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Objective: Pedicle screw fixation is a common technique used in posterior lumbar
interbody fusion (PLIF) surgery for lumbar disorders. During operation, rod contouring
is often subjective and not satisfactory, but only few studies focused on the rod-contouring
issue previously. The aim of the study was to explore the effect of the rod contouring on the
single-segment PLIF by the finite element (FE) method and retrospective study.

Methods: A FE model of the lumbosacral vertebrae was first reconstructed, and
subsequently single-segmental (L4/5) PLIF surgeries with four rod curvatures (RCs)
were simulated. Herein, three RCs were designed by referring to centroid, Cobb, and
posterior tangent methods applied in the lumbar lordosis measurement, and zero RC
indicating straight rods was included as well. Clinical data of patients subjected to L4/5
segmental PLIF were also analyzed to verify the correlation between RCs and clinical
outcome.

Results: No difference was observed among the four RC models in the range of motion
(ROM), intersegmental rotation angle (IRA), and intradiscal pressure (IDP) under four
actions. The posterior tangent model had less maximum stress in fixation (MSF) in
flexion, extension, and axial rotation than the other RC models. Patients with favorable
prognosis had larger RC and positive RC minus posterior tangent angle (RC-PTA) of fused
segments with respect to those who had poor prognosis and received revision surgery.

Conclusion: All RC models had similar biomechanical behaviors under four actions. The
posterior tangent-based RCmodel was superior in fixation stress distribution compared to
centroid, Cobb, and straight models. The retrospective study demonstrated that moderate
RC and positive RC-PTA were associated with better postoperative results.
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INTRODUCTION

Optimal sagittal alignment plays a significant role in improving the spinal sagittal balance, reducing body
energy expenditure, and slowing down the disc degeneration of adjacent segments (Makhni et al., 2018).
Loss of the spinal sagittal balance can be caused by disc degeneration, spinal deformity, trauma, and
surgery, and thus higher muscular force is required to maintain the spinal posture and balance. However,
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the compensatory mechanism may result in adverse effects such as
back pain, disability, and decrease in health-related quality of life
(HRQOL). In addition, positive sagittal balance indicated by
abnormal radiographic parameters is also highly correlated to the
adverse outcomes in adult spinal deformity (Glassman et al., 2005).

Restoration of normal sagittal alignment is critical to
postoperative outcomes and prognosis (Matsumoto et al., 2017).
After spinal fusion, increased stress on the adjacent discs may result
in adjacent segment degeneration (ASD). It was reported that the
incidences of radiograph ASD and symptomatic ASD were 26.6 and
8.5% in lumbar surgery, respectively (Xia et al., 2013). Sagittal
imbalance, such as sagittal vertical axis (SVA) > 50mm, higher
pelvic tilt (PT), decreased lumbar lordosis (LL), and pelvic incidence
minus lumbar lordosis (PI-LL) mismatch, is identified as a
significant risk factor of ASD after posterior lumbar interbody
fusion (PLIF) (Barrey and Darnis, 2015). This pathological
change can cause neurologic symptoms which require further
medical interventions.

In view of the significance of the normal sagittal alignment, the
posterior screw–rod system as the main fixation device and rod
curvature (RC) should be consistent with the physiological alignment
to achieve satisfactory postoperative outcomes. Otherwise, negative
postoperative outcomes can be introduced. For instance, changes in
the bending curvature of the implanted rod resulted in overcorrection
or undercorrection of the sagittal balance in adolescent idiopathic
scoliosis (Salmingo et al., 2014), and the mismatch between RC and
normal sagittal alignment correlated to the poor clinical and
radiological follow-up (Moufid et al., 2019).

However, perioperative rod contouring or rod bending was
rarely studied previously. In clinical practice, French bender is the
most commonly used tool for rod contouring. The surgeon uses the
device to bend rods according to experience and preference after

evaluating the sagittal alignment of patients from the radiography
during the operation. Obviously, this experience- or preference-
based practice is inevitably subjective and poorly repeatable.
Moreover, repetitive rod contouring is likely to cause imprecise
fixation, screw loosening, stress concentration, and long operation
duration. Therefore, evaluating the rod contouring indicated by RC
is necessary. Herein, finite element (FE) analysis was adopted to
evaluate the biomechanical effects of four RCs on the single-segment
PLIF surgery including three kinds of contoured rods corresponding
to three commonly used LLmeasuringmethods (i.e., centroid, Cobb,
and posterior tangent) and straight rod. Then, a retrospective clinical
study was conducted to discuss whether the RC was correlated with
the clinical outcome.

MATERIALS AND METHODS

Finite Element Modeling
A three-dimensional FE model of the lumbosacral vertebrae
(Figure 1) was first reconstructed through Mimics 16.0 software
(Materialise, Leuven, Belgium), based on computed tomography
images (CT, Philips Brilliance iCT 256; slice thickness, 1 mm;
scanning voxel size, 0.8 × 0.8 × 1.2 mm3) of a normal male adult
without any lumbar disease. The participant was provided a written
informed consent prior to the enrollment, and the study protocol
was approved by the Institutional Ethics Committee.

Regarding the FE model, the cortical bone, cancellous bone,
endplates, and intervertebral disc were created in 3-matic 8.0
(Materialise, Leuven, Belgium) and then meshed in HyperWorks
13.0 (Altair Engineering, Inc., Executive Park, CA, United States).
Cortical bone was separated from each vertebra with a thickness of
1 mm (Naserkhaki et al., 2018), and the rest of the vertebra was

FIGURE 1 | Finite element modeling. (A) Lateral view of the lumbosacral model with posterior lumbar interbody fusion in Hypermesh. (B) Sagittal section of
vertebrae and intervertebral disc. The vertebra is partitioned into cortical and cancellous bone. The disc is composed of nucleus pulposus and annulus ground substance
embedded with crossing collagen fibers. (C) Posterior view of PLIF. (D) Boundary and loading conditions.
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treated as cancellous bone. The thickness of the endplate was set at
0.5 mm. The element types of vertebrae and endplates were four-
node tetrahedral element (C3D4) and eight-node hybrid hexahedral
elements (C3D8H), respectively. Intervertebral discs were divided
into incompressible nucleus pulposus and annulus ground substance
(Guo and Fan, 2018). The nucleus pulposus and annular ground
substance were meshed by the C3D8H element with an isotropic,
hyper-elastic Mooney–Rivlin material. Six circumferential layers of
crossing collagen fibers with different orientations were embedded in
the annulus ground substance, and the fibers were meshed by
tension-only two-node truss elements (T3D2). A total of seven
major ligaments including anterior longitudinal ligament (ALL),
posterior longitudinal ligament (PLL), ligamentum flavum (LF),

capsular ligament (CL), intertransverse ligament (ITL),
interspinous ligament (ISL), and supraspinous ligament (SSL)
were meshed by tension-only Spring A elements (Rohlmann
et al., 2006). A frictionless surface contact between facet joints
was assigned. All material properties of the aforementioned
tissues were listed in Table 1.

Contouring Methods and Simulation of the
Posterior Lumbar Interbody Fusion
Procedure
Centroid, Cobb, and posterior tangent methods (Figure 2) were
applied to measure angles of L4–L5 segment curvatures in

TABLE 1 | Material properties of the FE model.

Component Element
type

Young’s
modulus (Mpa)

Poisson’s ratio Density (g/cm3) Cross section (mm2) Reference

Bone

Cortical bone C3D4 12,000 0.3
1.7e-6

Goel et al.
(1994)

Cancellous bone C3D4 100 0.2
1.1e-6

Endplate C3D8H 23.8 0.4
1.2e-6

Ueno and Liu
(1987)

Intervertebral disc
Annulus ground
substance

C3D8H C10 = 0.18, C01 = 0.045
1.05e-6

Schmidt et al.
(2007)

Nucleus pulpous C3D8H C10 = 0.12, C01 = 0.03
1.02e-6

Annulus fiber layers Polikeit et al.
(2003)

Outermost T3D2 550 0.3
1.0e-6 0.70

Second T3D2 495 0.3
1.0e-6 0.63

Third T3D2 440 0.3
1.0e-6 0.55

Fourth T3D2 420 0.3
1.0e-6 0.49

Fifth T3D2 385 0.3
1.0e-6 0.41

Innermost T3D2 360 0.3
1.0e-6 0.30

Fixation devices
Screw and rod
(Ti6Al4V)

C3D4 113,000 0.3

Cage (PEEK) C3D8H 3,500 0.3

Ligaments Element
type

Strain
(%)

Stiffness
(N/mm)

Strain
(%)

Stiffness
(N/mm)

Strain
(%)

Stiffness
(N/mm)

Strain
(%)

Stiffness
(N/mm)

Anterior longitudinal
ligament

Spring A ε < 0 0 0< ε

< 12.2
347 12.2< ε

< 20.3
787 20.3 < ε 1864 Rohlmann et al.

(2006)
Posterior

longitudinal ligament
Spring A 0< ε

< 11.1
29.5 11.1< ε

< 23
61.7 23 < ε 236

Ligamentum flavum Spring A 0< ε

< 5.9
7.7 5.9< ε

< 49
9.6 49 < ε 58.2

Intertransverse
ligament

Spring A 0< ε

< 18.2
0.3 18.2< ε

< 23.3
1.8 23.3 < ε 10.7

Capsular ligament Spring A 0< ε < 25 36 25< ε < 30 159 30 < ε 384
Interspinous

ligament
Spring A 0< ε

< 13.9
1.4 13.9< ε

< 20
1.5 20 < ε 14.7

Supraspinous
ligament

Spring A 0< ε < 20 2.5 20< ε < 25 5.3 25 < ε 34
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Mimics (Harrison et al., 2001). Here, the centroid angle was
described as the included angle made by two straight lines, which
passed through two vertebral centroids at both ends (Chen, 1999).
The Cobb angle was defined as the angle between the superior
endplate of L4 and the inferior endplate of L5. The posterior

tangent angle was defined as the included angle of two lines
passing tangentially to posterior wall of the L4 and L5 end
vertebrae (Janik et al., 1998). The shape of the contoured rod
was simply treated as an arc of a virtual circle. According to the
distance between ipsilateral screw tails (i.e., chord length of the
arc) and the three previously defined angles, the arc length (i.e.,
the rod contour) was calculated. The RCs of centroid, Cobb, and
posterior tangent models were 33.25°, 18.65°, and 7.99°,
respectively. In addition, the straight model (RC = 0°) was also
considered. Accordingly, the four types of rods were modeled in
SolidWorks 2003 (SolidWorks Corp., Waltham, MA,
United States).

PLIF was modeled on L4–L5 segment in 3-matic software.
According to the surgical procedure, pedicle screws with a
diameter of 6 mm were inserted along the central axis of the
pedicle, and two screws in L4 and L5 were parallel to their
superior endplates, respectively. Partial spinous processes and
laminae (inferior L4 and superior L5) and half of the medial facet
joints and three ligaments (LF, ISL, and SSL between L4 and L5)
were removed. Then, two cubic cages were inserted into the disc
space after removing the inferior endplate of L4 and superior
endplate of L5, and this simulated the clinical practice. Finally,
rods with four RCs were assembled in each model. All fixation
devices were meshed in HyperWorks. Tie constraints were
employed to model the contact between vertebrae and screws
or cages. All material properties of fixation devices were also
reported in Table 1.

Boundary and Loading Conditions
The six degrees-of-freedom of the sacrum were constrained. The
loading history involved two steps. In the first step, a preload of
500 N as a follower load representing upper body weight and
muscle forces was applied according to the force line of the
lumber spine (Patwardhan et al., 1999). In the second step, a
7.5 N mmoment was applied on the top center of the L1 vertebral
body in four actions, i.e., flexion, extension, lateral bending, and
axial rotation (Ayturk and Puttlitz, 2011). FE simulation was

FIGURE 2 | Description of Cobb, centroid, and posterior tangent methods in the rod bending procedure.

FIGURE 3 | Radiographic parameters measured from lateral
radiographs. Abbreviation: LL, lumbar lordosis; PT, pelvic tilt; PI, pelvic
incidence; SS, sacral slope; RC, rod curvature; PTA, posterior tangent angle
of fused segments.
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performed by Abaqus (v6.14, Simulia Inc., Providence, RI,
United States).

Model Validation and FE Analysis
To validate the FE model, a normal lumbosacral model was also
developed (Supplementary Figure S1 in Supplementary Materials),
and the range of motion (ROM) of the normal lumbosacral model
and L4/5 intradiscal pressure (IDP) were compared with a recent FE
study and an in vitro biomechanical experiment (Rohlmann et al.,
2001; Wang et al., 2018). To be consistent with the literature, a
follower load of 280 N and increasing moments from 0.0 to 7.5 Nm
with an interval 2.5 Nm were applied on the FE model in flexion,
extension, lateral bending, and axial rotation tests. After the
validation, ROM, intersegmental rotation angle (IRA) of adjacent
levels, IDP in adjacent segmental discs, and maximum von Mises
stress in fixation (MSF) of the four RC models were compared
(Huang et al., 2021).

Clinical Study
The retrospective study identified patients subjected to L4/5
segmental PLIF surgery for lumbar spinal stenosis from
January 2015 to June 2021 with the Institutional Review
Board’s (IRB) approval. The exclusion criteria were patients
with the diagnosis of spinal infection, injury, tumor, apparent
deformity, irreducible lumbar spondylolisthesis, and other
diseases that caused spinal instability. The normal group
included patients with an over two-year satisfactory follow-up,
whereas the abnormal group consisted of patients who had poor
recovery within two-year follow-up after primary surgery and
received revision surgery. Patient demographics (age, gender, and
BMI), surgical time, and hospital stay were collected.
Radiographic parameters including LL, PT, PI, sacral slope
(SS), PI-LL, RC, posterior tangent angle of fused segments

(PTA), and the difference between RC and PTA (RC-PTA)
were measured from postoperative lateral radiographs
(Figure 3). The χ2 test for the parameter of gender and
student t-test for the remaining parameters were used to
determine statistical difference between groups (SPSS Statistics
16.0, IBM Corporation, Somers, NY, United States), and p < 0.05
indicated the statistical significance.

RESULTS

Model Validation
The ROM of the normal lumbosacral model was validated against
two previous studies (Rohlmann et al., 2001; Wang et al., 2018).

FIGURE 4 | Range of motion (ROM)–moment curvatures for model validation versus the FE study from Wang et al. and the in vitro study from Rohlmann et al.

FIGURE 5 | Intradiscal pressure (IDP) of the L4/5 disc for model
validation by comparing the in vitro study and current model.
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As shown in Figure 4, the ROM–moment curves in the current
study agree with the ranges of the in vitro study and FE study. The
distribution of the IDP in L4/5 is similar to that of the in vitro
study, i.e., extension > right bending > left bending > flexion > left
torque > right torque. However, compared to the axial torsion,
the IDPs of flexion, extension, and lateral bending between the
present FE result and the in vitro experiment show a discrepancy
(Figure 5). The reason might be that residual muscles or tendons
connecting the spine in the in vitro study reduced the stress level
of the IDP. In any case, IDPs in the current study are still in the
acceptable ranges (Dreischarf et al., 2014; Naserkhaki et al., 2018).

Biomechanical Analysis of the Groups
No difference in the ROM of the lumbosacral model in the single-
segmental PLIF surgery was observed among four RCmodels under
the four actions of flexion, extension, lateral bending, and axial
rotation (Supplementary Figure S2 in Supplementary Materials).
On the neighboring adjacent vertebrae (L3/4 and L5/S1) to the fused
L4/5, there was also no substantial difference among four RCmodels
in IRA and IDP with 7.5 Nm moment under the four actions
(Supplementary Figure S3 in Supplementary Materials). Stress
distributions of the intervertebral discs and vertebrae showed a
very weak difference between four RC models (Supplementary
Figures S4, S5 in Supplementary Materials). The stress levels of
collagen fibers were higher than those of annulus ground substance.
In particular, MSFs under the four actions are illustrated in Figure 6.
In flexion and extension, the Cobb model had the greatest stress,
followed by the centroid model, straight model, and finally posterior
tangent model. In the lateral bending and axial rotation, the greatest
maximum stresses occurred in the centroid model; however, the
posterior tangent model and Cobb model ranked the second and
third, respectively, and the straight model was the last in the lateral
bending, whereas in axial rotation, Cobb and straightmodels were in
the middle, and posterior tangent had the minimum stress. The
stress contours of the screw–rod system in four RC models with the
values and locations of MSF under the four actions are shown in
Figure 7. Overall, MSF in all RC models mainly occurred at the

junction of screw and rods, and stress concentration was located at
rods and thread run-out. In axial rotation, the screw–rod system
experienced larger stress concentration than other actions.

Clinical Results
The analysis for characteristics of patients undergoing L4/5
segmental PLIF surgery were listed in Table 2. The primary
diagnoses for reoperations were lumbar spinal stenosis at the
adjacent level (10 cases) and internal fixation failure (2 cases). No
significant differences were found between normal and abnormal
groups in aspects of age, gender, BMI, surgical time, hospital stay,
LL, PT, PI, SS, PI-LL, and PTA. The normal group had much
higher RC (18.87° versus 4.70°, p < 0.01) and RC-PTA (6.18°

versus −5.23°, p < 0.01) than the abnormal group (Figure 8).

DISCUSSION

Optimization of spinal alignment measurements could provide
guidance to the surgery. However, one question that needs to be
answered is whether the rod contouring process should follow the
same strategy. In the process of sagittal alignment correction,
there is no evaluation on what RC could achieve a better clinical
outcome. Thus, basing on three commonly-used LL
measurements, we applied an analogy to rod contouring
practice in spinal surgery and provided evidence for better rod
contouring in single-segmental PLIF surgery by FE simulation.
Although the three methods showed similar biomechanical
properties under four actions, the posterior tangent method
was relevantly superior in the fixation stress distributions of
flexion, extension, and axial rotation. The RCs in centroid,
Cobb, posterior tangent, and straight models were 33.25°,
18.65°, 7.99°, and 0°. Also, the RC-PTA of the four models
were 25.26°, 10.66°, 0°, and −7.99°, respectively. The two
variables of the posterior tangent model fell in the middle of
the ranges. In the clinical study, it was demonstrated that
moderate RC was beneficial for patients who underwent L4/5

FIGURE 6 | Comparison of maximum stress in fixation (MSF) for four RC models in flexion, extension, lateral bending, and axial rotation.
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segmental PLIF surgery, and negative RC-PTA was associated
with adverse postoperative outcomes. Hence, both FEA and
clinical study demonstrated that moderate rod contouring was
necessary in L4/5 PLIF surgery. This result was partially
consistent with Harrison’s finding with respect to algorithm
comparison of LL assessment (Harrison et al., 2001).
Combined with the analyzing methodologies, the posterior
tangent method seemed better to fit normal spinal cord. Thus,
we inferred that for the sake of convenience in clinical

application, employing the fitting curve of the normal lumbar
vertebral posterior edge or centerline of spinal canal to contour
rod could be a feasible approach.

To date, improvement of surgical outcome and prevention of
ASD-related complications are still the focus and challenge in
lumbar surgery. In clinical practice, disappointing postoperative
function and mechanical failure have been largely ascribed to
inadequate restoration of sagittal alignment. Appropriate LL
restoration was beneficial for reducing ASD risk. An in vitro

FIGURE 7 | Stress contours of the screw–rod system for four RC models under flexion, extension, lateral bending, and axial rotation tests.
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biomechanical study reported that hypolordosis in the fused
segments could reduce tension behavior of the anterior soft
tissues and increase the stress of the posterior column of the
adjacent vertebra (Umehara et al., 2000). Meanwhile, high stress
of posterior internal fixation might increase risks of screw loosening
or rupture. Moreover, decreased LL could increase the ROM and
IDP of adjacent segments (Zhao et al., 2018), and excessive LL
curvature also increased the IDP of the adjacent intervertebral disc
(Wang et al., 2020). These also indicate the potential risk of ASD

development. A meta-analysis revealed that post-operative LL was
correlated with a significant increase in ASD occurrence after PLIF
for degenerative lumbar disease (Wang and Ding, 2020). In this
regard, to maintain proper physiologic lordosis at the fusion site, RC
should be in accordance with the appropriate LL. This inference
supplies the theoretical support for the current study to some extent.
In addition, it must be pointed out that proper physiologic lordosis
cannot be equated with originally normal lumbar alignment for
degenerative lumbar disease. Vertebral osteophyte formation,
intervertebral disc degeneration, facet hypertrophy, and
compensatory change of surrounding tissues are the reflections of
the body’s restabilization dealing with the lumbar pathological state
in a long-term process. This spontaneous restabilization generates a
special biomechanical status distinct from a patient’s normal lumbar
condition or individuals with normal anatomic structure of lumbar
spine. Thus, it requires proper correction of lumbar curvature based
on clinical patient-specific conditions, and this challenges surgeons
when evaluating spinal balance and planning correction of
curvature.

To the best knowledge of the authors, there are few studies on the
rod contouring optimization. Wanivenhaus et al. (2019) proposed
that augmented reality-assisted rod bending could reduce operation
duration by 20% compared with the traditional method and achieve
higher accuracy of the rod bending process. Shi et al. (2020)
confirmed that the Cobb angle could be used as reference to
guide rod bending in thoracolumbar fractures and also reported
that 4°–8° greater than the Cobb angle as the RC achieved the best
spinal sagittal balance 2 years after the operation. Moufid et al.

TABLE 2 | Patient demographics and radiographic parameters.

Variable Normal (N = 19) Revision (N = 12) p-value

Age (years) 53.42 ± 10.05 52.71(0.15) 0.42
Gender (male/female) 10/9 9/3 0.27
BMI (kg/m2) 25.59 ± 3.32 23.49 ± 2.93 0.08
Surgical time (hour) 2.21 ± 0.38 2.46 ± 0.99 0.47
Hospital stay (days) 7.74 ± 3.33 6.67 ± 1.83 0.32
LL 52.62 ± 12.30 48.49 ± 7.97 0.31
PT 15.12 ± 6.95 18.79 ± 4.26 0.11
PI 51.12 ± 6.95 52.74 ± 8.67 0.67
SS 35.99 ± 7.52 33.95 ± 7.90 0.48
PI-LL −1.51 ± 10.19 4.25 ± 7.84 0.11
RC 18.87 ± 6.16 4.70 ± 3.39 <0.01
PTA 12.68 ± 5.05 9.93 ± 3.09 0.10
RC-PTA 6.18 ± 7.96 −5.23 ± 4.71 <0.01

Abbreviation: LL, lumbar lordosis; PT, pelvic tilt; PI, pelvic incidence; SS, sacral slope; PI-
LL, the difference between PI and LL; RC, rod curvature; PTA, posterior tangent angle of
fused segments; RC-PTA, the difference between RC and PTA.

FIGURE 8 | Typical cases showing rod contouring differences between normal and abnormal groups.
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(2019) evaluated the mismatch between rod–screw and LL of the
fused segment by the concept of the mismatch analysis index (MAI),
which was determined by three parameters: the angle between the
screw and rod, the angle between the superior endplate and screw,
and the distance between the rod and posterior wall of vertebra. In
addition, Wang et al. (2016) reported that increasing the bending
angle of the concave rod, with respect to the convex rod, could
improve the transverse plane correction with advantages in screw
pullout forces and kyphosis.

The present study has a certain significance in the practical
application of individualized or customized rod contouring before
operation. Precise contouring could avoid the reduction of yield
strength and stiffness caused by repetitive bending (Demura et al.,
2015). It is worth noting that this study made a preliminary
exploration on a habitual, pervasive, but subjective surgical
procedure that requires standardization in the period of highly
developing surgical techniques. Limitations should be
acknowledged as well. First, this study did not take into account
anatomical variations of the spinal structure. In fact, normal lumbar
curvature varies greatly, which may result in different biomechanical
performances of rod contouring. Spinal parameters, such as LL, PI,
PT, and sacral slope (SS), are also associated with the sagittal balance.
Second, the current study computationally modeled three commonly
used lumbar lordosis measurements and straight rods to guide rod
contouring. However, the modeled RCs should be solidified to have
generalizability, interpretability, and clinical applicability by collecting
more samples. Third, the clinical observations were patient-specific,
and the real mechanical environment corresponding to the model
boundary conditions varied, and this might lead to the discrepancy
between the model and clinical observations. The patient-specific
information should be further included to have exactly consistent
results with the clinical observations. Fourth, FEA was a numerical
evaluation of the biomechanical effect on the PLIF. The cadaveric
study under cyclic loading andmulticenter clinical studies with sound
evidence should be conducted to verify the results. The accuracy of the
radiographic parameter measurement could also be optimized by
digital image processing and other analysis techniques. Nevertheless,
there is no denying that the current study strongly controlled variables
that inevitably occurred in clinical studies such as differences from
patients and fixation placement.

CONCLUSION

The present study studied the biomechanical effects of different
RCs determined by centroid, Cobb, and posterior tangent

methods on the single-segment PLIF surgery. The findings
were that four RC models showed similar biomechanical
behaviors under four actions, but the posterior tangent mode
was relevantly superior to other three RC models in the aspect of
fixation stress distribution. Moreover, the retrospective study
further revealed that moderate RC and positive RC-PTA were
associated with favorable prognosis.
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