
In Silico Prediction of the Toxic Potential of Neuroprotective
Bifunctional Molecules Based on Chiral N‑Propargyl-1,2-amino
Alcohol Derivatives
Eva Ramos, Rocío Lajarín-Cuesta, Raquel L. Arribas, Eva M. García-Frutos, Laura González-Lafuente,
Javier Egea, Cristóbal de los Ríos,* and Alejandro Romero*

Cite This: Chem. Res. Toxicol. 2021, 34, 1245−1249 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: N-Propargylamines are useful synthetic scaffolds for the synthesis of bioactive
molecules, and in addition, they possess important pharmacological activities. We obtained several
neuroprotective molecules, chiral 1,2-amino alcohols and 1,2-diamines, able to reduce by almost 70%
the rotenone and oligomycin A-induced damage in SH-SY5Y cells. Furthermore, some molecules
assessed also counteracted the toxicity evoked by the Ser/Thr phosphatase inhibitor okadaic acid.
Before extrapolating these data to preclinical studies, we analyze the molecules through an in silico
prediction system to detect carcinogenicity risk or other toxic effects. In light of these promising
results, these molecules may be considered as a lead family of neuroprotective and relatively safe
compounds.

N-Propargylamines and N-propargylamides are synthetic
scaffolds widely used by organic chemistry for the preparation
of complex bioactive compounds,1 such as 1,2-amino alcohols,2

β-amino acids,3 or polyhydroxylated heterocycles,4 among
others. In this context, we notice that some contributions in
the literature report that the N-propargylamine moiety
possesses some biochemical activities involved in controlling
the cellular redox state, mainly by inhibiting nitric oxide
synthase enzymes.5 Reportedly, these molecules were demon-
strated to be involved in protein kinase C (PKC) and MAPK
activation,6,7 inhibition of monoamine oxidases (MAO)8 or
cysteine proteases,9 and induction of neurotrophic factors.10

Thus, N-propargylamine substructures appear in many drugs
with neuroprotective properties used for central nervous
system diseases. Some examples are the marketed drugs
rasagiline7 or selegiline11 and the drug candidate for
Parkinson’s disease treatment, ladostigil12,13 (Figure 1);
nevertheless, they are also studied for Alzheimer’s disease
(AD) and depression.14

Recently, we have described several compounds bearing the
N-propargylamine substructure, which demonstrated relevant
inhibitory action on MAO-A,15 MAO-B,16 or acetylcholines-
terase,17 as well as a neuroprotective profile.18 As a part of a
multitarget approach to developing new potential drugs for the
treatment of neurodegenerative diseases, Youdim and co-
workers designed multifunctional compounds bearing the N-
propargylamine moiety together with a 1,2-amino alcohol
substructure, and the lead compound was M-30 (Figure 1).19

It showed antioxidant properties, regulatory activity of the

amyloid precursor protein processing, PKC and MAPK
signaling pathway modulation, as well as the induction of
neurotrophic factors.20

Indeed, 1,2-amino alcohols have been studied as potential
drugs for neurodegenerative diseases due to their role in
regulating brain metal concentrations, which are altered in AD
patients and involved in the acceleration of the β-amyloid-
induced neuronal damage.21 These observations prompted us
to hypothesize that homopropargylic compounds, conveniently
transformed to present a potentially bioactive N-propargyla-
mide moiety linked to a chiral 1,2-amino alcohol, would afford
interesting pharmacodynamic and pharmacokinetic properties.
Therefore, the prediction of the toxic potential and the
evaluation of the neuroprotective profile of a series of
deprotected β-hydroxy-N-propargylamides will give us clues
to achieve additional chemical designs that will lead us to
obtain optimized drugs in this field.
We use in silico predictions to assess the toxicity and

cytochrome P450 isoform 3A4 metabolism of the compounds
with Toxtree software v 3.1.0.22 Based on their structural
information, the six compounds were classified as class III
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substances by the Cramer principles, suggesting that there is
no strong initial presumption of safety or even significant
toxicity with reactive functional groups because of the
heterocyclic structure detected. As shown in Table 1, no skin
or eye corrosion was estimated to any compound. A
preliminary screening of potentially in vivo mutagens, Toxtree
fired alkyl carbamate and thiocarbamate structure alert for the
S. typhimurium mutagenicity Ames test (in vitro). There was at
least one structural alert for the micronucleus assay found,
classifying compounds as Class I substances. In the
carcinogenicity and mutagenicity discriminant analysis, there
was nongenotoxic carcinogenicity, whether it fired a structural
alert for genotoxic carcinogenicity (Alkyl carbamate and
thiocarbamate structure).
Finally, each of the six compounds results in a class 2

persistent chemical due to its more than two rings. However,
further experiments need to be developed to test whether these
alerts certainly happen.
Then, to test whether these compounds are not toxic, we use

reliable in vitro models, SH-SY5Y cells, which are used to study
neuronal function and neurodegenerative diseases.

The preparation of the compounds was accomplished
according to what was previously described (Schemes S1 and
S2, Supporting Information).23 Trimethylsilane (TMS)-
protected N-propargylamides 2a−e and 5 were treated with
tetrabutylammonium fluoride, which removes the TMS group.
Thereby, it furnished compounds 3a−e and 6 in good yields
(Supporting Information), resulting in spectroscopic and
analytical data according to their structure (NMR spectra
and analytical characterization in Supporting Information).
Obtained results reveal that only molecule 3d slightly

affected the cell viability, as shown in Figure 2. Subsequently,

the neuroprotective profile of compounds 3a−e, 4e, and 6 was
evaluated with two toxic stimuli, 30 μM rotenone and 10 μM
oligomycin A (R/O), which inhibit complexes I and V of the
mitochondrial electron transport chain, respectively, in SH-
SY5Y cells, conditions that result in the generation of reactive
oxygen species (ROS) and impair the ATP synthesis. Thus,

Figure 1. Selected N-propargylamines and metal chelators of
therapeutic interest, together with the design of the molecules
described herein (in color, the potential bioactive moiety).

Table 1. In Silico Toxicity Assessment for Each Compound

3a−e 6

1 Cramer rules/Cramer rules with extensions class high (class III) class high (class III)
2 skin irritation and corrosion prediction not corrosive to skin not corrosive to skin
3 eye irritation and corrosion prediction not skin corrosion R34 or R35 not skin corrosion R34 or R35
4 skin sensitization reactivity domain alerts alert for acyl transfer agent identified alert for acyl transfer agent identified
5 START biodegradation and persistence plug-in class 2 (persistent chemical) class 2 (persistent chemical)
6 structure alerts for the in vivo micronucleus assay (rodents) class I class I
7 in vitro mutagenicity (Ames test) alerts by ISS structural alert for S. typhimurium

mutagenicity
structural alert for S. typhimurium
mutagenicity

8 carcinogenicity (genotoxic and nongenotoxic) and mutagenicity
rulebase by ISS

structural alert for genotoxic
carcinogenicity

structural alert for genotoxic
carcinogenicity

negative for nongenotoxic carcinogenicity negative for nongenotoxic carcinogenicity
9 DNA binding alerts alert for SN1 alert for SN1

alert for Michael Acceptor alert for Michael acceptor

Figure 2. Effect of compounds on SH-SY5Y cell viability. Basal bar
corresponds to SH-SY5Y neuroblastoma cells only treated with
culture medium. In each independent experiment, a batch of cells was
treated with the toxic cocktail rotenone and oligomycin A (30 and 10
μM, respectively, R/O) as an example of the expected loss of cell
viability elicited by a toxic stimulus. Data are means ± SEM of
triplicates of at least five different cell cultures: ***p < 0.001 and **p
< 0.01 with respect to basal.
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cells are in an oxidative stress environment, typically found in
several neurodegenerative diseases. As shown in Table 2, when

SH-SY5Y cells were stimulated with the R/O cocktail, their
viability, measured by the MTT assay,24 was significantly
reduced (37%), and the presence of compounds, tested at 0.3
μM, decreased in most cases such loss of cell viability in a
significant manner. The best compound was 3d, which
maintained the cell viability up to 76% with respect to a
basal situation, similar to the well-known antioxidant drug
melatonin used as the standard.25

In the second test, we exposed SH-SY5Y cells to 15 nM
okadaic acid (OA); this marine biotoxin is a selective inhibitor
of phosphoprotein phosphatases, mainly PP1 and PP2A.26

Their inhibition results in the hyperphosphorylation of
selected biological targets, including tau protein, which in
turn leads to its self-aggregation in the so-called neurofibrillary
tangles, one of the principal hallmarks of AD. The
administration of OA to neuronal cultures is a well-described
AD in vitro model, in which tauopathy is the source of
neuronal damage. In this scenario, cells reduced their viability
after the incubation with OA to 38%; the loss of neuron
viability was counteracted by the administration of compounds
3a, 3b, 3d, 3e, or 4e at 0.3 μM, analogously to the protection
provided by the anti-AD drug memantine.27

In summary, five N-propargylamides have shown potential
neuroprotective properties against two toxic stimuli related to
neurodegeneration at sub-micromolar concentrations. These
results prompt us to continue the study of chiral
propargylamides as new chemical entities with promising

biological activities for the treatment of neurodegenerative
diseases.
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