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Abstract

Brain-Computer interface technologies mean to create new communication channels between our mind and our
environment, independent of the motor system, by detecting and classifying self regulation of local brain activity. BCIs can
provide patients with severe paralysis a means to communicate and to live more independent lives. There has been a
growing interest in using invasive recordings for BCI to improve the signal quality. This also potentially gives access to new
control strategies previously inaccessible by non-invasive methods. However, before surgery, the best implantation site
needs to be determined. The blood-oxygen-level dependent signal changes measured with fMRI have been shown to agree
well spatially with those found with invasive electrodes, and are the best option for pre-surgical localization. We show, using
real-time fMRI at 7T, that eye movement-independent visuospatial attention can be used as a reliable control strategy for
BCIs. At this field strength even subtle signal changes can be detected in single trials thanks to the high contrast-to-noise
ratio. A group of healthy subjects were instructed to move their attention between three (two peripheral and one central)
spatial target regions while keeping their gaze fixated at the center. The activated regions were first located and thereafter
the subjects were given real-time feedback based on the activity in these regions. All subjects managed to regulate local
brain areas without training, which suggests that visuospatial attention is a promising new target for intracranial BCI. ECoG
data recorded from one epilepsy patient showed that local changes in gamma-power can be used to separate the three
classes.
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Introduction

In any interactions with our environment, including speech, we

fully depend on the motor system. Damage to neurons involved in

motor control can restrict this ability or even completely disrupt

communication between our mind and our environment, as in the

case of locked-in-syndrome [1]. Situations such as loss of motor

function in severe paralysis would greatly benefit from additional

means of interaction. By measuring cortical activation changes

and linking these changes to commands one can ‘‘outsource’’ the

muscular control to a computer and create new channels through

which intentions can be transmitted. These techniques are

commonly referred to as Brain-Computer-Interfaces (BCI) [2,3].

Because of its availability and non-invasiveness EEG has been the

predominant modality in BCI research. To reach the extra-cranial

electrodes the neural electrical potentials have to go through the

cerebrospinal fluid, dura mater, skull and scalp. In effect, the signals

lose power, bandwidth and spatial resolution. By implanting

electrocorticographic (ECoG) or intracortical microelectrode arrays

one can record signals much more specific in both time and space,

and with a much higher signal-to-noise ratio (SNR), compared to

EEG. Encouraged by the success in non-human primates [4–7],

there is a growing interest in applying intracranial technologies for

human BCI [8–13]. Because the dominating modality in BCI

research has been EEG, the control strategies investigated, also for

invasive measurements, have mainly been based on systems located

in cortical areas accessible by scalp electrodes. The most common

strategies have been P300 responses [14–16], steady state visual

evoked potentials (SSVEP) [17–19] and motor imagery [9,10,20].

While these types of control have been shown to work in both

healthy subjects and patients, many studies have reported that part

of the study population is not able to learn control even after

training [21–25]. Moreover, patients might have clinical issues

making these strategies inapplicable. It is for example uncertain

whether paralysed people are capable of engaging their motor

cortex after a long period of non-use [26]. This indicates that in the

light of intracranial solutions, alternative avenues, using other brain

systems, are worth exploring to further the BCI field and to be able

to create an individually optimized setup for each patient. While the

term ‘‘BCI illiteracy’’ is sometimes used for subjects not able to

control a BCI it is more likely that the particular control task is not

suitable and that by choosing the right task also these subjects can

learn to gain control.
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Intracranial electrodes make it possible to access brain functions

that are located deeper in the brain or are otherwise inaccessible

for EEG.

Here we present a new avenue for intracranial BCI, which

exploits specific properties of the visual system. With the help of

attention we can select what sensory information to focus

processing resources on [27]. Covert visuospatial attention, i.e.

focusing attention on a specific part of the visual field in order to

better process what happens in this spatial region while

maintaining gaze at the center of the field, is known to induce

changes in activity in the visuospatial cortex [28–33].

Two earlier studies have examined the potential use of brain

activity associated with covert visual spatial attention for BCI

control, and demonstrated that changes in the alpha band could

be detected using MEG [34] or EEG [35]. The induced changes

could be classified with offline techniques, but as realtime analysis

was not tested it is not clear whether these changes offer enough

detail for BCI application. Spatial detail of MEG and EEG may be

a limiting factor in exploiting the brain activity patterns associated

with covert attention. The retinotopy assures that attention to a

restricted part of the visual field corresponds to activity in

restricted cortical areas. An intracranial BCI system with high

resolution, based on e.g. ECoG, should be able to react only to

local attention and not to attention anywhere in the peripheral

visual field. More attention target regions can be added to increase

the degrees of freedom. Moreover, an attention target region could

be moved to the place in the visual field mapped to the cortical

region most suitable for implantation.

In principle, functional MRI yields better detail compared to

MEG and EEG, at the expense of speed of detecting changes.

Moreover, it is inherently sensitive to activity anywhere in the

brain, and as such can be used to investigate new alternative

control tasks and cortical regions. Real-time fMRI [36–40] offers

the possibility of identifying target regions for intracranial

electrode placement presurgically and can be used to train the

patient beforehand. Although fMRI measures bloodflow as

opposed to electrical or magnetic signals, fMRI activations have

been shown to agree with those found with ECoG [13,41–43].

Spatial correlations between activity patterns obtained with both

has been shown to be particulary strong in the high gamma band

(w60Hz) [43]. The use of real-time fMRI for learned self-

regulation of local brain activity has been demonstrated several

times before [40]. Most of these studies have had a neurofeedback

approach, where the self-regulation was not investigated with the

purpose of transmitting commands. Here the feedback was given

directly on changes in the BOLD signal. Building on these results,

the technique has also been applied for BCI purposes where the

signal changes are classified to discrete outputs representing

intentions (see review in [44]). Activity induced by covert attention

is rather subtle and for the present purpose of realtime decoding,

requires the most sensitive fMRI technique available. Ultra-high

field MRI systems have become available recently, and have been

shown to yield excellent sensitivity [45]. To test our hypothesis we

implemented real-time fMRI on a 7 Tesla MR scanner using

healthy volunteers. We postulate that if realtime decoding is

feasible with covert attention and fMRI, placement of electrodes

on the visual cortex should also yield decodable signals. We also

report on decodability of ECoG signals obtained from visual

cortex in a patient undergoing neurosurgery for epilepsy.

Materials and Methods

The experiment was performed in a single fMRI run in which

the healthy volunteers were instructed via a central cue to move

their attention to one of three target regions while maintaining

their gaze at the center. The scan consisted of two parts; a first part

in which we located the activated regions and a second part in

which subjects were given real-time feedback based on the activity

in these regions. An overview of the full experiment can be seen in

Figure 1.

Subjects
fMRI data were acquired from ten healthy volunteers (age 19-

27, 6 female, all except one right handed). One of the subjects

showed very poor performance during the experiment. After the

experiment the subject communicated problems with concentra-

tion and offline inspection of the fMRI data showed excessive

motion. Based on this we have excluded this subject. Two

additional subjects performed the task outside the scanner while

we recorded their eye movements using electrooculography

(EOG).

Multi-channel subdural ECoG data was recorded from one

patient (female, age 26, left hemisphere) undergoing neurosurgery

for epilepsy.

The protocol was approved by the ethics committee of the

University Medical Center Utrecht in accordance with the

declaration of Helsinki (2008), and all subjects had given their

written informed consent. All subjects were naive to the task.

Figure 1. Timeline of the experiment. The localizer and feedback data are acquired in the same fMRI run.
doi:10.1371/journal.pone.0027638.g001
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fMRI data acquisition and real-time system
The data were collected on a 7T Philips Achieva system with a

16-channel headcoil. The functional data were recorded using an

EPI sequence (TR/TE = 1620/25 ms; FA = 90; SENSE fac-

tor = 2; 35 coronal slices, acquisition matrix 96x96, slice thickness

2mm with no gap, 1.848 mm in-slice resolution). The FOV was

selected so it covered the occipital lobe. A total of 500 volumes

were acquired in a single run and divided into 200 volumes of

localizing relevant brain areas (localizing part) and 300 volumes of

real-time feedback based on activation in these located regions

(feedback part). Directly following reconstruction on the scanner

the data were sent to a separate computer performing the analysis

(Dual-Core 2.5 GHz notebook) via the local network using a

TCP/IP protocol and the Philips DRIN (Direct Reconstruction

INterface) module. The stimulus was projected to the subject from

a second computer via a video projector. An update-trigger

containing information about the direction and color of the

instruction marker was sent to the second computer via a serial

cable. Except for the motion correction all the parts were

implemented in Matlab (Mathworks, Natick, MA).

Task
The visual stimuli were constructed as two rectangular areas,

one in the left peripheral visual field and one in the right, each

containing a checkered pattern and both at a visual angle of 11

degrees relative to a central cue (Figure 2). To facilitate the shifting

of attention direction, we made the checkered patterns scroll (2s

per cycle) upwards on the right side and downwards on the left. In

the center was a marker on which the subjects were instructed to

fixate their gaze at all times. Both checkerboards were constantly

visible throughout the fMRI runs, while the center marker was

alternated between a right arrow, a left arrow and a circle. The

arrows indicated to which side the subject had to direct the visual

attention. The circle indicated that the attention was to be directed

to the center. The three trial types were repeated in a pseudo

random scheme with the restriction of no two adjacent attention

trials being in the same direction.

Localizing part
Trials. The localizing part consisted of eight trials of each

condition plus one extra initial central attention trial, each being

eight scans (13.0 seconds) long. The instruction was updated first

after the analysis finished (1.0 seconds on average). This time has

been accounted for in all plots and results.

Motion correction. The first volume was used as the

template for motion correction and all the subsequent volumes

were aligned to it using a rigid transformation. The registration

was performed by minimization of the sum of squared differences

between grey-value intensities. To achieve real-time performance,

a stochastic gradient descent method [46] was employed for

optimization, using 50 iterations. The images were blurred with a

Gaussian filter (s = 1 voxel) prior to image registration. Linear

interpolation was used during optimization while cubic B-spline

interpolation was used to generate the final rotated/translated

image. The algorithm was implemented in C++, and called from

Matlab. The computation time was approximately 0.6s per fMRI

volume.

Analysis. To find the activated voxels in real time we

implemented the incremental GLM method described in [47].

The incremental approach ensures that the computation time does

not grow with the number of scans. By keeping the whole

experiment in a single run we minimize the risk of movement

between selection of ROIs and the feedback experiment and we

get an improved estimation of the low frequency drift and

therefore a better detrending and a better control signal. Three

regressors representing right- and left-sided attention, and a linear

function as a simple model for the drift were included in the

model. Since visual spatial attention induces both increased

BOLD signal in retinotopically mapped regions and decreased

signal in unattended regions [31,48–50], the differential contrasts

‘‘right-left’’ and ‘‘left-right’’ were used when computing the t-

maps. This also made sure we avoided picking up regions

responding to attention in general.

ROI selection. When the localization part was finished (200

volumes) the resulting t-maps were used for making the two sets of

voxels representing right versus left side attention and left versus

right side attention (denoted ROIR and ROIL respectively) as

follows. First the two t-maps were masked to only include values

inside the brain. The mask was constructed by first thresholding a

smoothed image volume and then filling any holes. The two most

anterior of the coronal slices were excluded from the mask to

exclude boundary artifacts from the registration. For each of the

two t-maps the voxels with the 500 highest t-values were selected

and from these clusters smaller than five voxels were removed.

The remaining sets of voxels constituted the ROIR and ROIL.

Next, a baseline value was computed for each ROI, mR and mL,

by averaging the signal inside the ROI in the data recorded during

the central condition. The first three volumes (4.86s) in central

trials that were preceded by an attention trial were excluded to let

the signal return to baseline. Additionally, the individual time

series of the voxels making up the ROIs were saved for the

purpose of detrending during feedback.

Feedback part
Trials. During feedback a longer trial of 10 scans (16.2

seconds) was used, and each condition was repeated 10 times.

Feedback was given by coloring the central instruction marker

according to the performance (see Classification and feedback). As

during the localizer part, the instruction was updated after the

analysis (0.8 seconds on average). Also here we have accounted for

this delay in all results.

Analysis. In the feedback part of the scan we gave the

subjects real-time information about their performance based on

the activity in ROIR and ROIL, as follows. When a new volume

was available it was first motion-corrected as during the localizing

part. After this the values inside the two ROIs were extracted and

added to the time series of available data (including the localizer

part). To remove any low frequency drift [51] in the signal,

detrending was now applied using an algorithm originally

described in the context of real-time detrending of heart-rate

variability measurements [52] (l~200). Each voxel’ time series

was detrended individually since the signal drift looked quite
Figure 2. The visual stimuli.
doi:10.1371/journal.pone.0027638.g002
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different in different parts of the image. The new detrended values

were averaged to give a single value per ROI and fMRI volume

(k), sR(k) and sL(k). These numbers were in turn normalized to a

percentage change from the baseline and subtracted to give the

value of the control signal CS defined as

CS(k)~100|½(sR(k){mR)=mR{(sL(k){mL)=mL� ð1Þ

where k is the volume number and mL and mR are the baseline

values computed from the localizer data.

Classification and feedback. The control signal was

classified based on its magnitude using three thresholds above

the baseline (p1, p2 and p3) and three below (n1, n2 and n3). The

central instruction marker was then colored according to this

classification. During attention two tones of green represented

weak and strong signals in the correct direction whereas two tones

of red represented a control signal indicating the wrong (or lack of)

direction (see Figure S1). During the central condition green

represented a signal close to baseline. For Subjects 1-7 fixed CS
thresholds of p1 = 1.5, p2 = 2.5, p3 = 4, n1 = -1.5, n2 = -2.5, n3 = -4

were used. These values turned out to be rather conservative, and

for Subjects 8-9 an adaptive thresholding approach was applied,

where the localizing data were used to select individual values

online. First a retrospective CS was computed applying Equation

1 to the available (localizer) data. Then, for both right and left

attention, the thresholds required to limit the false positive rate

(FPR) to 0.2 were estimated. These estimated thresholds were used

as p1 and n1. Here we needed a binary classification and for right

attention the value of CS was classified as ’positive’ if larger, and

’negative’ if smaller than p1. Thus, the FPRs were computed using

false positives from both the other conditions, i.e. opposite and

center attention. In order to account for the hemodynamic delay,

the instructions were shifted 3 TRs with respect to the control

signal before computing the FPR. The other threshold levels were

now set as p2~3:p1, p3~4:p1, n2~3:n1, n3~4:n1.

Performance
The true positive rate (TPR) and false positive rate (FPR) were

used as a measure of performance. As when determining the

adaptive thresholds, the instructions were shifted 3 TRs to account

for the hemodynamic delay. The FPR was computed both

including and excluding the central condition. The reason for

considering only the attention blocks is that the BOLD undershoot

following an attention block may produce a rebound in CS
towards the opposite side of the baseline. This is a BOLD effect

and would not be present in a BCI based on electrophysiological

measurements, e.g. EEG. Hence, to give a fairer measure of

stability during attention, the FPR was also computed after

removing the ’attend center’ blocks. To visualize how the TPR

and FPR depended on the thresholds, they were computed for

varying threshold levels and the results were plotted as receiver

operating characteristic (ROC) curves.

The performance depends on the thresholds p1 and n1, and

since only Subjects 8 and 9 were classified using adaptive

thresholding, we also recomputed the performance for Subjects

1 to 7 offline applying the same adaptive method.

Offline group analysis
For the group analysis we used SPM5. Each subject’s realigned

data were normalized to the Montreal Neurological Institute

(MNI) space using the structural T1 image. The normalized

functional images were smoothed with an isotropic 4mm FWHM

Gaussian kernel and then used to compute activation patterns.

The second level analysis was performed using a paired t-test

(attend left, attend right) on the resulting beta images and the

contrasts right-left and left-right were applied.

ECoG data and analysis
The patient had a 64-channel (868) electrode grid positioned on

the left parietal-occipital cortex, covering a considerable part of the

cortex included in the fMRI volume for the healthy volunteers. Data

were collected during a localizer task (20 trials attend left, 20 attend

right, 39 attend center, no feedback), with 5 s trial duration. The

signal was acquired at 512 Hz, and was referenced to a common

average across all 64-channels. The first 4 seconds (after instruction)

of each trial were used to compute the power in the high gamma

band (65–95 Hz). This single band was chosen as fMRI matched this

frequency range in previous studies [13,43,53]. Performance was

estimated by means of a leave-one-out cross-validation approach. For

each trial, all the other trials (constituting a ‘‘training set’’) were used

to create a classifier. Each classifier was a simple linear combination

of channels (electrodes), resembling the fMRI approach.

Each of the 79 cross-validation tests was performed in three

steps; (1) Normalization, (2) Selection of channels and (3)

Classification of the test trial.

(1) All channels (including the test trial data) were normalized, to

zero mean and unit variance, as estimated using the 78

training trials.

(2) Three sets of channels were identified, one for each attention

direction. Each set contained the channels where the average

amplitude differed enough between the corresponding

direction and the other two. For a channel to be included

in one of the sets it should; a : have an average higher (lower,

if negative due to deactivation) during this attention direction

than for the other two, with a difference to the closest one

larger than a certain threshold dd (see Optimization). b : have an

average during this attention direction with a value exceeding

half the standard deviation computed over all three directions.

Note that a channel can be selected for two of the attention

directions if there is an increase in gamma power during one

direction, and a decrease in the other.

(3) The test trial was classified as the direction whose set of

channels had the highest average magnitude.

Optimization. To optimize the performance, the selection of

channels was computed for a range of thresholds (dd[½0:1, 0:4�),
each giving a different selection. For each of these selections the

training trials were themselves classified, as described above. The

final selection, used for classifying the test trial, was the one giving

the most correct classifications of the training data.

Results

Control signals
The control signals (CS) for all subjects are plotted in Figure 3.

Dark gray, light gray and white represent the left attention, right

attention and center conditions, respectively. The condition blocks

are shifted 3 TRs (4.9 s) to compensate for the hemodynamic

delay. The responses to the different conditions were also

averaged, first for the individual subject, then over all nine

subjects. The results are plotted in Figure 4.

The strength of the attention-modulated signal changes in

ROIR and ROIL relative to their baselines might not be equal.

This means that when subtracted (see Equation 1), CS may be

biased towards one of the directions. Such an effect can be seen in

Figure 3 for Subjects 3 and 5. This bias can in turn lead to a

Visuospatial Attention for BCI Control
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difference between the two sides in the time needed to exceed the

thresholds. A more laterally symmetric control signal, and one that

is more uniform across subjects, could be achieved by normalizing

the signals using both the baseline and the standard deviation as

(sk{m)=s (see Equation 1).

Performance online
Table 1 shows the true positive rates (TPR) and false positive

rates (FPR) from the online results. For Subjects 1 to 7 fixed CS

thresholds of p1~1:5 and n1~{1:5 were used. The low

number of true positives together with the near absence of false

positives indicates that these thresholds were rather conserva-

tive.

For Subjects 8 and 9 adaptive thresholding was applied. The

localizer data were used here to estimate what threshold levels

are needed to restrict the FPR to 0.2. In this way we could

increase the number of true positives, while estimating the

risk.

Figure 3. The control signals (CS) for all subjects. (Subject 1-9 from left to right and top to bottom.) Light and dark gray represent right-sided
and left-sided attention respectively. The blocks have been shifted 3 TRs (4.9s) to compensate for the hemodynamic delay. The last plot shows the
average control signal over all subjects, with the standard deviation shown in white.
doi:10.1371/journal.pone.0027638.g003

Visuospatial Attention for BCI Control
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Performance offline
To assess what the performance would have been if we had

applied the adaptive thresholding to all subjects we recomputed

the analysis offline for Subjects 1 to 7. In this analysis the

thresholds were based on the localizer data in the same way as was

done online for Subjects 8 and 9. Table 2 shows the new

thresholds together with the resulting TPR and FPR values.

A more detailed view of how the classification depends on the

thresholds for Subject 2 is given by the ROC curves in Figure 5 (all

subjects’ ROC curves are plotted in Figure S2). The TPR and

FPR were computed using thresholds between -1 and 5 for right-

sided and 1 and -5 for left-sided attention. The unit thresholds are

marked in the plots as squares and triangles and the levels for the

online thresholds, 1.5 and -1.5, are indicated by stars. Note that

these values were not used online for Subjects 8 and 9.

An overview of the classification results over the different trials is

presented in Figure 6. For each time point (not adjusted for

hemodynamic delay) it shows the number of subjects with a

correct classification. We also computed the percentage of all

trials, for all subjects, that would be correctly classified if based on

a single volume. The curves in Figure 6 show the results for

classification based on each of the 10 time points within the trials.

Classifying the trials using only the 5th time point gives an average

Figure 4. Average control signal during the central, right-sided attention and left-sided attention trials. The averages are shown both
for the actual control signal during feedback and the control signal computed offline using the localizing data. The standard deviation is shown in
gray.
doi:10.1371/journal.pone.0027638.g004

Table 1. Online performance.

TPR FPR FPR{

Subject L R L R L R

1 0.64 0.39 0.02 0.07 0.00 0.00

2 0.28 0.13 0.03 0.00 0.00 0.00

3 0.55 0.08 0.04 0.01 0.01 0.00

4 0.17 0.54 0.02 0.09 0.00 0.02

5 0.68 0.21 0.00 0.00 0.00 0.00

6 0.18 0.29 0.02 0.01 0.00 0.00

7 0.40 0.11 0.01 0.00 0.00 0.00

Average 0.41 0.25 0.02 0.03 0.00 0.00

8 0.73 0.81 0.19 0.29 0.09 0.13

9 0.77 0.89 0.18 0.31 0.05 0.16

Average 0.75 0.85 0.19 0.30 0.07 0.15

Online True Positive Rate (TPR) and False Positive Rate (FPR). Fixed thresholds of
1.5 and -1.5 were used for Subjects 1 to 7, whereas adaptive thresholding was
applied to Subjects 8 and 9 (see Table 2). (L = left attention, R = right
attention,
{excluding the ’attend center’ condition.)
doi:10.1371/journal.pone.0027638.t001

Table 2. Offline performance.

threshold TPR FPR FPR{

Subject L R L R L R L R

1 -0.27 0.22 0.89 0.78 0.28 0.20 0.13 0.03

2 -0.32 0.16 0.90 0.67 0.29 0.14 0.13 0.01

3 -0.52 0.20 0.91 0.69 0.21 0.20 0.13 0.00

4 -0.27 0.37 0.61 0.94 0.12 0.36 0.00 0.18

5 -0.34 0.40 0.99 0.53 0.26 0.13 0.26 0.00

6 0.01 0.31 0.82 0.73 0.30 0.23 0.17 0.06

7 -0.06 0.18 0.89 0.88 0.24 0.23 0.09 0.07

Average 0.86 0.75 0.24 0.21 0.13 0.05

8 -0.15 0.22

9 -0.24 0.18

Offline True Positive Rate (TPR) and False Positive Rate (FPR) for Subjects 1 to 7
when applying adaptive thresholding. Columns 2–3 show the corresponding
thresholds. We also incuded these numbers for Subjects 8 and 9 where the
method was applied online. (L = left attention, R = right attention,
{excluding the ’attend center’ condition.)
doi:10.1371/journal.pone.0027638.t002

Visuospatial Attention for BCI Control
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correct classification of 89% for left attention and 88% for right

attention.

Though the RT-fMRI setup presented here is not meant to be

directly used as a BCI, but rather as a tool to practice and evaluate

control tasks, a bit rate can be computed. The most commonly

used bit rate definition in the field of BCI is the one from Wolpaw

[54]. This definition assumes that the classification accuracy is the

same for all classes and that the errors are equally distributed. To

fulfil these requirements we excluded the center class so that each

left and right attention trial were assigned to either left or right.

When each trial was classified using only the fifth time point the

average accuracy was 92% (left 93%, right 91%), with the increase

due to having no false negatives from the central attention class.

With each trial being 16.2 seconds this gave a bit rate of 2.2 bits/

minute. This number should not be seen as a highest possible bit

rate using a two direction visual attention task. Based on a direct

measure, e.g. ECoG, the time needed to make a classification will

be much shorter.

ROI selection
The t-maps from the online analysis of the localizing data were

thresholded to the two ROIs, ROIR and ROIL. Off-line

inspection showed that the t-values corresponding to the 500

voxels threshold were between 2.56 and 4.85 (ROIR; mean

~3:61,s~0:72, ROIL; mean ~3:67,s~0:60). (Table S1 shows

the individual values for both ROIR and ROIL as well as the size

of the final ROIs, i.e. after removing clusters smaller than 5

voxels.)

Incremental GLM analysis
The incremental GLM makes it possible to do the whole

experiment in a single fMRI run. The alternative is to stop after

the localizer data have been collected to do the statistical analysis

and define the ROIs, and then restart to do the feedback part.

Offline comparisons show that the incremental method [47] gives

an end result very similar to a standard ’full data’ GLM analysis

using the same regressors and contrasts. ROIs were for the latter

method computed as online, but based on t-maps computed from

the full localizer data set at once, instead of in incremental steps.

These ’full data’ ROIs, ROI , were then compared to the

incremental ROIs, ROI , using the Dice coefficient computed as

DC~
2jROI

T
ROI j

jROI jzjROI j

where j:j is the volume.

The average numbers across subjects, 0.98 for ROIR and 0.99

for ROIL, indicate an almost perfect overlap and suggest that

using the online incremental GLM does not decrease the

sensitivity.

Group analysis
To find the most frequently activated cortical regions during the

two attention conditions a group analysis was conducted. The t-

maps from the second-level analysis are displayed in Figure 7. The

activation patterns for all individual subjects (transformed to MNI

space) are displayed in Figure 8 both for the localizing and the

Figure 5. ROC curves plotted for the control signal classifica-
tion of Subject 2 over varying thresholds.
doi:10.1371/journal.pone.0027638.g005

Figure 6. Number of subjects having a specific image volume correctly classified. Each row represents one of the 10 trials, and each
column a time point (not adjusted for hemodynamic delay) in that trial. The curves show, for all time points, how many trials would be correctly
classified if based only on this particular volume.
doi:10.1371/journal.pone.0027638.g006
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feedback data. Figure S3 shows the group distribution of voxels

selected for the ROIs, projected on transversal slices.

The contrasts, and therefore the control signal, are sensitive to

both activation during attention to one side and deactivation

during attention to the opposite side, i.e. a high t-value for ’right-

left’ can be due to increased activity during right attention or

decreased activity during left attention, or both. Figure 9 separates

the areas in Figure 7 into voxels contributing to the differential

contrasts by means of positive activation and voxels whose

contributions come from a deactivation during opposing attention.

An interesting effect can be seen in the foveal regions around the

occipital poles in Figure 7 and Figure 9. These regions show

deactivation during contralateral attention. A possible explanation

could be that part of the visual field between center and attended

periphery is suppressed to reduce interference.

Eye movements
Any eye movements correlated to the instructions could induce

activations falsely interpreted as attention related. If these regions

end up in the ROIs it would mean that the regulatory control

would partly be based on motor activity. Even though it has been

shown multiple times that people have no trouble performing

covert spatial attention shifts in the absence of any eye-movements

(e.g. [30,32,34]) we decided to test subjects’ abilities to perform the

task while maintaining a central fixation. Without an eye-tracker

approved for use at 7T, we could not record the eye movements

during the experiment. Instead we had two additional subjects,

naive to the task and not part of the rest of the study, performing

the task outside the scanner during which we recorded their eye

movements using electrooculography (EOG) with two electrodes

below and lateral to the right eye, and a reference electrode behind

the ear. These subjects showed no eye movements correlated to

the task. (Figure S4 shows the average EOG response in both

electrodes for one of the subjects.)

The activity patterns themselves can also be used as an

indication of whether or not eye-movements were present. If the

gaze is moved to fixate on one of the targets, this target will move

to the center of the visual field while the instruction cue, to which

the subject will now have to move the attention in order to notice

new instructions, and the opposing target will be located in the

contralateral hemifield. Since each hemifield is represented by the

contralateral visual cortex this would mean that, except for the

foveal region, only the ipsilateral side would be activated. In other

words, if the subjects moved the gaze to the targets instead of

keeping it fixed at the center, the ‘‘left attention’’ condition would

only show activity in the right hemisphere and vice versa. This was

confirmed for Subject 8 in an additional localizing run where the

subject was asked to move the fixation the checkerboards. When

compared to the pattern seen during covert attention, the result is

distinctly different and laterally mirrored (see Figure S5).

If the subjects instead made small saccades towards the target

and back, the BOLD signal changes would not have been strong

enough for us to classify them in single images.

ECoG
The average TPR over the 79 cross-validation tests was 0:70

(right: 0.55, left: 0.60, center: 0.82). It should be noted that almost

half of the trials were center attention. Figure 10b shows the

number of times an electrode was selected to be included in the

classifier for one of the leave-one-out tests, and for which class.

The yellow markers show the locations of the electrodes, and the

colored circles the selection frequency. The locations of the

selected electrodes can be compared to the fMRI groupmap in

Figure 10a.

Discussion

In this study we show that brain signals associated with covert

visuospatial attention can be used for BCI control. Unique to this

approach is that the user can process information in the central

visual field while simultaneously exerting control over a device

merely by directing attention to the peripheral field.

Figure 7. The group activation pattern. Red represents t-values
from the contrast ‘attend right-attend left’ while blue represents ’attend
left-attend right’.
doi:10.1371/journal.pone.0027638.g007

Figure 8. The individual subjects’activation patterns. The
patterns both during the localizer part and the feedback part are
displayed on the MNI brain. The red and blue color scales represent t-
values from the contrasts ’attend right minus attend left’ and ’attend
left minus attend right’.
doi:10.1371/journal.pone.0027638.g008
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The brain activation patterns confirm earlier studies on

visuospatial attention, but are here decoded in real-time. Our

subjects easily managed to avoid eye movements during the task.

The results, together with the fact that fMRI activations have been

shown to agree with those found with intracranial electrodes

[13,41–43], have direct implications for BCI implants. A high

performance across subjects and activation confined to a few small

brain areas, suggest that the new control paradigm is well suited

for intracranial implants.

Using a 7 Tesla MRI system we show that signals from the

visual cortex are highly correlated to the direction of visual

attention, and can be reliably decoded in real time. One could

argue that the use of moving checkerboards introduces a confound

by inducing activity due to visual motion (e.g. in area V5).

However, we scanned two subjects using stationary stimuli (simple

triangles in the periphery) and found the same activation pattern

and performance (TPR; 90%/80% and 80%/80% for left/right

attention). Further, by using the checkerboard stimuli we show

that real visual input would not necessarily affect the attention-

based control signal. Thus, even in real-life situations with input

covering the full visual field our attention-based BCI approach is

likely to work, although this requires further testing.

Figure 9. Activations and deactivations. The group t-values higher than 2.5 (see Figure 7) are separated into areas showing activation versus
areas showing deactivation relative to the central attention task. The upper half shows the contrast ’attend right-attend left’ and the lower half
’attend left-attend right’. Red represents voxels whose contribution comes from increased activity, blue the voxels showing deactivation during
attention to the other side, and green voxels showing both these effects.
doi:10.1371/journal.pone.0027638.g009

Figure 10. ECoG electrode selections. (a) The fMRI group activation pattern (t w1:5, red: ’right-left’, blue: ’left-right’). (b) The yellow markers
show the electrodes’ locations on the cortical surface. On top of the markers it is shown in how many of the leave-one-out tests the electrode was
included. Red, blue and green represent right, left and center attention.
doi:10.1371/journal.pone.0027638.g010
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Cortical activations
Visuospatial attention, i.e. attention to central or peripheral

parts of the visual field while maintaining gaze to the center, has

been shown to cause region-specific changes in brain activity as

measured with fMRI [29–33,48,55,56]. An important finding was

the close topographical match of regions activated by actual visual

stimuli and by mere attention. Topography of the visual field on

the visual cortex has been elucidated in great detail [57]. In V1

and in the encircling areas V2 and V3 each hemifield maps onto

the contralateral hemisphere, and stimuli above and below the

horizontal meridian are mapped onto the ventral and dorsal

regions respectively. From the center of the visual field to the

periphery, cortical representations are laid out from the occipital

pole towards more anterior aspects of the visual cortex. The parts

of the visual cortex that correspond to the attended region exhibit

an increased BOLD signal during directed attention, also in the

absence of a visual input or eye movements [48,58]. Importantly,

while brain areas processing the attended location exhibit an

increased BOLD signal, a decreased signal is seen in brain areas

responsible for the part of the visual field surrounding the attended

location [48–50] and for locations containing distracting elements

[31].

Activation patterns in the present study show that the BOLD

changes occur in the expected parts of the visual cortex. We find

activation in anterior regions of the contralateral occipital cortex,

which corresponds to the location of the attended checkerboard.

Since the checkerboard crosses the horizontal meridian, both the

dorsal and ventral parts of V1-V3 are activated. Though V1

activation is often found on an individual level it is relatively weak

and the effect is washed out in the group analysis, see Figure 7.

Without a full retinotopic mapping we can not know for certain

which visual areas correspond to the activation clusters, but the

activations close to the posterior part of intraparietal sulcus

(Figure 7 and Figure 8) are likely V3A and/or V3B.

Almost all subjects showed activity at the ipsilateral occipital

pole (Figure 8), a region representing the foveal part of the visual

field. Figure 9 informs us that the effect in this region is a

deactivation during contralateral attention, i.e. the right occipital

pole gets suppressed during left peripheral attention. The same

effect was reported by Brefczynski-Lewis et.al. [33].

Though the overall pattern was the same across subjects there

were also variations, both in location and size of activation clusters.

This is partly due to the fact that the anatomical locations and sizes

of the visual field maps vary across individuals [57,59,60], but on

top of this there is also an individual variation in the attentional

topography, e.g. amount of ipsilateral effect and the spread of the

activation [33]. However, the individual pattern is consistent and

does not change over sessions [33] which is important when

considering BCI and implantation of electrodes.

Control signals and classification
The fixed thresholds used for classification in subjects 1-7

turned out to be very conservative, resulting in most images being

classified as ’off’. For those subjects the average TPR were 0.41

and 0.25 for left and right, respectively. The adaptive thresholding

applied to the two other subjects greatly improved the online

sensitivity, while still limiting the false positives. With this

improvement, these subjects’ TPR averaged 0.75, for left, and

0.85, for right. This motivated an offline re-computation of the

first group’s performance using the same adaptive method,

increasing the TPR to 0.86 and 0.75 for left and right, respectively.

Besides these numbers, based on individual images, we

computed a measure of performance by classifying each complete

trial. However, since the aim was to test the stability of our control

paradigm and its capacity in the context of implanted electrodes,

not to optimize the BOLD classification, we avoided time

averaging of the data. Instead we also classified each trial using

only the 5th time point. This still gave an average correct

classification of 89% for left attention and 88% for right attention

(Figure 6).

These numbers are in the upper range of what has been

reported with EEG based systems using e.g. motor imagery and

SSVEP [61,62]. It should be noted that we have included an ’off’

class (central attention), which in practice makes it a three-class

paradigm. The inclusion of a inclusion of a ’no-choice’ option is

something that is often overlooked in BCI studies [63]. If we would

have classified each time point using only the options of left or

right attention, the performance would have been even higher.

Classification of fMRI data is inevitably slow since the BOLD

response has a delay of around 5 seconds after neural firing, and it

takes a long time before the signal returns to baseline. However,

the time delay will not be present in a true BCI system based on

electrophysiological signals. Naturally, a quick detection is desired

also for our purpose of task evaluation and subject training, but

here the few seconds delay is more acceptable.

Suggested improvements
The thresholds should be estimated online as was done for two

of our subjects. In this way one can take advantage of the

individual differences. The ROI selection can be improved in

several ways. As a starting point, we used a fixed number of 500

voxels to include in each ROI. However, the number of voxels

selected should probably not be a fixed value but somehow depend

on the t-value distribution. On the other hand, a fixed t-value

threshold could lead to unpredictable results due to a large

variation of the ROI sizes across subjects. It would also be possible

to put anatomical restrictions on the ROIs. By defining a mask

based on a structural image the voxel selection can be restricted to

e.g. a single hemisphere.

Potential
We have shown that the BOLD response following a covert shift

of attention to a peripheral region in the visual space is strong

enough to be classified in a single trial. Although BOLD is an

indirect measure of neural activity, the spatial locations identified

by fMRI have been shown to closely match those found using

invasive electrophysiological measurements [13,41,42]. Despite a

limited number of trials and the non-optimal placement of the

electrode grid, our ECoG data show that it possible to classify the

same attention task using the power in the gamma band. Hence, it

is likely that signals recorded by electrodes placed at the optimal

positions, as located by fMRI, can be classified with at least the

accuracy of our fMRI system. Moreover, the detection will be

much quicker based on the electrical response, compared to when

using the hemodynamic response.

The spatial attention strategy has some attractive features not

found in the tasks commonly used for BCI, such as motor imagery.

First, the degrees of freedom can be increased by simply adding

more peripheral target regions. Second, a target region can be

moved to the location in the visual field that is mapped to, and

activates, the cortical area most suitable for implantation. It is also

possible that by using this property, and selecting to activate a

superficial brain area, it will be easier to pick up the signal changes

with EEG or fNIRS.

The real-time fMRI setup described here can be used for

evaluating new paradigms as potential control tasks, and to train

subjects in them. When planning implantation of intracranial
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electrodes, the BCI setup can be tried out before surgery in order

to locate the best and most stable positions.

Supporting Information

Figure S1 Table displaying the colors used for perfor-
mance feedback.
(EPS)

Figure S2 ROC curves plotted for the control signal
over varying thresholds. (Subject 1– from left to right and top

to bottom.)

(EPS)

Figure S3 The number of subjects having a voxel
included in an ROI. The red scale represents ROIR and the

blue scale ROIL. Due to interpolation during normalization, the

numbers are not integers.

(EPS)

Figure S4 Eye movements. The plots show the eye

movements for one of the two subjects (not part of the rest of

the study) measured using EOG outside the scanner while

performing the localizer task. Two electrodes, E1 and E2, were

placed below and lateral to the right eye, respectively, and were

referenced to an electrode placed behind the ear. The dotted line

shows the response level during actual eye movements to the target

regions (two lines for E2 since the response to the two directions

has opposing polarity.).

(EPS)

Figure S5 The difference in activation pattern between
covert attention and actual directed gaze. The localization

part of the experiment was repeated for Subject 8 with the

instruction to direct the gaze to the target. The overlay show t-

values . 3 for the contrasts ’right-left’ and ’left-right’.

(EPS)

Table S1 T-value thresholds and ROI sizes. T-values

corresponding to the threshold of 500 voxels used to define the

ROIs. |ROI| is the number of voxels in the final ROI, after

removing all clusters smaller than five voxels.

(PDF)
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