-derived features, particu-
larly tumour sites, emerged as important for predicting outcomes. 
Our results also highlight the challenges in predicting OS in diseases 
such as pancreatic cancer. Future studies will explore whether other 
modalities, such as liquid biopsy and laboratory data39, further improve 
outcome prediction.

We explored the utility of neural networks applied to notes to pre-
dict outcomes, but neural networks may also be applied directly to 
images13. Further work comparing interpretable ‘late fusion’ models 
such as those explored here to ‘early fusion’ models trained jointly on 
higher-dimensional data such as images would elucidate the extent to 
which the raw data contain prognostic information not encapsulated 
by the features present here.

Our study has limitations. Although we attempted to circumvent 
immortality bias using left truncation and controlling for progression 
and tumour sites at the start date of cohort entry, cohort entry (that is, 
genomic sequencing) is not random and disproportionately represents 
patients with advanced disease or recent progression, which may affect 
the generalizability of our prognostic models40. As with any real-world 
dataset, there are potential confounders not directly reported here. 
Comorbidities and symptoms are two patient features often crucial 
to clinical decision-making that have an impact on outcomes but are 
not captured in either the BPC or MSK-CHORD. Future iterations of 
MSK-CHORD will include these and other data elements. Our cohort 
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consists predominantly of patients from a catchment based on New 
York and New Jersey. Although the size of our patient base with tumour 
sequencing has previously enabled findings in populations of diverse 
backgrounds41,42, careful future work involving multiple centres and a 
more diverse patient population is required to disentangle socioeco-
nomic, demographic and geographic effects on outcome models pre-
sented here. Whole-genome and RNA sequencing, as well as single-cell 
studies incorporating the tumour microenvironment43, are necessary to 
derive mechanistic insights into the process of metastatic colonization.

NLP combined with results from tissue genomic sequencing, tumour 
registry and other siloed data sources can empower RWD analysis. Our 
results highlight the importance of multiple data streams in predicting 
outcomes. It is our hope that MSK-CHORD will fuel further research into 
real-world genotype–phenotype relationships in cancer.
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Methods

Patients
This study primarily analysed data for patients with tumour genomic 
sequencing and completed tumour registry entries from two par-
tially overlapping sources: patients with MSK-IMPACT sequencing 
(forming the basis of MSK-CHORD) and the Project GENIE BPC cohort 
of the American Association for Cancer Research, which includes 
patients with tumour genomic profiling and clinical annotation from 
four institutions including MSK. Details regarding the BPC have been 
published previously7. Here we included patients in the BPC with 
single-primary NSCLC, breast, colorectal, prostate or pancreatic can-
cer. The MSK-CHORD cohort comprises patients at MSK, an academic 
cancer hospital with tumour genomic sequencing using MSK-IMPACT, 
a Food and Drug Administration-authorized tumour genomic profil-
ing assay, which uses matched white blood cell sequencing to filter 
clonal haematopoiesis and germline variants. All MSK patients were 
enrolled as part of a prospective sequencing protocol (NCT01775072) 
or analysed as part of institutional review board (IRB)-approved retro-
spective research protocols (MSK IRB protocols 16–1463 and 19–368). 
The study was independently approved by the IRBs of MSK and DFCI. 
Patients provided written, informed consent and were enrolled in a 
continuous, non-random fashion. Data here are from a 9 September 
2023 snapshot.

Genomic annotation
For all analyses involving tumour genomic alterations aggregated at 
the gene level, a Food and Drug Administration-recognized molecular 
knowledge database (OncoKB34) was used to annotate all mutations, 
copy number changes and structural variations as oncogenic or not; 
any such oncogenic alteration led to a gene being labelled positive 
for the purposes of analysis. For OS modelling in which non-MSK 
BPC patients were used as an external validation cohort, only genes 
present in all sequencing panels across the BPC were used as vari-
ables. For other genomic analyses, the 341 genes included in the first 
MSK-IMPACT sequencing panel20 were used as variables. The presence 
or absence of genomic gains and losses of each chromosome arm 
were identified from MSK-IMPACT data. Genomic coordinates for the 
chromosome arms in the GRCh37 (also known as hg19) human genome 
assembly were considered gained or lost if most of the arm (>50%) is 
made up of segments with an absolute value log ratio of ≥0.2 (ref. 44).

NLP models
Radiology reports. Data preprocessing. Radiology reports for com-
puted tomography (CT), positron emission tomography and magnetic 
resonance imaging examinations of chest, abdomen, pelvis, head and/or  
extremities were queried for all patients within the MSK-CHORD cohort. 
Report sections were segmented using regular expression to separate 
the ‘impression’ section from the full report, for cases in which it was 
available. The pieces of impression text corresponding to the manu-
ally curated MSK-BPC labels for presence of cancer, tumour sites and 
cancer progression were merged to create a direct mapping of label 
and text that the labels were derived from.
Radiographic progression. We fine-tuned a RoBERTa transformer 
model45 on impression sections extracted from radiology reports 
paired with binarized human-curated progression labels. Labels were 
binarized by calling the two GENIE BPC label classes ‘Progressing/ 
Worsening/Enlarging’ and ‘Mixed’ as positive, and calling other classes 
(‘Improving/Responding’, ‘Stable/No change’ and ‘Not stated/Indeter-
minate’) as negative.

Binarized supervision labels were provided at the document level 
(that is, the model was trained to predict a single binary variable for 
a given impression section). We used the PyTorch46 implementation 
of RoBERTa and pretrained model weights from the HuggingFace 
library and model hub47. Text was tokenized with the default RoBERTa 

tokenizer and report-level predictions are pooled using the default 
method of conditioning on the first [CLS] pseudo-token prepended 
to the sequence comprising the impression section. We used a batch 
size of 128, fine-tuning with the AdamW optimizer48 using a learning 
rate of 2 × 10−6, and fine-tuning for 20 epochs with a linearly decaying 
learning-rate scheduler with a 2-epoch warm-up period. Hyperparam-
eter values were selected through a random search using a holdout 
validation set of 20% of reports across learning rate values {1 × 10−6, 
2 × 10−6, 5 × 10−6, 1 × 10−6}, batch size values {8, 16, 32, 64, 128, 256} and 
num-epochs {5, 10, 20, 50}. Extrinsic results (that is, main results incor-
porating model predictions) were presented on models trained on the 
full MSK-BPC cohort.
Tumour sites. We fine-tuned a ClinicalBERT model49, which is itself a 
BioBERT model50 fine-tuned on reports from the MIMIC-III v1.4 data-
base51. We extracted impression sections from radiology reports and 
paired them with report-level supervision from the GENIE BPC data-
set. Labels were transformed into ten binary variables corresponding 
to a closed inventory of nine common disease sites (adrenal gland, 
bone, CNS or brain, intra-abdominal, liver, lung, lymph nodes, pleura 
and reproductive organs), along with one ‘other’ variable, describing 
whether the report is labelled as indicating tumour presence in that 
organ site.

The model was trained in a multi-labelling setup: pooled transformer 
output was input to a single-layer fully connected feed-forward net-
work of width d with a tanh nonlinearity, whose output is linearly trans-
formed to a ten-dimensional vector giving ten logits, from which binary 
cross-entropy losses were computed against the gold-standard labels 
and mean-pooled. In other words, the network computes

f x σ V Wφ x( ) = ( (tanh( ( ))))

in which x is the tokenized document, φ(x) is the pooled transformer 
output vector, W is a learned affine transformation outputting a 
d-dimensional vector, tanh is applied element-wise, V is a learned aff-
ine transformation mapping d-dimensional vectors to ten-dimensional 
vectors, and σ is a plain element-wise sigmoid function; f(x) is  
a ten-dimensional vector of values between 0 and 1. Note that the  
different per-site predictions are non-mutually-exclusive and are  
conditionally independent given the post-pool d-dimensional hidden 
state.

The ClinicalBERT model was implemented in PyTorch46; we used the 
model and pretrained model weights in the HuggingFace library and 
model hub47. We pooled transformer model output using the default 
method of conditioning on the first [CLS] pseudo-token prepended 
to the sequence comprising the impression section. We trained using 
AdamW48 trained using a batch size of 8, a learning rate of 2 × 10−6, a 
dropout probability of 0.2 (applied to the post-pool single-hidden-layer 
feed-forward network) and a pre-logit hidden dimension of 1,024, train-
ing for 15 epochs with a warm-up period of 1.5 epochs. Extrinsic results 
(that is, main results incorporating model predictions) were presented 
on models trained on the full MSK-BPC cohort.
Cancer presence. We fine-tuned a BERT52 base model (uncased)53  
on impression sections extracted from radiology reports paired with 
binarized human-curated cancer evidence labels. Labels were binarized 
by calling the MSK-BPC label class 1 as ‘yes’ for presence of cancer and 
calling label class 0 as ‘no’ for absence of cancer. Binarized supervi-
sion labels were provided at the document level (that is, the model 
was trained to predict a single binary variable for a given impression 
section). BERT models were trained as described for tumour sites. Text 
was tokenized with the default HuggingFace AutoTokenizer for BERT, 
and report-level predictions were pooled using the default method 
of conditioning on the first [CLS] pseudo-token prepended to the 
sequence comprising the impression section. We used a batch size of 
32 and fine-tuned for a maximum of 10 epochs. We trained the models 
using the AdamW optimizer48 using a learning rate of 1 × 10−5, epsilon of 
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1 × 10−8, weight decay of 1 × 10−4 and no warm-up period. During train-
ing, model weights were optimized to minimize cross-entropy loss.

Clinician notes. Data preprocessing. Clinician notes for patients were 
queried and filtered by initial consult (IC) and follow-up notes created 
by medical oncologists, radiation oncologists, surgery, inpatient ser-
vices and others. Notes in the institutional database are segmented 
into subsections including family history, present illness, comorbidi-
ties and so on. Further filtering or combining of note subsections was 
dependent on the application. For inferring prior outside medications, 
IC notes were filtered and included sections relevant to external treat-
ments, such as past medical history, history of present illness and chief 
complaint, while excluding sections mentioning future treatment 
plans. Patients with no IC notes in the allowable note categories were 
excluded from the training and validation set. We excluded patients 
with IC notes dated more than 90 days after their initial visit date. We 
selected one note per patient to analyse. If a patient had multiple notes, 
the IC note with the earliest creation time was used. Preprocessing 
for inference of HER2 and hormone receptor consisted of filtering 
notes created by the breast medicine division, for which entire IC and 
follow-up notes were used as the input to the model.
Prior external treatment. The other transformer-based models pre-
sented above operate on impression sections that are generally 
very short and therefore do not see appreciably degraded marginal 
performance from truncating documents to the maximum model 
input sequence size of 512 subtokens. This relatively short input limit 
is necessary for the full-self-attention parameterizations used by 
these models, which require memory scaling quadratically in input 
sequence length. However, full IC reports are appreciably longer than 
impression sections, and any mention of prior anti-neoplastic treat-
ments occurs within a much longer textual context. We therefore use a 
transformer model engineered to have subquadratic memory require-
ments; in particular, we fine-tune a Clinical-Longformer model54, 
which is itself a Longformer model55 fine-tuned on the MIMIC-III v1.4 
database51. This model has a maximum input sequence length of 4,096 
subtokens.

The Clinical-Longformer model is implemented in PyTorch46; we use 
the model and pretrained model weights in the HuggingFace library 
and model hub47. We pool transformer model output using the default 
method of conditioning on the first [CLS] pseudo-token prepended to 
the sequence comprising the impression section. We train AdamW48 
using a batch size of 64 and a learning rate of 1 × 10−6, training for 20 
epochs with a warm-up period of 2 epochs. We upsample minority-class 
examples uniformly with replacement to achieve class balance during 
training. Extrinsic results (that is, main results incorporating model 
predictions) are presented on models trained on the MSK-BPC cohort.
HER2 and hormone receptor. As HER2 and hormone receptor can be 
heterogeneous across pathology samples, we sought to create a clas-
sifier based on clinician notes to identify the overall receptor subtypes 
for a patient’s cancer used to inform treatment. For training, we used 
clinician notes from a cohort of 6,053 patients with single-primary 
breast cancer with manually annotated HER2 and hormone receptor 
subtypes to train separate HER2 and hormone receptor binary clas-
sifiers. We performed training and testing within this cohort with a 
90/10 split. Specifically, the clinician note chronologically closest to 
sequencing was used as features and the expert-annotated subtypes 
as targets. For final validation, we used a held-out set of 1,489 patients 
from a previously published breast cancer dataset22. As with the prior 
treatment model, we used Clinical-Longformer models for both HER2 
and hormone receptor classifiers using a 2,000-subtoken input, pad-
ded as necessary. We used the AdamW optimizer with a batch size 
of 64 and a learning rate of 1 × 10−6, training for 30 epochs without a 
warm-up period.
Smoking status. Smoking status (former or current versus never) was 
obtained from dedicated smoking or social history sections through 

regular expression extraction applied to the first available clinician 
assessment for a given patient. The algorithm was created on the basis 
of a previously published cohort of 247 patients with NSCLC and previ-
ously annotated smoking status14, withholding data from patients also 
present in the MSK-BPC NSCLC cohort. The model was validated on the 
basis of the MSK BPC NSCLC cohort.

Pathology reports. PDL1. PDL1 status (positive defined as 1% or higher 
versus negative) was obtained through regular expression extraction 
applied to the first available clinician assessment for a given patient. 
The algorithm was created on the basis of a previously published cohort 
of 247 patients with NSCLC and previously annotated smoking status14, 
withholding data from patients also present in the MSK BPC NSCLC 
cohort. The model was validated on the basis of the MSK BPC NSCLC 
cohort.
Gleason score. Gleason score (6–10) was obtained through regular 
expression extraction applied to pathology reports from either pros-
tatic biopsies or resections. The algorithm was created on the basis of 
iterative fine-tuning on a previously published cohort of 451 patients 
with prostate cancer and previously annotated Gleason score56, with-
holding data from patients also present in the MSK BPC Prostate cohort. 
The model was validated on the basis of the MSK BPC Prostate cohort.
MMR. Mismatch status (proficient versus deficient) was obtained 
through regular expression extraction applied to histopathology 
reports. The algorithm was created on the basis of a previously pub-
lished cohort of 224 patients with CRC and previously annotated MMR 
status57, withholding data from patients also present in the MSK CRC 
cohort. The model was validated on the basis of the MSK BPC CRC 
cohort.
Billing code annotation metrics. We sought to assess the accuracy of 
structured data elements (that is, billing codes12) to recover tumour site 
information and to compare this accuracy with that of our NLP algo-
rithms. As the timing of billing codes is not necessarily tied to particular 
radiology reports, we aggregated labels at the patient level, wherein 
cancer detection in a given tumour site at any point in the patient’s his-
tory was considered positive overall for that site. Patient-level billing 
code labels and, separately, NLP labels (from radiology impressions 
as above) were compared to gold-standard curated BPC labels, all 
aggregated at the patient level. The patient-level accuracies for these 
annotations are provided in Supplementary Table 2.

OS modelling. RSFs58 to predict time to death from time of cohort 
entry, right-censored at time of last follow-up, were trained using 
pre-assigned hyperparameters (n trees = 1,000, minimum n splits = 10, 
minimum n samples per leaf = 15). In exploratory secondary analyses, a 
random hyperparameter grid search to find ‘optimal’ hyperparameters 
using a 20% holdout for evaluation was conducted (n tree range 200–
2,000, minimum n splits range 5–20, minimum n samples per leaf range 
5–30, n search iterations = 100, threefold internal cross-validation 
for hyperparameter selection); a model trained on optimal hyperpa-
rameters did not yield better results (c-index ‘improvement’ of −0.01 
using optimal versus pre-assigned hyperparameters). We included all 
variables in Supplementary Table 6, grouped according to the schema 
in that table.

To predict time to death while accounting for left truncation and 
right censoring, we used the OncoCast package (https://github.com/
AxelitoMartin/OncoCast) updated from previous work59,60 with the 
RF (Random Forest) method. In brief, this method fits an elastic 
net-regularized Cox proportional hazards model to the data, and 
then applies a random forest to estimate the Martingale residuals; 
this correction term is applied when the model is tested on new data. 
We created an ensemble learning model through cross-validation or by 
training on the whole MSK-CHORD dataset and validating the model on 
the non-MSK BPC dataset as for the RSF model. The OncoCast model, 
configured with 500 trees, 5 terminal nodes and 50 runs, was fitted to 
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the training set. Predictions of risk for the test set were made across 
all iterations. Model performance was assessed using the concordance 
probability index at each iteration.

radLongformer. We fine-tuned a Clinical-Longformer54 model to take 
as input the full text of CT chest, abdomen and pelvis (CAP) reports and 
predict binarized OS within 6 months, a clinically meaningful endpoint 
and a time frame in which a single radiology report might meaningfully 
prognosticate. We split all cohorts into training and test sets at the 
patient level, reserving 20% of the cohort or all patients with a CT CAP 
within 3 months of cohort entry for testing, whichever was smaller. In 
the training set, all CT CAP reports from all patients were annotated 
according to survival status within 6 months; those with insufficient 
follow-up were excluded. The Clinical-Longformer was fine-tuned in 
this dataset using a batch size of 64 and a learning rate of 1 × 10−6, train-
ing for 20 epochs with a warm-up period of two epochs.

Time to metastasis. The association of genomic alterations with time 
to metastasis was analysed using Cox proportional hazards models. 
Death was treated as a censoring event. Patients with metastasis to a 
given site of interest before the start time (time of sample acquisition; 
that is, the earliest time a given alteration could be confirmed for a given 
tumour) were excluded from analysis. Prior treatment (any versus none) 
and stage (I–III versus IV) were included as variables in all multivariable 
analyses. Histologic subtype was included as a variable where indicated.

SETD2 validation cohorts. We utilized two validation cohorts of 
patients with LUAD and tumour genomic profiling: patients at DFCI; 
and patients in a commercial real-world dataset. Details of the DFCI 
cohort have been published previously1,61. In the commercial dataset, 
formalin-fixed paraffin-embedded samples from patients with NSCLC 
were submitted to a commercial Clinical Laboratory Improvement 
Amendments-certified laboratory for molecular profiling (Caris Life 
Sciences, Phoenix, AZ). Any patient with Caris tumour molecular pro-
filing was eligible for inclusion; patient sources include a variety of 
community and academic settings, and patients were non-overlapping 
with those in MSK-CHORD. A total of 29,422 NSCLCs with adenocarci-
noma histology were analysed by next-generation sequencing, 592 
targeted panel or whole-exome sequencing for genomic features. 
Before molecular testing, tumour enrichment was achieved by col-
lecting targeted tissue using manual microdissection techniques. 
For NextSeq-sequenced tumours, a custom-designed SureSelect 
XT assay was used to enrich 592 whole-gene targets (Agilent Tech-
nologies, Santa Clara, CA). For NovaSeq whole-exome-sequenced 
tumours, a hybrid pull-down panel of baits designed to enrich for 
more than 700 clinically relevant genes at high coverage and high 
read depth was used, along with another panel designed to enrich 
for an additional >20,000 genes at a lower depth. A 500-megabase 
single-nucleotide polymorphism backbone panel (Agilent Technolo-
gies, Santa Clara, CA) was added to assist with gene amplification and 
deletion measurements and other analyses. All variants were detected 
with >99% confidence, with an average sequencing depth of coverage 
of >500 and an analytic sensitivity of 5%. This test has a sensitivity 
to detect as low as approximately 10% population of cells contain-
ing a mutation in all exons from the high-read-depth clinical genes 
and 99% of all exons in the 20,000 whole-exome regions. Genetic 
variants identified were interpreted by board-certified molecular  
geneticists and categorized according to the American College  
of Medical Genetics and Genomics standards. Real-world OS was  
obtained from insurance claims data and calculated from time of 
biopsy to last contact.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
MSK-CHORD is available under the Creative Commons BY-NC-ND 4.0 
licence and can be accessed on cBioPortal (https://www.cbioportal.org/
study/summary?id=msk_chord_2024). Data from the GENIE BPC can 
be accessed on cBioPortal (https://genie.cbioportal.org/), with addi-
tional data available as previously described16 and further instructions 
here: https://www.aacr.org/professionals/research/aacr-project-genie/
aacr-project-genie-data/. For questions regarding access to Caris vali-
dation data contact jxiu@carisls.com.

Code availability
All code to perform the analyses presented here is available at GitHub 
(https://github.com/clinical-data-mining).
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Extended Data Fig. 1 | Mismatch repair in immunohistochemistry and 
genomics. a. Relationship between mismatch repair (MMR) proficiency 
(pMMR)/deficiency (dMMR) on immunohistochemistry as annotated by NLP 
and microsatellite instability (MSI) as determined by MSK-IMPACT (MSISensor 
cutoff of 10, excluding indeterminate cases62). Boxplots depict median and 
inner quartile ranges (IQRs) with whiskers corresponding to 1.5xIQR. b. 
Kaplan-Meier curves show time to next treatment with stage IV colorectal 
cancer treated with immunotherapy (IO) stratified by MMR/MSI type.
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Extended Data Fig. 2 | Clinical and genomic representations of smoking.  
a. Proportion of patients with NSCLC (of the whole cohort) and oncogenic EGFR 
or KRAS alterations by clinical (NLP-derived) smoking status and smoking 
mutational signature status (+/− binomial 95%CI) in MSK-CHORD. Inset shows 
the distribution of dominant mutational signatures for the clinical smoking 
NLP +, SigMA smoking signature – subgroup. b. Scatterplot showing SBS4 
observed from whole exome sequencing vs. pack years smoked at time of initial 

visit based on manual curation. c. Scatterplot showing tumor mutational 
burden (TMB) vs. pack years smoked in the exome cohort. d. Bar charts 
showing proportion and binomial 95%CI with a driver EGFR or KRAS mutation 
among patients with a significant clinical smoking history ( ≥ 15 pack years) and 
a non-dominant smoking signature in the exome cohort. e. Boxplots showing 
median, Q1-Q3, and 5–95%ile tumor purity among patients with ≥15 pack year 
smoking history, stratified by SBS4 status in the exome cohort.



Extended Data Fig. 3 | Comparison of survival analyses between The Cancer 
Genome Atlas (TCGA) and MSK-CHORD. a. Volcano plots showing Cox 
proportional hazards models for specific oncogenic (by OncoKB) gene 
alterations (for all genes altered in at least 2% of the respective cohort) from 
time of diagnosis to time of death, right censored at last follow-up. For 
MSK-CHORD data is left truncated at time of sequencing (cohort entry) and 
only patients with stage I-III disease at diagnosis are shown. b. Selected 

representative survival curves stratified by oncogenic gene alteration 
presence. For example, STK11 mutation is associated with worse survival in 
both cohorts although requires a sufficiently large cohort to show statistical 
robustness. EGFR mutation is associated with better OS only in MSK-CHORD, as 
these patients were treated following the advent of EGFR-targeted therapy, 
which was not standard of care during the timeframe of TCGA.
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Extended Data Fig. 4 | Augmenting MSK-CHORD for predictive modeling. 
Mean c-indices from random survival forests by cancer type and stage and data 
modality (x axis) validated in 5-fold cross-validation using a. Secondary 

genomic data and performance status within the MSK-CHORD pancreatic 
cancer cohort and b. radLongformer. Dots correspond to results from 
individual validation folds.



Extended Data Fig. 5 | Risk modeling. Risk score distribution for the non-MSK 
BPC cohorts and Kaplan-Meier survival curves based on computed risk 
quartiles for patients with pancreatic cancer.
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Extended Data Fig. 6 | RB1 alterations in metastatic samples. Frequency (proportion of total cohort) of oncogenic RB1 alterations (+/− binomial 95%CI) in 
sequenced samples taken from the listed sites across the five studied cancer types. *=p < 0.05 by 2-sided Fisher Exact text.



Extended Data Fig. 7 | Derived genomic features and risk of future 
metastasis. Bubble plots showing hazard ratios (color), number of patients 
with alteration prior to site colonization (size) and statistical significance 

(Benjamini Hochberg FDR 0.01, black outline) for (a) pathway-level oncogenic 
alterations and (b) chromosome arm-level amplifications or deletions.
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Extended Data Fig. 8 | Metastatic potential of SETD2 mutant lung 
adenocarcinoma across multiple datasets. Hazard ratios +/−95%CI from Cox 
proportional hazards models as described in Methods. Combined hazard 

ratios are from random effects meta-analyses for (a) CNS metastasis, (b) overall 
survival (OS), and (c) time to next treatment or death from immunotherapy 
start for patients with lung adenocarcinoma and TMB>10 mut/Mb.



Extended Data Fig. 9 | Further SETD2 genomic correlations. Volcano plot showing co-alteration or mutual exclusivity with SETD2 driver mutations in patients 
with lung adenocarcinoma in a large cohort with exome sequencing (Caris).
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