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Nanotechnology has enabled the development of innovative technologies and products

for several industrial sectors. Their unique physicochemical and size-dependent

properties make the engineered nanomaterials (ENMs) superior for devising solutions

for various research and development sectors, which are otherwise unachievable

by their bulk forms. However, the remarkable advantages mediated by ENMs and

their applications have also raised concerns regarding their possible toxicological

impacts on human health. The actual issue stems from the absence of systematic

data on ENM exposure-mediated health hazards. In this direction, a comprehensive

exploration on the health-related consequences, especially with respect to endocrine

disruption-related metabolic disorders, is largely lacking. The reasons for the rapid

increase in diabetes and obesity in the modern world remain largely unclear, and

epidemiological studies indicate that the increased presence of endocrine disrupting

chemicals (EDCs) in the environment may influence the incidence of metabolic

diseases. Functional similarities, such as mimicking natural hormonal actions, have

been observed between the endocrine-disrupting chemicals (EDCs) and ENMs,

which supports the view that different types of NMs may be capable of altering

the physiological activity of the endocrine system. Disruption of the endocrine

system leads to hormonal imbalance, which may influence the development and

pathogenesis of metabolic disorders, particularly type 2 diabetes mellitus (T2DM).

Evidence from many in vitro, in vivo and epidemiological studies, suggests that

ENMs generally exert deleterious effects on the molecular/hormonal pathways and the

organ systems involved in the pathogenesis of T2DM. However, the available data

from several such studies are not congruent, especially because of discrepancies

in study design, and therefore need to be carefully examined before drawing

meaningful inferences. In this review, we discuss the outcomes of ENM exposure in

correlation with the development of T2DM. In particular, the review focuses on the

following sub-topics: (1) an overview of the sources of human exposure to NMs, (2)
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systems involved in the uptake of ENMs into human body, (3) endocrine disrupting

engineered nanomaterials (EDENMs) and mechanisms underlying the pathogenesis of

T2DM, (4) evidence of the role of EDENMs in the pathogenesis of T2DM from in vitro,

in vivo and epidemiological studies, and (5) conclusions and perspectives.

Keywords: engineered nanomaterial (ENM), type 2 diabetes mellitus (T2DM), endocrine disruptor, insulin

resistance, reduced insulin sensitivity, oxidative stress, in vitro and in vivo studies, epidemiological evidences

BACKGROUND

Materials acquire unique characteristics when the size of the
particle is reduced to nanoscale. Nanomaterials (NMs) are a
universal set of nanoscale materials having at least one of
the dimensions in the nano-range. With having at least one
dimension in nanoscale as a common feature, nanoparticles,
nanowires, nanosheets, nanotubes, and nanoplates can be stated
as the key subsets of NMs (1). The various properties of
a nanomaterial (NM), including its melting point, electrical
conductivity, magnetic permeability, chemical reactivity and
fluorescence, are determined by the particle size (2). Size-
reduction of a material to nanoscale enhances its functional
aspects and associated technological benefits. Therefore, the use
of engineered nanomaterials (ENMs) in the development of
advanced technologies for medicine, engineering and natural
sciences has significantly increased since the start of the twenty-
first century (3). ENMs are being incorporated into our everyday
routine as a part of clothing, food, cosmetics, medicines,

Abbreviations: AgNPs, Silver Nanoparticles; Ahr, Aryl Hydrocarbon Receptor;

AKT, Alpha Serine/Threonine Kinase; ALS, Alloxan Sensitive; AMPK, AMP

Activated Protein Kinase; AR, Androgenic Receptor; AuNPs, Gold Nanoparticles;

B7/CD28, Immunoglobulin Superfamily Members; BrdU, Bromodeoxyuridine;

CARDIA, Coronary Artery Risk Development In Young Adults; CdTe Qds,

Cadmium Telluride Quantum Dots; CeO2-NPs, Cerium Oxide Nanoparticles;

CHOP, CCAAT-Enhancer-Binding Protein Homologous Protein; Cpg-Odns,

Cpg Oligodeoxynucleotides; CrNano, Chromium Nanoparticles; CRP, C-Reactive

Protein; EDCs, Endocrine-Disrupting Chemicals; EDENM, Endocrine-Disrupting

ENM; ENM, Engineered Nanomaterial; ER, Estrogen Receptors; G6PDH,

Glucose-6-Phosphate Dehydrogenase; GI, Gastrointestinal tract; GK, Goto-

Kakizaki; GLUT, Glucose Transporter; GNPs, Gold Nanoparticles; GPR30,

G-Protein-Coupled Receptor For Estrogen; GPX, Glutathione Peroxidase; GR,

Glutathione Reductase; GSH, Glutathione; GSK, Glycogen Synthase Kinase;

H2O2, Hydrogen Peroxide; HIP, Human Amyloid Polypeptide; IFG, Impaired

Fasting Glucose; IFN, Interferon; IL, Interleukin; INS-GNPs, Insulin-Coated Gold

Nanoparticles; IONPs, Iron Oxide (Fe2O3) Nanoparticles; IPCS, International

Programme On Chemical Safety; IR, Insulin Receptor; IRE-1, Inositol-Requiring

Enzyme 1; IRS, Insulin Receptor Substrate; JNK, C-Jun N-Terminal Kinases;

LDL, Low Density Lipoproteins; MCP1, Monocyte Chemoattractant Protein

1; MDA, Malondialdehyde; MIMIC, Modular Immune in vitro Construct, An

Artificial System Imitating TheHuman Immune System;MSNs,Mesoporous Silica

Nanoparticles; Mtor, Mammalian Target of Rapamycin; NMs, Nanomaterials;

NPs, Nanoparticles; PEG-B-PLGA, Biodegradable Polyethylene Glycol And

Poly (Lactic-Co-Glycolic Acid) Copolymer; PI3K, Phosphatidylinositol 3-Kinase;

PPAR, Peroxisome Proliferator Activated Receptor; PR, Progesterone Receptor;

PTP, Phosphotyrosine Phosphotase; rHEGF, Recombinant Human Epidermal

Growth Factor; ROS, Reactive Oxygen Species; SD, Sprague–Dawley; SeNPs,

SeleniumNanoparticles; SNP, Single Nucleotide Polymorphisms; SOD, Superoxide

Dismutase; T2DM, Type 2 Diabetes Mellitus; TiO2-NPs, Titanium Oxide

Nanoparticles; TNF-α, Tumor Necrosis Factor –A; UFPs, Ultrafine Particles;

WHO, World Health Organization; ZON, Zinc Oxide Nanoparticles; β-Cells, Beta

Cells.

electronic goods, etc. However, in parallel to the technological
advancements, the biosafety issues related to ENMs have also
become a matter of apprehension. Whereas, for applications in
medicine, ENMs are optimized to enhance their cellular uptake
and/or targeting to the desired tissue, an inadvertent exposure
to workers may raise health concerns (4, 5). Multiple studies
have suggested that unlike their bulk counterparts, the ENMs
are highly toxic and may lead to serious human and ecological
health risks (6–8). The toxic outcomes of ENM exposure are
largely accredited to their small size and increased chemical
reactivity, which enhances their permeability to the target tissues
which are otherwise not penetrated by larger but chemically
identical materials (9). Noticeably, evidence from several research
studies indicates functional similarities between the endocrine-
disrupting chemicals (EDCs) and ENMs, which supports the
view that different types of NMs may be capable of altering the
physiological activity of the endocrine system (10–14).

The WHO (World Health Organization) International
Programme on Chemical Safety (IPCS) conducts research to
understand the basis for the management of chemicals and
related risks. According to the IPCS, “a potential endocrine
disruptor is an exogenous substance or a mixture, possessing
properties that can lead to endocrine disruption in an intact
organism, or its progeny, or (sub) populations” (15). Further
to add, the EDCs are elements present in our environment,
food, and several consumer products that can interfere with
synthesis, secretion, transport, metabolism, binding actions and
elimination, andmimic the natural hormones. Consequently, this
may lead to a deviation from the normal physiological function
of the endocrine system to endocrine disruption. The EDCs and
endocrine disrupting ENMs (EDENMs) are prevalent in various
consumer goods such as agricultural chemicals, notably fertilizers
and pesticides (16, 17), therapeutics (18), cosmetics (19, 20),
and paints (19). There is accumulating evidence suggesting an
increased presence of EDCs and ENMs in the environment,
which putatively affects the functioning of the endocrine system,
metabolic system and reproductive system (Figure 1). Hence,
though the ENMs promise remarkable benefits, their successful
application requires investigation of their impact on human
health.

Both EDCs and NMs are regularly investigated for adverse
impacts on health. Studies conducted to evaluate the effects of
EDCs on health have generally reported deleterious outcomes
like altered reproductive function in males and females (21–
25), increased incidence of breast cancer (26–30), abnormal
growth patterns (31–33), neurodevelopmental delays in
children (34–36), and changes in immune functions (37–39).
Similarly, exposure to NMs is found to be associated with
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FIGURE 1 | A schematic describing different types of endocrine disruptors and the associated endocrine disorders.

several adverse outcomes such as impaired immune response,
inflammation, fibrosis, emphysema, and tumor formation
(40–45).

Additionally, EDCs have been reviewed to act as causative
agents of metabolic disorders like type 2 diabetes mellitus
(T2DM) (46, 47). The prevalence of T2DM has seen a
tremendous global upsurge during the last few decades. A report
from the International Diabetes Federation (IDF) estimated
∼425 million adults (aged between 20 and 79 years) all over the
world were living with diabetes in 2017 and predicted that by
2045 this will rise to 629million. A large number of investigations
to define the genetic and environmental bases of T2DM has
been done to date but the definite reasons for a rapid increase
in diabetes and obesity in the modern world largely remain
unclear. Research in the arena increasingly indicates a major
role played by environmental chemicals in diabetes and obesity,
advocating that the environmental led metabolism disruption
could form the “paradox of progress” (48). At present, only a
few studies have examined the role of ENMs in the pathogenesis
of T2DM. Chevalier and Fénichel reviewed both in vivo and
in vitro experimental data along with epidemiological evidence
to support an association of EDC exposure to the induction of
insulin resistance and/or disruption of pancreatic β-cell function
that leads to glucose homoeostasis related metabolic disorders
(49). The evidence of ENM mediated alterations in glucose
metabolism, insulin resistance and sensitivity, and homeostasis
pathways are mostly indirect. The influence of EDENMs on the
candidate genes of T2DM and their further impact on various
molecular pathways are scarcely defined at present. Herein,

we reviewed the recent literature that presented the effects of
ENMs on molecular pathways involved in the development of
T2DM. We also identified the knowledge gaps and challenges
in the research area, which may provide directions for future
research.

AN OVERVIEW OF THE SOURCES OF
HUMAN EXPOSURE TO NANOMATERIALS
(NMs)

The probability of exposure to NMs in humans (50, 51)
increases not only during production and application of ENMs,
but also due to their emergence through several natural
processes.

Natural Sources of NMs
We generally correlate exposure to NMs with human activities
like the automobile industry, building construction and charcoal
burning. However, 90% of the nano-particulate matter present
in the environment is produced through natural phenomena
such as dust storms, forest fires and volcanic eruptions, which
significantly pollute natural resources, and affect human health.
Dust storms are the main source of environmental NMs which
can lead to respiratory issues, especially in subjects suffering
from asthma and emphysema. Furthermore, dust rich in metal
particles can lead to the generation of reactive oxygen species
(ROS) (52), which may lead to an inflammatory response and
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influence pathogenesis of life style disorders such as T2DM and
heart disorders.

Anthropogenic Sources of NMs
ENMs comprise the main category of anthropogenic release
of NMs in the environment. These are produced and released
into the environment by either intentional or unintentional
human activities. The unintentional release of NMs occurs from
the burning of natural fuels, wood, and wax (53–56). The
intentional release occurs through the discharge of ENMs to
rivers, landfills, soils and wastewater-treatment plants as well
as from engineered products with embedded NMs. Intentional
activities include the commercial synthesis of NMs, combustion
of fossil fuel, manufacturing of NM embedded products, etc. Such
products have found applications in biomedical, pharmaceutical,
and agricultural domains. ENMs are rapidly being used in
pharmaceuticals as carriers (57, 58) and as nano-formulations
of drugs (59–61) and for electro-analysis of pharmaceuticals
(62, 63). ENMs also find diverse applications in agriculture (64)
to increase the productivity by providing nano-scaled solutions
primarily as pesticides (65), fertilizers (65), and biosensors (66).
A fraction of these ENMs may also make their way into soil
and water ecosystems, and therefore into drinking water and
food products (67–69). Such observations have raised concerns
regarding the presence of ENMs in consumer products and
plausible association with human health and environmental
degradation.

SYSTEMS INVOLVED IN UPTAKE OF ENMs
INTO THE HUMAN BODY

Both natural and anthropogenic NMs enter the human
body primarily through the respiratory system, skin and
gastrointestinal (GI) tract, with further translocation to different
tissues and organs as depicted in Figure 2 (71, 72). Considering
the plethora of anthropogenic NMs, many ENMs may not be
effectively removed and therefore can accumulate in different
organ-systems over a period. Various cell types by which the
ENMs are internalized include macrophages (73–75) endothelial
cells (76), pulmonary epithelial cells (77–79), the gastrointestinal
epithelium (80), blood cells (81), and neurons (82). Depending on
their cellular concentration, the nanoscale particulate matter can
mediate mutagenesis, damage to cell organelles, and eventually
cell death.

Respiratory System
The ENMs most prominently reach the body by inhalation
and deposit throughout the entire respiratory tract (41, 70, 83).
The soluble kinds of ENMs such as branched polyethylenimine
and arginylglycylaspartic acid (RGD) based hydrophilic ENMs
can be dissolved in the aqueous fluid lining the epithelium
and can escape into the circulatory and lymphatic systems.
However, the insoluble ENMs like nano-formulations of Au,
Ag, Ti, Si, carbon etc., may accumulate in the lungs upon
continued exposure, resulting in injury to the lung tissue (84).
Recent research has demonstrated that inhalation of ENMs can
deregulate the immune system and diminish the ability to fight

infections (85). Also, as depicted in Figure 2, ENM exposure
through the respiratory tract has been found to be associated with
respiratory disorders, namely asthma (86), bronchitis (87, 88),
and emphysema (89, 90); neuro-degenerative disorders, namely
Alzheimer’s (91), and Parkinson’s (92, 93); and heart diseases
(84).

Skin
The extent of the uptake of ENMs by human skin is still
debatable. The outer layer (stratum corneum) of the skin consists
of a layer of dead cells and is generally impervious to materials
having a pore diameter greater than micron size (94). However,
many research studies show that NPs can penetrate the stratum
corneum (95–97), especially when the skin is flexed. Dermal
exposure of ENM has been reported to be associated with
dermatitis (eczema) (98–100).

Gastrointestinal System
ENMs present in food and cosmetics may enter the human body
through ingestion by the gastrointestinal (GI) system. Nano-
enabled applications, especially those for the food industry,
dental care products and cosmetics, may lead to ENM exposure
related toxicity (101–103) in humans. Major ENMs that are
reported to cause cytotoxicity when ingested include nano-forms
of gold, silver, and metal oxides of zinc, silica, and titanium
(104–108). As also depicted in Figure 2, exposures to these NMs
through the GI can lead to Crohn’s disease, Colon disease and
Gastroenteritis (109).

ENDOCRINE DISRUPTING ENGINEERED
NANOMATERIALS (EDENMS) AND
MECHANISMS UNDERLYING THE
PATHOGENESIS OF TYPE 2 DIABETES
MELLITUS (T2DM)

A global spike in the production of ENM has been observed in
the twenty-first century, which has enhanced the exposure rate
among workers and users. At present no occupational exposure
level (OEL) for ENM has been defined and the assessment
of exposure to ENM is challenging. Several research groups
through various experimental models have demonstrated that
ENM can elicit toxic responses that may be inferred from
abnormalities in various organ-systems (110–113). The extent of
toxicity conferred by ENM has been reported to depend upon
their physicochemical properties including size, shape, chemical
nature, and surface functionalization. The cytotoxic nature of
ENM could eventually lead to cell death in a dose-and time-
dependentmanner (114). On the other hand, some other research
studies that conducted short-term experiments on cultured cells
and model organisms in order to evaluate the biocompatibility
of ENM (115) suggested a low level of cytotoxicity of ENM.
These studies advocated a huge potential for in vivo applications
of ENM in the form of therapeutic and diagnostic reagents,
although the effects related to a long-term exposure remain
an unexplored domain at present. The studies on the long-
term effects of ENM in vivo hold significant importance in
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FIGURE 2 | A concise overview of affected organs resulting in various pathological states due to the exposure to ENMs as described in the literature (42, 70). The

directly and indirectly affected systems are shown by solid and dashed lines respectively.

designing and development of next-generation materials, but the
mechanisms underlying ENM mediated toxicity in humans are
less understood (116), Particularly, whether ENM exposure leads
to endocrine-disruption and influences development of T2DM
among the exposed subjects remains a topic of investigation.

Contemporary in vitro, in vivo and epidemiological studies
link human EDC exposure with obesity, T2DM and metabolic
syndrome (47). Endocrine disruptors have a tendency to interact
with the cellular receptors either by mimicking the natural
hormones (Figure 3A) or by blocking the action of hormones
(Figure 3B) (117).

Some studies have revealed the harmful effects of ENMs on

endocrine functions, which suggests that ENMs may behave as
potential endocrine disruptors, EDENMs (118–121). It is well

acknowledged that endocrine disruption can often lead to the

onset of metabolic disorders such as T2DM (122). Therefore, it
is suggested that the ENM, which reportedly affects endocrine

function, may induce T2DM. The EDENMs can behave in a
similar fashion as the EDCs (13, 123, 124). The additional aspects

of EDENMs over the traditional EDCs are small size, increased
surface area and better uptake capability. Such properties of
EDENMs enhance their chances of uptake and bioavailability,
which further amplifies the deteriorating effect of the material on

metabolic homeostasis (125–129) when compared to the other
EDCs.

Working on similar ground as that of endocrine disruptors,
ENMs may alter the normal metabolic state by affecting glucose
homeostasis, leading to T2DM via the two chief mechanisms
(Figure 4)—(i) decreasing insulin sensitivity and (ii) impairment
of beta (β)-cells, resulting in a deleterious effect on insulin
production (130–132).

Reduced Insulin Sensitivity
Several factors lead to a reduction in cellular insulin sensitivity.
Using the available in vitro, in vivo and epidemiological data,
here we reviewed and illustrated the prominent mechanisms
leading to decreased insulin sensitivity. The major focus in
this review has been laid out—impairment of cellular insulin
action, interaction with hormonal receptors, inflammation, and
variations in homeostatic pathways. Each of these factors is
explained in the following sections with evidence to show the
deleterious effect of ENM on the pathogenesis of T2DM.

Impairment of Cellular Insulin Action
Cellular metabolic reactions are often mediated by insulin via its
action on the plasma membrane, intracellular enzymes and the
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FIGURE 3 | Effect of endocrine disrupting chemicals on receptor—hormone interaction. (A) Shows the blocking action of EDCs, where it binds to the receptor within

the cell and blocks the endogenous hormone from binding. The normal signaling is blocked and the associated organ system (liver and pancreas) fails to respond

properly. In (B), the mimicking action of EDCs is depicted. EDCs completely or partially mimic the naturally occurring hormones, thereby interfering with the obvious

physiological responses.

FIGURE 4 | Effects of ENM on the gastrointestinal system, leading to the development of T2DM.

nucleus. The cellular metabolism is regulated by various proteins
(e.g., protein kinase C), receptors (e.g., receptor tyrosine kinase)
or expression of secondary messengers (e.g., cyclic AMP, calcium,

and diacylglycerol). These components control the translocation
and activation of glucose transporter proteins (primary effects
of insulin) (133). ENMs can influence the signaling mechanism
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by interfering with the normal actions of cellular messengers
(130, 134–137).

The effect of titanium oxide nanoparticles (TiO2-NPs) on
insulin resistance in liver-derived cells was evaluated in a
research study (138). Briefly, the dose-dependent action of
TiO2-NPs on Fao cells (rat hepatoma) was investigated. The
cells were exposed to various concentrations (10, 50, 100,
and 200µg/mL) of TiO2-NPs. It was observed that treatment
with 50–200µg/mL of TiO2-NPs actuated insulin resistance
by two mechanisms—directly affecting the hepatic cells to
induce hepatic insulin resistance (Figure 2) and indirectly
eliciting an inflammation response on macrophages (Figure 6)
and hence releasing inflammatory cytokines such as Tumor
Necrosis Factor –α (TNF-α) and Interleukins—1α/β (IL-1α/β).
Administration of conditioned media form TiO2-NP-treated
macrophages confirmed the activation of TNF-α, IL-6, IL-8, IL-
1α, and IL-1β. These inflammatory cytokines caused insulin
resistance in Fao cells. In addition, it was observed that direct
exposure of TiO2–NPs to hepatic cells triggered the activation of
stress kinases—c-Jun N-terminal Kinases (JNK) and p38, which
attenuated the phosphorylation of Insulin Receptor Substrate
(IRS) −1/2, and Glycogen Synthase Kinase (GSK) 3β, and led to
abnormal insulin signaling (Figure 5).

An 8-week study was conducted to evaluate the effects of
chromium nanoparticles (CrNano) on the hormone and immune
responses of rats under heat stress conditions (118). Four groups
(with 20 individuals per group) of Sprague–Dawley (SD) rats
were randomly assigned to different dietary treatments. The
first group was offered a basal diet as a control. The second,
third, and fourth groups received a basal diet supplemented with
150, 300, and 450 µg/kg of CrNano, respectively. The treatment
groups were then studied for various parameters governing
overall metabolism. Measurement of sera concentrations of
hormones and immunoglobulins with respect to the control
group showed a decreased concentration of insulin and an
increased concentration of insulin-like growth factor I and
immunoglobulin G in the serum.

The same research group conducted another 6-week study to
evaluate the effects of seven different levels of dietary CrNano (0,
75, 150, 300, 450, 600, and 1200 ppb Cr) in SD rats (139). Seven
groups with 10 individuals per group of SD rats were randomly
assigned to different dietary treatments. The results indicated that
an addition of 300 and 450 ppb CrNano significantly decreased
(p < 0.05) the serum insulin level. It was observed that the Cr
contents in the liver and kidney were significantly increased (p
< 0.05) by incremental dosage of CrNano from 150 to 1,200 ppb.
The probable mechanism of reduction in peripheral insulin levels
was ascribed to the activity of chromium in promoting hormone
internalization into cells by increasing the membrane fluidity
as explained by Evans and Bowman (140). This possibly led to
altered insulin actions including binding of insulin to insulin
receptors and the undesired interaction of insulin with various
tissues such as adipose tissues and muscle tissues.

Interaction With Estrogenic Receptors
Estrogen receptors (ERs) expressed in adipose tissue, skeletal
muscle, liver and pancreatic cells interact with estrogens and

regulate metabolism. ER-α and ER-β play an important role
in the regulation of glucose homeostasis by modulation of
insulin sensitivity (141) and pancreatic insulin secretion (142).
Additionally, in order to alter insulin secretion, the estrogen
receptors facilitate the action of estrogen via G-protein coupled
membrane receptors (137). The available reports suggest an
antagonistic action of EDENMs toward the estrogenic receptors
(127, 143, 144), whichmay lead to a decrease in insulin sensitivity
and thereby alter glucose homeostasis.

The role of EDENMs in influencing estrogenic activity
was demonstrated in a study where time-dependent (1, 3,
or 5 h) treatment with 10 nm gold NPs to ovarian granulosa
cells resulted in increased levels of estrogen (127). ERs have
pathway modulation action via genomic and non-genomic
approaches. While the genomic activity involves action of
classical nuclear receptors to directly modulate the genes vital
to homeostasis, the non-genomic route follows the use of
kinases that activate signaling pathways resulting in the activation
of ER pathway modulators. The increase in estrogen levels
was suggested as indicative of the modulation of processes
undergoing nuclear translocation, which might manipulate the
normal gene expression for normal insulin signaling.

More evidence to support the endocrine-disrupting action of
NMs was generated through illustrating the action of Cadmium
Telluride Quantum Dots (CdTe QDs) (143). A dose-dependent
study was carried out in uterine cells from female mice.
The endocrine disrupting results were confirmed by a BrdU
(BromodeoxyUridine) cell proliferation assay and a human ER
1 reporter assay for an assessment of ER activation.

Inflammation as the Cause of Insulin Resistance
In line with the ongoing research on the effect of ENMs on
the immune system, research observations have established that
the secretion of inflammatory cytokines by various cell types
(Figure 6) has an impact on insulin resistance (126, 128, 145–
147). With their local and global action on different tissues,
inflammatory cytokines have contributed to the development
of insulin resistance and T2DM (146). The immune system
recognizes ENMs as antigens and thus elicits an acute response.
Under such circumstances, the adipose tissue upregulates the
production of cytokines, which consequently leads to abrupt
molecular signaling and the development of T2DM (148).
Additionally, a substantial role of various ENMs in causing
inflammation mediated toxicity has been previously reported
(138, 149, 150).

Evidence from in silico experiments has provided insights into
the putativemechanistic underlying the toxic response of carbon-
based ENMs that causes T2DM. The effects of introducing C60
fullerenes and carbon nanotubes in a living system were modeled
in a computational analysis (151). Results demonstrated that
carbon NMs could be recognized as pathogens by the Toll-
like receptors that may elicit innate immune response. Such
a theory was well supported by expression of inflammatory
secretory proteins like interleukin IL-8 and chemokine monocyte
chemoattractant protein (MCP1). In another study, direct
exposure of ENMs, including nano-diamonds and nano-
platinum liquid, to human dendritic cells resulted in an enhanced
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FIGURE 5 | Molecular pathways influenced by EDENM, leading to the development of T2DM. (EDENM, endocrine disrupting engineered nanomaterials; T2 DM, Type

2 Diabetes Mellitus; ER, estrogenic receptor; AR, androgenic receptor; PR, progesterone receptor; AhR, aryl hydrocarbon receptor; GPR30, G-protein-coupled

receptor for estrogen; IRE-1, inositol-requiring enzyme 1; AKT, alpha serine/threonine kinase; CHOP, CCAAT-enhancer-binding protein homologous protein; JNK,

c-Jun N-terminal kinase; GSK 3β, Glycogen synthase kinase 3 beta; IRS-1, Insulin receptor substrate 1). (The green solid arrows show the direct effect of EDENM.

The green dashed arrow shows one of the major consequent events later resulting in T2DM, as further described by the blue solid arrows. Black solid arrows point

toward the involvement of various receptors resulting in endocrine system disorders. Purple solid arrows infer the T2DM occurrence via various pathways).

expression of IL-1β, IL-6, and TNF-α. These cytokines are known
mediators for an inflammatory response (152).

Metallic ENMs were also studied to assess any associated
immune response by exploring a variety of mechanisms.
Many research groups have conducted various experiments
to understand the mechanistic for the inflammatory action
of gold nanoparticles (GNPs) (125–127, 153). In one study,
two different sized GNPs, 10 and 50nm, were chosen to
look for the enhancement of gene expression for cytokines
IL-1β, IL-6, and TNF-α by exposure to rat liver (146).
The study also included experiments to understand the
possibility of oxidative stress mediated damage to hepatic cells.
The observations confirmed the generation of ROS in the
presence of GNPs. These results clearly suggest that both the
inflammation and oxidative stress related molecular pathways
induced by ENMs play a significant role in the etiology of
T2DM.

Another group investigated the combined effect of ZnO
nanoparticle-mediated oxidative stress and immunogenic
responses on immune cells. Immune cells, lymphocytes
(activated memory and naïve) and monocytes, were assayed for
the expression of (Interferon) IFN- γ, TNF- α, and IL-12 upon
treatment with ZnO nanoparticles of varying sizes (4, 8, 13 and

20 nm). It was observed that activated memory lymphocytes
were the most robust against ZnO exposure, followed by naïve
lymphocytes. Monocytes were the most susceptible of the three
choices. The effect on immune cells was size-dependent, with
the smallest ZnO particles contributing most to the generation
of ROS and toxicity (154). Such findings are in line with the
previously discussed roles of inflammation and oxidative stress
in the etiology of T2DM.

Evidence to support the involvement of metallic ENMs in
eliciting immune response was put forward by creating a novel
platform, MIMIC (Modular Immune in vitro Construct, an
artificial system imitating the human immune system). This
provides a digitalized platformwhere the response of the immune
system to an antigen can be modeled computationally. Also,
it is more flexible and faster as compared to traditional cell
or animal models. The study was modeled in a predictive
immunological construct for assessment of the effect of nano-
TiO2 on the increase in the expression of IL-1β, IL-6, and TNF-
α. The results demonstrated an enhancement in the secretion
of pro-inflammatory cytokines on TiO2 exposure. Additionally,
the expression of co-stimulatory B7/CD28 on dendritic cells was
observed, which suggested a putative action of T-cells against
TiO2 nanoparticles (145).
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FIGURE 6 | Effect of EDENM on various immune cells resulting in enhancement of expression of various pro-inflammatory cytokines (Interleukins, IL-1β, IL-6; TNF-α,

Tumor Necrosis Factor-α), immunoglobulin superfamily members—B7/CD28 and chemokines (MCP-1, Monocyte chemoattractant protein-1).

The available clinical-epidemiological research studies have
clearly illustrated the involvement of abrupt immune action and
ROS in the occurrence of T2DM. This evidence points toward
a predictable association of EDENM-dependent disruption of
immune activities and ROS generation that consequently leads
to T2DM (155, 156).

Much evidence can be found in literature that establishes

a link between the involvement of the immune system and
diabetes bridged via inflammation. As substantial evidence, an

epidemiological study was conducted to correlate inflammation

(as monitored by variations in CRP level) and the development of
diabetes (155). Another study evaluated the association between
the release of inflammatory cytokines and blood glucose levels.
A many-fold increase in cytokine concentration occurred during
the low-grade systemic inflammation (157). It was suggested
that the accelerated concentrations of interleukins and TNF-
α may enable the migration of pro-inflammatory cytokines
toward the insulin-signaling pathway. This may interfere with
insulin signaling through phosphorylation of serine residues in
insulin-receptor- substrate 1 (IRS 1) (158). Insulin-signaling may
be blocked and insulin receptor (IR) stays dormant (159). In
another epidemiological research, a diabetic Mexican-American
population was studied for the effect of inflammation on the
occurrence and prevalence of diabetes by testing for cytokines
(IL-6, TNF-α, IL-1β, IL-8) and adipokine (adiponectin, resistin

and leptin) levels in blood plasma. Increased plasma levels of
these chemokines were found to be associated with increased
blood glucose levels and T2DM (160). Several genetic association
studies have suggested a role of polymorphism in the cytokine
genes TNF-α and IL-6 in the development of diabetes and its
associated comorbidities, retinopathy (161) and nephropathy
(162, 163). Researchers have conducted a meta-analysis to
probe into associations between −308 G>A (rs1800629) single
nucleotide polymorphisms (SNP) in the TNF-α gene and T2DM
(156). Another study reported significant association of genetic
polymorphism in TNF-α, with an increased risk of T2DM in the
Han Chinese population (138).

It is evident from the discussion that EDENMs may
influence the onset of T2DM by triggering inflammatory
pathways. Additionally, the formerly discussed arguments
with epidemiological evidence presents a direct link between
inflammation and T2DM. Such proof can be used to probe more
into inflammation-dependent pathogenesis of T2DM due the
exposure to ENMs.

Variations in Homeostatic Pathways
The homeostatic pathways involved in energy metabolism
influences the overall development of an organism (136).
In the case of metabolic disorders, the normal flow of
homeostatic pathway is affected and the regulation is breached
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(136, 164). The EDENMs intervene with the factors related
to insulin signaling. These factors include various kinases,
including phosphatidylinositol 3-kinase (PI3K), protein kinase
B, mammalian target of rapamycin (mTOR) and AMPK (AMP-
activated protein kinase) which that tightly regulate sugar,
lipid and amino acid homeostasis (164). This hampers the
transduction of insulin signaling and results in diminished
insulin action (165), which is followed by glucose metabolism
malfunctions and development of T2DM.

In vitro studies have elucidated the action of metallic ENMs on
homeostatic pathways. Findings from one study have established
that heavy-metal NPs can elicit hyperglycemia (166). In another
study, the influence of iron oxide (Fe2O3) NPs exposure on the
signaling mechanisms was studied in murine hepatocytes (50). In
this dose-dependent study, Fe2O3 NPs decreased the cell viability
via the PI3K/Akt pathway. The exposure also resulted in a
decrement of the intra-cellular antioxidant ability of hepatocytes.
The study emphasized the role of exposure to Fe2O3 NPs (250
g/ml) in oxidative stress and apoptosis in the hepatic cells (167).

in vivo experiments have been carried out to explore the
combined effect of ENM exposure and consequent abrupt
functioning of oxidative stress and the homeostatic pathway
on the endocrine system. Several in vivo studies have shown
that the uptake of NMs has induced production of ROS
(168). Physiological levels of ROS affected glucose metabolism
pathways and insulin sensitivity (169). Moderate but long-
standing oxidative stress has been found to be one of the major
contributors in the onset of insulin resistance, and consequently
T2DM (170). Oral introduction of TiO2 (anatase) nanoparticles
to mice in a dose–dependent manner led to the accumulation of
titanium in the liver, spleen, small intestine, kidney, and pancreas.
Increased levels of titanium in these organs leads to insulin
resistance, which was associated with increased phosphorylation
of IRS1 (Ser307), JNK1, and p38 Mitogen activated protein
kinase (MAPK), reduced phosphorylation of Akt (Ser473), and
increased serum levels of TNF-α and IL-6 in the liver. An
increase in the generation of ROS observed in the study also
suggests a role for ENM in the induction of oxidative stress
(171).

Impairment of β Cells and Influence on
Insulin Production
The low doses of endocrine disruptors can alter the functioning
of the pancreas by affecting the physiology of both insulin- and
glucagon-secretory cells, which can further disrupt the regulation
of glucose and lipid metabolism. As depicted in Figure 5, loss
in β-cell mass is predominantly governed by the pathways
involved in oxidative stress and endoplasmic reticulum stress. It
is reported that oxidative stress is accounted by the generation of
excess ROS and contributes to T2DM through β-cell death (172).
It has also been extensively reviewed that endoplasmic reticulum-
stress plays a prominent role in causing apoptosis in pancreatic
islets, resulting in β-cell death (173, 174).

A few metallic NMs have been shown to affect β-cells
indirectly via influencing the kinases involved in transcriptional
activation, followed by increased oxidative stress in the cells and

finally apoptosis. In a research study carried out in macrophages,
AuNPs of various sizes (4, 11, 19, 35, and 45 nm) suppressed
NFκβ and JNK pathway activation. The process was observed
due to de-methylation of CpG oligodeoxynucleotides (CpG-
ODNs) motifs, making them act as immuno-stimulants (150).
This effect was size dependent, with 4 nm AuNPs being the
strongest suppressor. AuNPs potentially elicited an inflammatory
response and induced oxidative stress as reviewed previously
(128). Another study demonstrated the ROS generating capacity
of Iron oxide (Fe3O4) nanoparticles when H2O2 was used as the
substrate (175). The hydroxyl free-radical generation reaction
was biochemically similar to catalase and peroxidase action. It
was inferred that the ROS may affect the pancreatic islet by
JNK and NFκβ activation (176). Such observations supported
the role of oxidative stress mediated inflammatory responses
in β-cell damage, which may underlie the pathogenesis to
T2DM.

Besides the above-discussed principle mechanisms, several
unknown mechanisms underlying the development or
pathogenesis of T2DM due to exposure to endocrine disrupters
are also discussed in the available literature. The involvement
of ultrafine particulate matter (key element of pollution) in
the pathogenesis of T2DM is widely argued (52–56). Ultrafine
particulate matter constitutes the ultrafine particles (UFPs),
which are airborne particles with a thermodynamic/aerodynamic
size of <100 nm. Diesel engines as well as automobiles, along
with sand dust, fires, hot volcanic lava, and ocean spray along
with combustion activities such as the burning of biomass
or wood, generate and then release UFPs into the air. The
mechanisms underlying the development of T2DM due to
exposure to air pollutants have not been completely deciphered
to date, however, an epidemiological study has been done to see
the effect of ambient UFPs and nitrogen dioxide in a cohort of
Canadian-born residents (177). The results clearly indicated that
exposure to UFPs led to increased risk of incident hypertension
(hazard ratio = 1.03; 95% CI = 1.02, 1.04) and diabetes (hazard
ratio= 1.06; 95% CI= 1.05, 1.08).

CONCLUSIONS AND PERSPECTIVES

Evidence suggesting a role of EDENM exposure in the
pathogenesis of T2DM is gradually emerging, but a
comprehensive understanding of a wide range of nanomaterials
and their effect on candidate gene pathways and other causal
factors involved in T2DM remain to be completely deciphered.
The fact that ENM can disrupt the endocrine system, which may
eventually lead to T2DM, has gathered support from several
in vitro, in vivo, and epidemiological studies. Altered glucose
metabolism through various molecular mechanisms including
insulin resistance, decreased insulin sensitivity, induction of
oxidative stress pathways, and altered homeostasis have been
reported by numerous laboratory studies that examined the
effect of EDENM exposures. On the other hand, a few studies
also report a contrasting effect of the same EDENM on T2DM
related molecules. Many research groups have come up with a
safer application of ENMs by illustrating their ability to work as
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TABLE 1 | Different categories of ENM used in therapeutics against T2DM.

Type Application Study system References

NON-METALLIC ENM

PEG-b-PLGA–biodegradable Polyethylene glycol and

Poly (lactic-co-glycolic acid) copolymer (PEG-b-PLGA)

Based cationic lipid-assisted nanoparticles (clans)

Anti-inflammatory action Diet—induced type 2 diabetes mice (183)

Chitosan Gene delivery for Glucagon like peptide 1

(GLP-1), dipeptydil peptidase IV (DPP-IV

resistant GLP-1 analogs) and siRNA targeting

against DPP-IV

HT-29, HepG2, and Caco-2 cell lines (184)

Insulin-loaded nano-carriers Transdermal delivery of insulin Streptozotocin-diabetic male Wistar

rats

(185)

Alginic acid nanoparticles containing insulin Sublingual delivery of insulin Streptozotocin-induced diabetic male

Wistar rats

(186)

Insulin-containing

Polyethylene imine-based nanoparticles

Insulin–delivery Sprague Dawley rats (187)

PLGA as the carrier to prepare recombinant human

epidermal growth factor (rhEGF) nanoparticles

Diabetic wound healing Diabetic rats (188)

Insulin encapsulated in polyalkylcyanoacrylate

nanocapsules

Hypoglycemia effect Diabetic rats (189)

Nanoparticles from dextran, poly (α-1,6 glucose),

physically cross-linked with the tetra functional

glucose-binding protein, Con A

Controlled delivery of insulin In vitro studies (190)

Injectable insulin nano-particles Insulin delivery Subcutaneous administration in

diabetic mice

(191)

BIOSYNTHESIZED ENM

Eysenhardtia polystachya-loaded silver nanoparticles

(EP/AgNPs)

Antidiabetic activity Pancreatic β cells, INS-1 cells, and

Danio rerio

(180)

Gold nanoparticles (AuNPs) synthesized using Gymnema

sylvestre R. Br Plant extract

Antidiabetic activity Wistar albino rats (182)

Gold nanoparticles (AuNPs) synthesized using Cassia

auriculata plant extract

Increasing plasma insulin activity Alloxan induced albino rats (181)

METALLIC ENM

Insulin-coated gold nanoparticles (INS-GNPs) For controlled and prolonged glucose

regulation was reported

Intravenous and subcutaneous

administration to diabetic mouse

model

(192)

Gold NPs and aspartic acid-capped gold nanoparticles Insulin delivery Diabetic Wistar rats (193)

Gold nanoparticles and Dextran–insulin conjugates Insulin delivery Mouse 3T3-L1 cell line (194)

Mesoporous silica nanoparticles (MSNs) Gluconic acid-modified insulin (G-Ins) proteins

labeled with fluorescein isothiocyanate

(FITC-G-Ins) were immobilized on the exterior

surface of MSN which served as caps to

encapsulate cAMP molecules inside the

mesopores of MSN

RIN-5F (194, 195)

Selenium nanoparticles (SeNPs) Oral delivery of insulin to enhance the

antidiabetic effect

Normal (Sprague-Dawley, SD) and

type II DM (Goto-Kakizaki, GK) rats

(196)

therapeutics. Particularly, some of the biologically synthesized
ENMs (178, 179) were found to possess therapeutic potential
against T2DM (180–182). Other non-metallic and metallic NMs
for similar applications are also reported (Table 1).

In an interesting study, an increase in cell viability,
ATP/ADP ratio and secretion of insulin in response to glucose
stimuli in the isolated pancreatic islets when treated with
metallic nanoparticles prepared from cerium oxide (CeO2-
NPs) at a concentration of 100 nmol/L, either alone or in
combination with 30 nmol/L sodium selenite, was reported (197).
These findings could possibly be ascribed to the anti-oxidant

potential of CeO2-NPs, which may exert a different effect
on the insulin release. In a similar study, the effect of
zinc oxide nanoparticles (ZON) on oxidative stress-mediated
pancreatic β-cell death was investigated in rats (RIN5f). The
cellular levels of antioxidant factors and the rate of apoptosis
were assessed in correlation with ZON uptake. RIN5f cell
treatment with ZON (30 and 100µg/ml) resulted in cytotoxicity,
oxidative stress and apoptosis. In contrast, the sub-cytotoxic
concentrations (1, 3, 10µg/ml) protected RIN5f cells from
hydrogen peroxide (H2O2)-induced oxidative stress by the
reducing the cellular levels of ROS, increased SOD activity
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and GSH, and reduced cell death (198). The findings reported
in the above-mentioned studies indicated that nanomaterial-
type and size dependencies on the associated cellular toxicity
are not precisely explored. An incomplete characterization of
ENM may underlie discrepancies observed in available scientific
reports. Confusion created from such incomplete explorations
demands for the development of a common understanding
in the area of ENM characteristics (shape, size, surface area,
mass concentration, or a combination of these), which should
be a prerequisite to toxic effect determination. This broadens
the scope of research to particularly define physicochemical
properties of ENM for their sustainable bio-medical applications.
Considering this, ENMs for vital bio-medical, pharmaceutical,
agricultural, and environmental applications are required to be
well characterized for their uptake to various cell/ tissue types,
interaction with cellular organelles and cell mechanistic aspects
within the intracellular environment (199).

Since in vitro systems do not necessarily mimic the human
system, results obtained from such experiments need to be
replicated through in vivo studies conducted in different model
animals. Additionally, in vivo studies that address potential
effects of EDENM on the development of T2DM at a large
scale such as a population, a community, or an ecosystem with
sufficient power are necessarily required. Further, most of the in
vivo studies have been conducted on small rodents, specifically
rats, mice and hamsters, which may not be optimum for studying
the long-term toxic effects of nanomaterial and makes it difficult
to extrapolate the observed results to humans. Experiments
by including other model systems, which are more closely
related to human systems, like Danio rerio, Daphnia magna, and
Caenorhabditis elegans need to be conducted in more numbers.

Furthermore, pre-clinical in vitro studies, such as those using
blood samples from a control population, can also be conducted
for impact-assessment of EDENMs (200). Additional support to
the candidate mechanisms underlying EDENMmediated T2DM
and identification of novel pathways can be achieved through the
application of the “-omics” approach, which at present is virtually
lacking. Also, developing high-throughput pre-screening (HTPS)
and quantitative structure-activity relationship (QSAR) methods
for in silico screening and prediction would be extremely
important to comprehend the effect of EDENM (201).

We emphasize the importance of research on safety aspect
of ENMs, which would minimize the uncertainties regarding
the health and environmental issues surrounding these advance-
materials and help in the development of safe applications of
nanotechnologies.
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