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Abstract: Here, the potential of laser-induced breakdown spectroscopy (LIBS) in grading calcareous
rocks for the lime industry was investigated. In particular, we developed a system equipped with
non-intensified detectors operating in scanning mode, defined a suitable data acquisition protocol,
and implemented quantitative data processing using both partial least squares regression (PLS-R)
and a multilayer perceptron (MLP) neural network. Tests were carried out on 32 samples collected in
various limestone quarries, which were preliminarily analyzed using traditional laboratory X-ray
fluorescence (XRF); then, they were divided into two groups for calibration and validation. Particular
attention was dedicated to the development of LIBS methodology providing a reliable basis for
precise material grading. The congruence of the results achieved demonstrates the capability of the
present approach to precisely quantify major and minor geochemical components of calcareous rocks,
thus disclosing a concrete application perspective within the lime industry production chain.

Keywords: LIBS; MLP-ANN; quantitative analysis; lime; calcareous material; calcium oxide; LIBS
mapping

1. Introduction

Limes represent a wide set of materials used in a growing variety of processes. Three
main primary types of limes can be distinguished: (1) quicklime (CaO, the basis of all lime
products available on the market), which is achieved by calcining limestone (CaCO3-rich
sedimentary rocks) and more general calcareous materials in lime kilns around 1000 ◦C;
(2) hydrated or slaked lime Ca(OH)2; (3) dolomitic lime (CaO with variable content of
MgO), achieved by calcining dolomitic limestone. Various lime products are available
on the market, according to the purity grade and type of impurities contained in their
corresponding raw materials, final microstructure, and possible mineral and composite
mixing. Examples of such products are hydraulic lime, milk of lime, lime putty, and dolime.

In the last decade, the total yearly production of quicklimes in Europe was around
20 Mt, used in the iron and steel industry (about 40%), constructions and civil engineering
(19%), environmental protection (15%), chemical industry (7%), pulp and paper production
(6%), agriculture (2%), and others [1,2]. Various limes with optimal compositions are
produced for each of these fields of application. In particular, moderate purity grades and
suitably balanced contents of CaO and MgO are exploited in raising the pH and supplying
the correct content of magnesium to agricultural soils. Similarly, the addition of lime to
soils to improve their chemical–physical properties and then to use them for construction
requires accurate compositional specifications [3]. Conversely, high grades are used in
basic oxygen furnaces to remove impurities (aluminates, phosphorus, silicates, sulfur, etc.)
from molten carbon-rich pig iron to transform it into steel, while extra-low-carbon limes are
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needed in vacuum oxygen decarburization (VOD) to produce stainless steels [4]. During
the former process, the viscosity of the slags and their aggressiveness against the lining
of the kiln are controlled using suitable dolimes with optimal MgO/CaO content ratios.
Lastly, other impurities can also play a crucial role in some lime products, such as hydraulic
lime, whose hardening property in water maximizes when it includes clay contents of
20–22% (around 5% of magnesium oxide), which can naturally be achieved by calcining
calcareous marls.

As mentioned above, the purity grade and the microstructure of lime are determined
by the composition of the raw calcareous materials and the production processes (sizing,
calcination, hydration, removal of undercooked and overcooked components, and others).
Usually, petrographic and geochemical investigations are carried out on calcareous materi-
als excavated in a given quarry in order to characterize and quantify their MgCO3/CaCO3
ratio and impurity components, and then preliminarily define their possible exploitation
for achieving specific final lime products [5,6]. Analytical assessments are also carried out
on the latter whenever high purity grades and specific physical properties (particle sizes,
density, porosity, and its distribution) are required.

However, as in other raw material production chains, there is a general awareness
in the lime industry about the limitations of the traditional analytical approach, based on
sampling, sample preparation, and laboratory investigations, due to the associated low
representativity, time consumption, and costs. At the same time, the potential of portable
spectroscopic techniques allowing for numerous analyses in situ is gradually attracting
the interest of the present sector. In particular, the potential of laser-induced breakdown
spectroscopy (LIBS) in addressing the crucial problem of the geochemical characterization
could allow classifying the calcareous materials, sorting them according to the possible
final lime products that can be achieved, minimizing dumping materials, and eventually
optimizing the exploitation and sustainability of the quarry. Furthermore, the technique
could also be used in quality controls of the final lime products themselves.

The advantages of LIBS with respect to other elemental analysis techniques are well
known, in addition to the gradual growth of its exploitation in several sectors (see, for
example, [7] and references therein). In particular, LIBS tests on multiphase geological
samples have been carried out since the early 1990s [8,9]. Subsequently, the technique was
evaluated for the analysis of Mg and Si in Fe ores [10] and sulfide mineral identification
in drill core samples [11]. In the last two decades, the rapid discrimination between
different species of minerals such as carbonates and silicates (for example, garnets) using
correlation [12] and statistical signal processing [13], as well as semi-quantitative drill
core scans [14] and rapid quantitative ore analysis and grading [15,16], online sorting,
and slurry monitoring, was explored. Furthermore, methods have been implemented for
automated quantitative analysis of massive minerals and ores, online analysis of sulfur in
Cu and Ni ores, gypsum, anhydrite, and barite [17,18], monitoring of small variations in Si,
Ca, Mg, Al, and graphitic C contents in iron ore slurries [19], and online analysis of coal
ash. These and other applications were summarized in various review papers ([20,21] and
references therein).

To properly address the mentioned sorting and quality control goals, very versatile
and low-cost LIBS tools allowing reliable quantitative measurements within the quarry and
the lime production area are needed. Handheld LIBS devices currently marketed are mostly
suited for metal analyses and do not provide a satisfactory response to such a technological
demand. These instruments present limitations in quantitative analyses because they are
usually equipped with low-peak-power excitation lasers combined with low-sensitivity
and low-resolution spectrometers [22], which provide unsatisfactory performance in possi-
ble practical applications within the present industrial sector. Furthermore, commercial
handheld LIBS devices do not allow for reliable data acquisition in scanning mode and
quantitative elemental mapping, which are needed whenever analyzing raw materials, in
order to achieve meaningful average compositions over representative areas.
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In the present work, we exploited our experience in the development and application
of portable LIBS devices in the field of cultural heritage [23,24] and mineral exploration [25]
in order to approach practical characterization problems of the calcareous materials used
in lime industry. A versatile portable LIBS was designed and built, to be used as both
a handheld and a tabletop analytical tool, according to different operative setups, and
then calibration and validation tests were successfully carried out. In particular, quanti-
tative calibration based on partial least squares (PLS) regression [26] and an MLP neural
network [27,28], and final validation were achieved using calcareous samples from lime pro-
duction quarries provided by the company UNICALCE S.p.A., the main Italian company
of lime products. The investigation of the potential of the LIBS approach was supported
by traditional geochemical analyses and Raman spectroscopy [29]. The present study
represents the optimization phase for finalizing a dedicated LIBS tool and associated mea-
surement protocols, which can represent a suitable technological offer that can contribute
to increasing the quality and sustainability of the lime production chain.

2. Results and Discussion

A typical LIBS spectrum acquired with the present setup and processed using the SNIP
filter is shown in Figure 1. All the main characteristic elements (Ca, Mg, and Si) of limestone
are well recognizable, as are the presence of several intense peaks (self-absorbed and prone
to saturation), which could severely affect the quantification model if kept among the
variables. In particular, their anomalous contribution to the total integral and then to the
normalization could seriously affect the robustness of the calibration of the minor elements
especially in the linear PLS approach. Thus, as mentioned in Section 3.3.1, they were not
included in the PLS data processing. The gray bands in Figure 1 show the spectral intervals
which were ruled out: 277–282, 314–320, 391–398, 421–424, and 516–520 nm.
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Figure 1. Portion of LIBS spectrum of sample P31 with excluded wavelength bands in gray (see text).

In order to assess the impact of such spectral selection and normalization on the
calibration accuracies, several PLS regression models obtained using the averaged spectra,
the averaged band-excluded spectra, the averaged normalized spectra, and the averaged
normalized band-excluded spectra were compared. The results are shown in Table 1.

Table 1. Relative variation of RMSECV in PLS models when using different data treatments with
respect to averaging spectra only. Positive and negative values represent an increase and decrease in
the RMSECV, respectively.

Oxide Bands Exclusion + Avg. Norm. + Avg. Bands Exclusion +
Norm. + Avg. PLS Factors

CaO +29% −37% −20% 7
MgO +44% −64% −43% 8
SiO2 −22% −36% −57% 18

Al2O3 −21% −55% −73% 17
Fe2O3 −22% −46% −56% 13
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The RMSE of calibration for the low-concentration oxides SiO2, Al2O3, and Fe2O3
decreased from the former data treatment to the latter, whereas the minimum RMSE of
calibration for the major oxides was obtained for the third data treatment, which was
expected since the band exclusion eliminated the most intense peaks of Ca and Mg. Taking
into account the overall accuracy of the calibration model, band-exclusion normalization
was selected as the data treatment for all oxides.

The PLS regression optimization described in Section 3.3.1 produced the best calibra-
tion model reported in Table 2.

Table 2. PLS model summary.

Oxide
Calibration Range

(28 Samples)
(wt.%)

Validation Range
(5 Samples)

(wt.%)

RMSECV
(wt.%)

RMSEP
(wt.%)

PLS
Factors

CaO 30.61–55.74 31.01–55.34 0.57 0.91 7
MgO 0.26–21.79 0.43–21.77 0.44 0.82 8
SiO2 0–6.95 0.003–0.14 0.085 0.057 18

Al2O3 0–2.24 0.009–0.076 0.033 0.038 17
Fe2O3 0.002–0.68 0.007–0.045 0.019 0.015 13

With regard to the ANN, it is useful to provide some further details. In particular,
since the hidden neurons can influence the error on the neurons to which their outputs
are connected, architectures with different number of hidden layers were explored. The
evolution of the error during each epoch (learning curves, LCs) corresponding to the
considered architectures was calculated during the training phase with both training and
testing subsets (80% and 20% of the input dataset, respectively). We found that increasing
the number of hidden layers from one to three showed an improvement in terms of accuracy,
at the cost of an increase in the training time. Moreover, the impact on the accuracy of the
degree of randomness introduced in the algorithms was also investigated. For each of the
mentioned architectures, the training phase with the same hyperparameters was repeated
five times by changing the random shuffling and the splitting of the input data. In all the
considered topologies, the LCs showed a monotonic decrease without relevant oscillation,
and no overfitting or underfitting phenomena were observed. After setting three hidden
layers, it was also observed that increasing the number of neurons in the first hidden layer
up to 60 did not correspond to a decrease in the prediction accuracy. Thus, the number of
neurons of the mentioned layers was set to 50, 45, and 35, and the ANN has been trained as
described in Section 3.3.2.

The predictions of major and minor oxide contents provided by PLS and ANN re-
gressions versus their measured values are reported in Figures 2 and 3, while the specific
results for the validation samples are also listed in Table 3.
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Table 3. Oxide concentration as determined using PLS and ANN calibration. Average and standard
deviation (between brackets) are reported for each validation sample.

CaO MgO SiO2 Fe2O3 Al2O3

PLS ANN PLS ANN PLS ANN PLS ANN PLS ANN

P29
30.72
(0.27)

31.05
(0.48)

21.63
(0.37)

21.64
(0.17)

0.17
(0.03)

0.10
(0.01)

0.047
(0.016)

0.040
(0.008)

0.061
(0.021)

0.070
(0.007)

P30
47.89
(0.24)

48.96
(0.82)

6.86
(0.22)

5.25
(0.86)

0.024
(0.029)

0.084
(0.012)

0.052
(0.012)

0.047
(0.009)

0.01
(0.01)

0.052
(0.034)

P31
55.65
(0.09)

55.36
(0.32)

0.31
(0.12)

0.42
(0.25)

0.005
(0.021)

0.004
(0.002)

0.006
(0.007)

0.006
(0.001)

0.018
(0.006)

0.012
(0.002)

P32
54.89
(0.10)

54.37
(0.15)

0.85
(0.11)

0.61
(0.24)

0.10
(0.01)

0.030
(0.018)

0.019
(0.011)

0.008
(0.001)

0.058
(0.015)

0.023
(0.012)

P33
29.91
(0.27)

31.83
(0.40)

21.97
(0.30)

20.44
(0.34)

0.14
(0.02)

0.177
(0.037)

0.033
(0.014)

0.022
(0.005)

0.081
(0.024)

0.071
(0.007)

As shown, both approaches returned a satisfactory agreement with reference values
provided by XRF. In particular, for major oxides, PLS regression seemed to provide better
precision (standard deviation/average below 10% as average) than ANN; for trace oxides,
ANN seemed to provide the lower one (below 30% as average). Regarding the accuracy
((predicted − measured)/predicted concentrations), the results seemed to favor ANN
regression, which provided the following average relative error of prediction: below 5% for
CaO and MgO, and below 20% for the other oxides. This could be expected since the ANN
has a higher degree of flexibility to model the intrinsic nonlinearity of the signal induced
by self-absorption and the matrix effect [30,31].

The possibility of using LIBS without sample preparation or at least avoiding complex
preparation processes significantly extends the potential of the practical exploitation of the
technique in lime industry production chain. Thus, after LIBS calibration and validation
using pressed powder pellets, the extension of the validation to the analysis of the rock
slice samples (S2–33) was investigated using the PLS regression.

The main difficulty to be faced when moving from pellets to slices concerns, obviously,
the significant inhomogeneity of the latter (rock bulk as it is) with respect to the former
(finely ground rock powder, mixed, and pressed). Moreover, for rock slices, the elemental
composition as measured within the laser spot could be very different with respect to the
calibrated ranges, as determined using powder pellets, which could provide unreliable
extrapolation of the model [32–34]. These problems were addressed by averaging a large
number (N) of LIBS spectra (~1000), which were collected while moving the laser spot
within a representative area (around 1 cm2, although rather larger areas could be needed in
general). The spectra were processed using the same procedure adopted for calibration. In
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particular, they were grouped by 50 and averaged in order to achieve n = N/50 average
spectra, which contained compositional information from 50 different sites each. The PLS
model developed to predict the composition associated with the n average spectra was,
hence, applied, and the overall average and the standard deviation of the prediction of the
whole measurement run were eventually calculated.

The comparison between powder pellets and corresponding slices (Figure 4) showed
that, for a rather homogeneous sample, such as S2, 1000 random LIBS analyses were suffi-
cient for the calculated composition to fall within a standard deviation of the composition
of the associated powdered sample (P2). Conversely, for a rock slice with more pronounced
veins, such as S33, the same number of analytical shots (1000 sh) did not reproduce its
composition within one standard deviation error envelope. In this case, the average com-
position resulted to be close to the expected value when extending the random scan within
the representative area to 3400 sh.
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Figure 4. Comparison between LIBS measurements performed on a rather homogeneous rock slice
(S2) along with the corresponding pellet (P2) and on a markedly veined rock slice (S33) along with the
corresponding pellet (P33) using different numbers of laser shots (sh). In each group, the spectra were
preprocessed and averaged in the same way (background subtraction, band selection, normalization,
averaging 50 measurements). The sizes of the rock slice images are about 25 × 45 mm2.

The behavior described above was further investigated in order to determine the
number of laser shots needed for representative analytical sampling of an inhomogeneous
limestone using the cumulative averaged spectrum for compositional evaluation and
monitoring its evolution along a number of random measurements over its surface.

As shown in Figure 5 (left), the CaO content as calculated using the cumulative
averaged spectrum ranged between 29–35 wt.% depending on the measurement site and
the number of spectra accumulated, and it did not reach a unique stable value. In fact, the
slope of the different curves at the extremal part of the graph indicates that the sensitivity
to the inclusion of new spectra was still high. On the other hand, increasing the number of
measurements above 2500 random sampling (Figure 5, right) produced an estimation of the
CaO content close to the expected bulk value, with an almost flat profile, indicating that the
averaging procedure reached an almost stable value, which was assumed as representative
of the average composition of the area sampled by those measurements.
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Figure 5. CaO concentration as predicted using the cumulative averaged spectrum in random scans
of 1000 sh (left) or 3400 sh (right) in different areas of the nonhomogeneous rock slice (S33).

It is evident that the number of measurements required to achieve a representative
average spectrum which reproduces the composition of the homogenized sample (powder
pellet) of the same rock depends on the spatial scale of inhomogeneities, sampling pattern,
and the laser spot size [35]. The scanning system of Figure 6a was finally used in order
to achieve a standard sampling pattern and averaging principle for local composition
assessment. As an example, two-dimensional elemental distribution was measured by
scanning the sample S33 over a rectangular area of 15 mm × 5.2 mm, as shown in Figure 7.
The net intensities of the emission lines of each element (Ca 430.25 nm, Mg 285.29 nm, Si
288.24 nm, Fe 275.01 nm, Al 308.22 nm) were, therefore, used to indicate the corresponding
elemental concentration. Range scaling was used to normalize the magnitude of the signal
of each element between 0 and 1, since it usually varies considerably from one element
to the other, as is the case for the main constituent Ca and Mg, with respect to the trace
elements Fe and Si. Figure 7 shows the Ca, Si, and Fe distribution on the 125 × 26 pixel map.
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Figure 6. LIBS setups: (a) with the endpiece on a XYZ translation group placed on an articulated arm,
(b) with the endpiece on a handheld XYZ translation group.

Quantitative analysis of the scanned area was performed using the cumulative aver-
aged spectra instead of the single-pixel spectrum because the significant compositional
variability within the present mineralogic texture could produce unreliable chemical con-
tent predictions when using the calibration model described above. To some extent, the
cumulative average can be considered more assimilable to the measurement performed on
the corresponding powder pellet.

Quantitative analyses achieved using the cumulative average of the map’s spectra are
shown in Figure 8. The predicted oxide concentrations exhibited large fluctuations in the
beginning of the averaging process, mirroring the variability of the element distribution
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on the sampled surface. After several hundred measurements, the predicted composition
stabilized to what can be defined as the local average composition over the sampled area.
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Figure 8. Estimated concentration applying the calibration model to the cumulative averaged
spectrum of the 2D scan of Figure 7 on sample S33.

It is interesting to observe that, while the CaO estimation was compatible with the
bulk value of S33, Fe2O3 and SiO2 predictions were higher than the corresponding bulk
values. Such a discrepancy should not be considered surprising since the visual inspection
of the scanned area confirmed that the sampled surface intercepted macroscopic mineral
veins and stylolites with high content of Si and Fe. From the application standpoint, this
means that, as for any analytical technique, the reliability of the average values predicted
mainly depends on the accuracy of the representative sampling and the homogeneity of
the samples themselves.

3. Materials and Methods
3.1. Setup

According to the versatility needs mentioned above and the examination of the present
exploration, excavation, and processing scenarios, we designed and built a basic LIBS sys-
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tem equipped with the following components: (A) a small and very light fiber-coupled
endpiece allowing for easy handling, which includes beam delivery optics and mechanical
connections for housing the laser excitation and signal collection optical fiber tips; (B) an
instrumental module enclosing the laser excitation source and a set of four spectrometers
(Avantes B.V., Apeldoorn, The Netherlands) equipped with a Czerny–Turner monochro-
mator and CCD detector array, thus covering the range 200–630 nm with 0.06–0.2 nm
spectral resolution; (C) umbilical line connecting the mentioned modules, with one power
fiber to transmit the laser beam and a bundle of four fibers (200 µm core diameter) to
collect the LIBS signal (at about 45◦ with respect to the optical axis) and to couple it to the
spectrometers. The excitation source used was a SSD QS Nd:YAG (Quantel USA, Bozeman,
MT, USA) (1064 nm), maximum 50 mJ/pulse, about 7 ns pulse width, 20 Hz maximum
pulse repetition frequency, which was coupled in a 910 µm core diameter optical fiber
using a plano-convex lens (120 mm focal length). Within the mentioned endpiece, the laser
beam was re-collimated and focused onto the target using two lenses (50 mm and 15 mm
focal length, respectively). In this way, the pulse energy coupled to the target was about
20 mJ/pulse, while the laser spot diameter was about 300 µm (intensity on target about
4 GW/cm2). The spectrometer acquisition was activated by a homemade optical-trigger
board driven by the laser emission, and the integration time was set to 2 ms.

Due to the natural compositional variability of sedimentary rocks and ores, a number
of LIBS point measurements need to be collected and averaged in order to achieve meaning-
ful values of the average local elemental content over a given area. Although, in some cases
of homogeneous limestone, a few measurements could be enough to get sufficiently stable
average values, in general, at least one complete LIBS scan of the area of interest should
be executed [36], after removing powder and any other incoherent deposit from the latter.
In cases of pronounced inhomogeneity, several scans of the same area (3D LIBS, [37–40])
could significantly improve the quantitative geochemical information. For these reasons,
the above-described instrument was adapted as a tabletop transportable scanning system
by mounting the mentioned endpiece on an XYZ translation group placed on an articulated
arm, as shown in Figure 6a, thus achieving a setup that can be easily exploited in the
compositional characterization of core samples and rock fragments of any shape. The XYZ
translation group allowed micrometric resolution positioning with a scanning range of
50 mm along the X- and Y-axes and 25 mm along the Z-axis. Operating the system at
20 Hz allowed obtaining a 10 × 10 mm2 LIBS map with a pixel size of 120 × 200 µm2 in
230 s (4200 spectra). A homemade software (in LabView®) was developed for synchro-
nizing the laser, motors, and spectrometer and for analyzing the LIBS data for elemental
maps production.

Such a system, which was used to investigate the present calcareous rock samples,
can easily be adapted in a portable tool suitable for in field measurements thanks to
the light weight of the instrumental module (about 3 kg) and of the endpiece (about
300–400 g). However, according to the above-reported considerations, the scanning mode
in geochemical studies is not just an option but rather a strict need. Thus, after defining
the methodological approach with the present study, we foresee the finalization of a field
LIBS also including compacted scanning stages, as shown in the figurative simulation of
Figure 6b. This will allow using such a tool in areal and in-depth mapping and averaging,
which significantly extends the in situ analytical potential of the present technique on a large
variety of rocks, as well as buildings, soils, archaeological remains, and others, without any
need to smooth asperities and roughness, since XYZ scanning and laser ablation allow the
rapid optimization of the LIBS measurements.

3.2. Samples

Here, 32 calcareous rock fragments from different limestone quarries were selected. A
slice of about 25 × 45 × 25 mm3 was cut from each fragment and polished (S2–33), then a
further adjacent slice was cut from the same fragment and ground into fine powder, which
was compacted in a pellet (P2–33) with a diameter of 40 mm and thickness of 10 mm using
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a laboratory press (about 20 ton/cm2) and PVA. Moreover, a portion of the powder from
each sample was used to produce fused glass beads to be analyzed by XRF. Furthermore,
one (P1) GFS Chemicals® standard (GFS-400) was included among the reference samples
for calibration purposes.

3.3. Analytical Methods

All the glass beads were formerly analyzed using wavelength-dispersive X-ray flu-
orescence (WD-XRF, benchtop Rigaku Supermini200 spectrometer (Rigaku Europe SE,
Neu-Isenburg, Germany) operating at 50 kV and 4 mA); then, LIBS measurements were
carried out on the respective pressed pellets using the setup of Figure 6a. The XRF data
of 27 glass beads samples, along with the analytical data of the mentioned standard (P1),
were used for calibrating the LIBS measurements, while the remaining five pellets were
used for validating the whole analytical approach.

LIBS random scans over areas of about 1 cm2 using 500 laser shots were carried out
on the pellet surfaces in order to investigate their degree of homogeneity and eventually
extract representative average compositions. The results achieved were compared with
those of the corresponding surfaces of the rock slices using a similar scan method. The XRF
geochemical data of the whole set of present samples are summarized in Table 4.

Table 4. Constituent oxides (wt.%) of samples under investigation and of the standard P1, as measured
using WD-XRF.

Calibration Samples CaO MgO SiO2 Fe2O3 Al2O3

P1 30.610 21.570 0.070 0.050 0.030
P2 31.481 21.744 0.059 0.037 0.053
P3 31.100 21.787 0.000 0.018 0.009
P4 46.170 8.010 0.040 0.030 0.040
P5 50.640 1.150 4.410 0.460 1.550
P6 30.750 21.380 0.050 0.050 0.040
P7 47.960 1.470 6.950 0.680 2.240
P8 52.760 0.860 2.580 0.220 0.710
P9 54.930 0.580 0.290 0.020 0.130
P10 31.860 20.330 0.060 0.070 0.040
P11 43.540 10.170 0.370 0.060 0.070
P12 50.730 4.120 0.250 0.030 0.110
P13 33.380 18.220 1.180 0.160 0.420
P14 30.900 21.047 0.205 0.045 0.127
P15 31.430 21.322 0.167 0.037 0.095
P16 46.470 7.977 0.148 0.049 0.093
P17 38.637 14.548 0.347 0.075 0.176
P18 53.380 1.333 0.193 0.048 0.110
P19 55.220 0.420 0.119 0.024 0.060
P20 55.530 0.301 0.025 0.016 0.022
P21 55.600 0.192 0.100 0.032 0.072
P22 55.750 0.590 0.082 0.016 0.043
P23 31.920 20.575 0.173 0.031 0.111
P24 32.820 20.505 0.034 0.007 0.030
P25 54.730 0.822 0.193 0.045 0.081
P26 51.220 0.717 3.366 0.442 1.112
P27 55.130 0.390 0.033 0.009 0.013
P28 55.350 0.258 0.004 0.002 0.000

Validation Samples CaO MgO SiO2 Fe2O3 Al2O3

P29 31.013 21.766 0.114 0.035 0.076
P30 48.574 5.602 0.094 0.045 0.060
P31 55.339 0.432 0.003 0.007 0.010
P32 54.155 0.580 0.031 0.009 0.019
P33 31.568 20.787 0.140 0.027 0.074
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Two independent calibration procedures based on PLS and ANN, respectively, were
carried out. PLS is a linear optimization technique often used in quantitative LIBS ap-
plications [41,42], where a very large number of input variables (intensity at multiple
wavelengths) are used to predict a limited number of output values (elemental concentra-
tions) by a regression model built from a set of calibrated samples. Here, the PLS modeling
was optimized through a dedicated pretreatment and normalization procedure.

Among the variety of ANN approaches, the multilayer perceptron regression (MLP-R)
architecture was considered since it has been proven to be a suitable technique for a wide
range of LIBS data processing problems (see, for example, [43] and references therein). The
training phase included two steps: the input data were fed forward through the network;
in order to measure how far the resulting output was from the desired one, an error
function was then calculated, and propagated back to the previous layers while changing
the corresponding weights. The training was repeated a number of times (epochs) set
a priori.

3.3.1. PLS Regression Method

Each spectrum collected was subjected to the following processing steps. Firstly,
automatic background subtraction using a filter based on a statistics-sensitive nonlinear
iterative peak-clipping algorithm (SNIP) [44] was executed. Afterward, regions including
possible line saturations or severely self-absorbed peaks were excluded. The spectrum was,
hence, normalized to the total intensity, i.e., each wavelength bin was divided by the value
of area of the spectrum over the selected spectral ranges. As is well known [45], in general,
the normalization to the total intensity reduces the effects of shot-to-shot variations and
differences in laser–target energy coupling. On the other hand, it should be underlined
that the removal of nonlinear spectral regions before normalization and following PLS
processing could have a crucial importance, although this aspect is sometimes neglected in
the literature.

Following such a pretreatment, the spectra collected for each calibration sample were
split into 10 groups of 50 spectra and then averaged, thus achieving 10 representative
spectra per calibration sample.

Five PLS calibration models were generated with the sample P1–28 for the major
element oxides: CaO, MgO, SiO2, Al2O3, Fe2O3. The models for the latter three oxides
were built using a log-linear transformation of the data, by performing the logarithm of the
shifted concentration (log(C+1)), before the PLS regression. Log transformation produces
a more accurate calibration for low concentrations, helping to remove any skewness and
reducing the impact of extreme high values in the regression procedure.

The performance of the model was evaluated by calculating the standard root-mean-
squared error (RMSE) resulting from the predicted concentration with respect to the mea-
sured values. This indicator is expected to be as low as possible for a reliable model, and it
was used to select the best number of PLS components, as described below.

For a certain number of components, we performed PLS regression with 10-fold cross-
validation on the calibration set followed by a prediction test on the validation set, in
order to reduce possible bias and overfitting of the data. The whole dataset of 280 average
spectra of calibration was divided into 10 subsets, and PLS regression was iterated in
such a way that, in every iteration, we took one subset for testing and the remaining
subsets for training (internal cross-validation). Lastly, the root-mean-squared error in
cross-validation (RMSECV) was the average value of 10 values of the RMSE calculated
during the internal cross-validation process. Each calibration model was then employed to
predict the concentration values of the set of known samples different from the calibration
set. Then, the root-mean-squared error of prediction (RMSEP) was calculated over the
validation set. Increasing the number of components produced a decrease in RMSECV
and RMSEP until a minimum RMSEP was reached, which set the optimum number of PLS
components [46]. We briefly investigated the accuracy of LIBS calibration with or without
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normalization and found that the abovementioned procedure reduced the mean squared
error (MSE) of calibration of CaO by about a factor of three.

3.3.2. MLP Regression Method

Before feeding the network, the data were pretreated. In order to reduce the complexity
of the problem, the large number of available spectra for each sample was reduced from
500 to 25 by performing an average operation. This allowed managing 700 spectra in
total. From this dataset, the amplitudes of 13 peaks associated with five elements were
considered (Table 5). Thus, the input of the network for training was a 13 × 700 matrix,
while its output was a 5 × 700 matrix, where 5 denotes the element concentrations of the
calibration samples (P1–P28 in Table 4).

Table 5. List of emission lines considered for training/testing MLP network.

Wavelength (nm) Element Wavelength (nm) Element

251.61 Si 309.3 Al
259.94 Fe 393.37 Ca
274.91 Fe 396.85 Ca
279.55 Mg 422.67 Ca
285.21 Mg 438.35 Fe
288.16 Si 517.27 Mg
308.21 Al

Since the input and output data did not lie in the same range, the performance of
the network was improved with some preliminary operations. The input dataset was
standardized to zero mean and a standard deviation of one (standard score), and the output
dataset was scaled in order to match the scale of the activation function considered. In
this case, since the activation function was chosen as a sigmoid, the output dataset was
normalized to fall in the range 0–1. Moreover, the maximum number of hidden layers
was set to 3, and the learning parameters (learning rate and momentum) were both set
to 0.9 and kept constant during training. The root-mean-squared percentage error was
considered as the error function.

Before starting the training, the input dataset was randomly shuffled and randomly
split into two subsets for training and testing, with different proportions (80% and 20%,
respectively). Only the training subset was used for weight updating. During the training
phase, the “quality of learning” was evaluated on both training and testing datasets (the
latter is not part of the training phase i.e., weight updating), calculating the corresponding
learning curves [47,48].

After the network was completely trained (updating hyperparameters using only
training dataset), a new dataset was used in order to provide the gold standard to evaluate
the final trained model. This allowed giving a measure of how well the model was
generalizing, i.e., how accurate the model would be when presented previously unseen
data to the trained network. This unseen dataset was obtained from LIBS measurements
performed on the five validation samples shown in Table 4. Again, the same pretreatment
conducted for the input dataset was also performed on the validation data, resulting
in 25 spectra for each validation sample. The input data were, hence, represented by a
13 × 125 matrix (no. of peaks × no. of spectra of the test samples), and the output data
were represented by a 5 × 125 matrix.

4. Conclusions

Here, the possibility to exploit LIBS as a geochemical tool in order to grade limestone
and magnesian limestone, to quantify their impurities, and to perform other quality controls
along the lime production chain was experimentally demonstrated on a representative set
of calcareous rocks collected in lime quarries. The work proposed a simple and versatile
LIBS setup and showed its potential in providing local compositional data over a given area
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or set of areas of a given sample through calibration, scanning, and averaging of suitable
numbers of spectra. Both statistical (PLS regression) and artificial neural network (MPL
regression) approaches were proven effective models for elemental calibration using a set
of reference samples compositionally similar to those to be investigated. At the same time,
the present study evidenced and underlined the need to collect thousands of LIBS spectra
and to feed the mentioned models using suitable averages allowing for maintaining the
quantifications within the calibration ranges.

Furthermore, this analytical approach along with the punctual nature of the technique
(spot sizes of ~10–100 µm) also allows significantly increasing its analytical sensitivity
whenever investigating microgranular mixtures and/or samples including strong concen-
tration gradients on the crystalline texture scale, such as those of many rocks. In this case,
limits of detection (LODs) of a few ppm can easily be achieved using a scanning LIBS
system equipped with non-intensified sensors, like the one used in this work. Conversely,
in general, it is practically impossible to build calibration regressions covering the actual
content fluctuations of trace elements, in which case the preliminary average of a number
of spectra before feeding the model represents a crucial step. Lastly, the results presented
show that the best analytical protocol was achieved through the following operative steps:
acquisition in random or mapping scanning mode, sequential cumulative average, cor-
responding sequential model prediction, and plotting. This should be iterated over a
representative area or a set of areas, preferably flat and cleaned, for a sufficient number of
laser shots in order to observe the stabilization of the various elemental contents. In this
way, LIBS compositional analyses can become significantly competitive with respect to
laboratory XRF and ICP, in terms of both costs and analytical capabilities.

Considering the results of the present work, we are now developing a portable and
low-cost LIBS device dedicated to geochemical analysis in the lime production industry.
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