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We hypothesized that the parts of scenes identified by
human observers as ‘‘objects’’ show distinct color
properties from backgrounds, and that the brain uses this
information towards object recognition. To test this
hypothesis, we examined the color statistics of naturally
and artificially colored objects and backgrounds in a
database of over 20,000 images annotated with object
labels. Objects tended to be warmer colored (L-cone
response . M-cone response) and more saturated
compared to backgrounds. That the distinguishing
chromatic property of objects was defined mostly by the
L-M post-receptoral mechanism, rather than the S
mechanism, is consistent with the idea that trichromatic
color vision evolved in response to a selective pressure to
identify objects. We also show that classifiers trained
using only color information could distinguish animate
versus inanimate objects, and at a performance level that
was comparable to classification using shape features.
Animate/inanimate is considered a fundamental
superordinate category distinction, previously thought to
be computed by the brain using only shape information.

Our results show that color could contribute to animate/
inanimate, and likely other, object-category assignments.
Finally, color-tuning measured in two macaque monkeys
with functional magnetic resonance imaging (fMRI), and
confirmed by fMRI-guided microelectrode recording,
supports the idea that responsiveness to color reflects the
global functional organization of inferior temporal cortex,
the brain region implicated in object vision. More strongly
in IT than in V1, colors associated with objects elicited
higher responses than colors less often associated with
objects.

Introduction

Several lines of evidence suggest that color signals
are useful for high-level object vision (Conway, 2018;
Tanaka, Weiskopf, & Williams, 2001). Color signals
promote object recognition and memory (Gegenfurtner
& Rieger, 2000); the addition of color as a feature
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improves performance of object-recognition models
(Mely, Kim, McGill, Guo, & Serre, 2016); and color
indexing is an effective machine-vision method for
identifying objects across image views (Funt &
Finlayson, 1995; Swain & Ballard, 1991). Moreover,
simulations of object-color statistics suggest the exis-
tence of systematic differences in the colors of objects,
which could be exploited by the visual system
(Koenderink, 2010). But despite the apparent impor-
tance of color for object perception, the contribution of
color toward the neural operations that support object
detection and object recognition have received rela-
tively little attention. There are several reasons that
may account for this oversight. First, in the visual
neuroscience literature, color has often been assumed
to be just a low-level stimulus feature: Color is rarely
mentioned in computational work on object recogni-
tion (DiCarlo & Cox, 2007; Gauthier & Tarr, 2016);
stimuli in object-recognition experiments are often
achromatic; and influential object-recognition models
ignore color (Riesenhuber & Poggio, 1999). Second, the
predominant organizing principle of inferior temporal
cortex (IT), the large brain region implicated in object
vision, is thought not to depend on color properties of
objects, but rather on semantic categories (Huth,
Nishimoto, Vu, & Gallant, 2012), or on shape features,
such as those that enable a distinction of faces and
nonfaces (Kanwisher, 2010), or those that distinguish
animate and inanimate objects (Caramazza & Shelton,
1998; Kiani, Esteky, Mirpour, & Tanaka, 2007;
Kriegeskorte, Mur, Ruff, et al., 2008; Naselaris,
Stansbury, & Gallant, 2012; Sha et al., 2015), or object
size (Konkle & Caramazza, 2013). Finally, the boost in
fMRI response of many parts of IT caused by adding
color to a stimulus is modest (Lafer-Sousa, Conway, &
Kanwisher, 2016).

Yet color is possibly the best cue for object vision.
Object shape varies with viewing angle, and object
motion is not typically an object-defining feature.
Object colors, meanwhile, are perceived to be largely
constant across viewing conditions. But surprisingly it
is not known whether objects can be decoded using
only color information; prior work on object recogni-
tion has assumed that fundamental object categories,
such as the distinction between animate and inanimate,
cannot be determined using only chromatic cues
(Kriegeskorte, Mur, & Bandettini, 2008).

Here, we revisit the importance of color in object
recognition, adopting an approach that aims to
understand neural mechanisms in a behavioral
context by evaluating natural image statistics (Stans-
bury, Naselaris, & Gallant, 2013). Prior work has
assessed the color statistics of natural scenes (Webster
& Mollon, 1997). We are interested in a related, but
distinct, issue: the color statistics of the parts of
scenes that observers identify as ‘‘objects’’. To address

this question, we quantified the extent to which color
distinguishes objects from backgrounds, by analyzing
the hue, chroma, and luminance statistics of parts of
images that observers decided were objects (‘‘chroma’’
being the colorfulness or saturation of a surface as
evaluated in the context of a similarly illuminated
area that looks white). We used the 20,840-image
database originally curated by Microsoft for salient
objects (Liu, Sun, Zheng, Tang, & Shum, 2007). We
asked observers to mask the images to identify the
pixels comprising objects and backgrounds (Figure
1A), to label the objects in the images, and to then
group the labels according to superordinate catego-
ries ‘‘animate’’ and ‘‘inanimate’’. We analyzed the
color statistics of the images based on several criteria:
objects compared to backgrounds, animate objects
compared to inanimate objects, and natural objects
compared to artificial (man-made) objects; we then
compared the ability of classifiers trained on color or
shape features to perform object categorization tasks.
Next, we directly compared neural color responses
across macaque visual cortex with the color statistics
of objects, and we confirmed the validity of these
fMRI measures through fMRI-guided microelectrode
recording. We found that the color tuning of IT was
biased towards colors more often associated with
objects. The results contribute to our overarching
hypothesis that color reflects behavioral relevance
(Gibson et al., 2017), and is exploited by the brain to
give rise to object knowledge (Conway, 2018).

Materials and methods

Object analysis: Microsoft data set

Color statistics of objects were determined using a
large database of images originally curated by Micro-
soft (Microsoft Research Asia, MSRA) (Liu et al.,
2007). The images and the masks that observers in our
study used to segment the images into objects and
backgrounds, together with the object labels that
observers applied to the objects, can be found at
https://neicommons.nei.nih.gov/#/objectcolorstatistics.

The images were originally obtained off the
internet. We do not hold copyright of the images. The
MSRA image set obviated the need for us to define an
‘‘object’’: Human observers at Microsoft decided
whether an object was present in an image, on an
image-by-image basis. The objects were identified in
photographs, not in real scenes. We make no claim
about the relationship of the spectral properties of the
objects in the photographs and the spectral properties
of the objects as they exist in the real world, although
the relationship is not arbitrary because color labels
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used to describe objects in color photographs are

typically the same as those used to describe the real

objects; this conclusion is supported both by empir-

ical work (Moroney & Beretta, 2011), and by the

broad acceptance of color photography. People

readily, and naturally, identify objects in photo-

graphs; and the use of photographs enables us to

assess color statistics of a much larger number of

objects than would be feasible if we were to rely solely

on spectral measurements from real objects. The

database was created by three observers at Microsoft

who identified from among 200,000 images a subset of

Figure 1. The color statistics of objects. (A) From over 200,000 images, observers at Microsoft selected 20,840 images that contained a

salient object and placed a red bounding box around the object (Liu et al., 2007). Two näıve observers in the present study then

created masks to demarcate the pixels containing the object. The top panels show example images; the bottom panels show the

masks. Images from the MRSA database (Liu et al., 2007) are reproduced with permission from Microsoft. (B) Tapestry plots showing

10,000 pixels randomly selected from the pixels assigned to backgrounds (1.89 billon pixels total), naturally colored objects (0.26

billion pixels), and artificially colored objects (0.22 billion pixels). (C) Chromaticity coordinates of the pixel colors of the tapestry plots.

The figure shows a single lightness plane through the chromaticity space, with pixels of all lightness projected onto that plane. The

lightness values are indicated by the colors of the data points. Inset shows an expanded view. The symbols contain the standard error

of the mean. The analysis was repeated 100 times; each iteration involved randomly sampling 10,000 pixels of backgrounds, artificially

colored objects, and naturally colored objects. Pixels from naturally colored objects were different from pixels in backgrounds along

the u0 dimension (p¼ 0 for all 100 iterations, unpaired t test), and along the v0 direction (p , 10�67 for all 100 iterations). Pixels from

artificially colored objects were different from pixels in backgrounds along the u0 dimension (p , 10�82 for all 100 iterations), and

along the v0 direction (p , 0.05 for 76/100 iterations). Pixels from artificially colored objects were different from pixels in naturally

colored objects along the u0 dimension (p , 10�26 for all 100 iterations), and along the v0 direction (p , 10�130 for all 100 iterations).
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20,840 images that contained a salient object (Liu et
al., 2007). Two people (authors TH and SE) in our
group who were initially naı̈ve to the purpose of our
study identified the regions within the bounding boxes
that contained the object and the background, and
identified the object colors as natural or artificial; the
regions were identified by loading each image into
Adobe Photoshop using a calibrated display and
applying a mask. In separate sessions, two observers
(author SE and intern JK) subsequently identified and
labeled the objects in the image set. A total of 2,781
unique object labels were obtained. Their instruction
was simply to label the object so its identity could be
communicated to another person. Labeling and
applying the masks were done in separate sessions to
reduce the possibility that performance on any of the
tasks had an impact on performance of the other
tasks. The object labels were then categorized as
‘‘animate’’ or ‘‘inanimate,’’ following the procedure of
Naselaris et al. (2012). The eyes in Figure 1 have been
masked, but original photographs were used in the
analysis. A small subset of the photographs (1.7% of
the images) was black and white.

The photographs in the image set are not objective
random samples of natural scenes, but rather repre-
sent photographic decisions. In the same way that
studies of ‘‘faces’’ benefit by having a stimulus set
with salient examples of faces (even if the stimulus set
is not broadly representative of natural images), we
reasoned that a study of objects benefits from an
image set that is enriched for objects. Humans can
identify objects under challenging circumstances such
as camouflage and low contrast. But if we want to
understand how object recognition works, we think it
best to first start with images that unequivocally
contain objects that are readily recognized. The
objects were not cropped from the backgrounds, so
each photograph contains ‘‘background’’ pixels,
allowing a direct comparison of the statistics of object
and background in each image. The decisions about
what constitute ‘‘objects’’ reflects three stages of
decision making, by independent observers: the
decisions about what to photograph (the photogra-
phers); the decisions about what photographs contain
objects (the observers in Liu et al); and the decisions
about the specific parts of object-containing photo-
graphs that comprise the object (the observers in our
study). Presumably these decisions reflect the pro-
cesses of object recognition or object identification,
and as such, the photographs allow us to interrogate
the statistical basis for object judgements. It will be
important to replicate the present results using other
image sets, and to probe the extent to which the
results are impacted by differences in the way the
object-identification task is conducted. These future
studies should shed light on how robust the results are

with regards to differences in the instructions used,
the background/expertise of the participants, and the
conditions under which the object-identification task
is performed.

Color spaces used, and why

Colors can be specified in several color spaces that
are transforms of each other. CIELUV is traditionally
used to specify colors of self-luminous bodies; CIELAB
is used to specify colors of reflective surfaces; and cone-
opponent spaces are often used in physiological
experiments where the goal is to relate color responses
to retinal mechanisms of color encoding. CIELUV and
CIELAB are very similar, and for consistency, we use
CIELUV throughout this report (defining stimuli in the
u0 v0 chromaticity space). The color stimuli used in the
physiological experiments were defined using a cone-
opponent space (Derrington, Krauskopf, & Lennie,
1984; MacLeod & Boynton, 1979); these stimuli were
shown on a computer monitor (a self-luminous body),
so we converted these colors into CIELUV to facilitate
comparison with the image statistics (see Figure 7B).
The conclusions are unaffected if the analyses are
performed using CIELAB color space.

Pixel colors from the images (and the color stimuli
from the fMRI and microelectrode recording exper-
iments described below) were converted into CIE-
LUV using the image processing and optprop
toolboxes in MATLAB R2016b (MathWorks, Na-
tick, MA). The images were originally obtained in
sRGB values, and these were converted to u 0 v 0

coordinates. The white point for the analysis of the
image colors was set by D65, the standard illuminant
for noon daylight and sRGB color space (Figures 2
and 3), or D50, another standard white point said to
represent ‘‘horizon light’’ at sunrise or sunset (all
other figures; the results are unaffected by the choice
of white point). Pixel chroma was defined as CIE 1976
chroma (MATLAB rgb2xyz and xyz2luvp, from the
optprop toolbox), and luminance contrast was com-
puted as Michelson contrast (see Figure 3 legend).
Pixel colors were converted into LMS values using
custom MATLAB functions with the CIECAM02
transform matrix from XYZ to LMS [0.7328, 0.4296,
�0.1624; �0.7036, 1.6975, 0.0061; 0.0030, 0.0136,
0.9834]. Pixel colors were binned into categories
defined by equal steps in CIELUV space, or by the
stimuli used in the fMRI and neurophysiological
recording experiments (each pixel was assigned to the
stimulus color with the closest u 0 v 0 value, Euclidean
distance) using a script written in Cþþ and OpenCV
(opencv.org). The fMRI experiments used 12 equilu-
minant colors defined by cone-opponent color space
(stimulus details given below). The single-cell re-
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Figure 2. Object-color probability, rank-ordered by most frequent object colors. (A) Pixels across the 20,840 images were categorized

into 240 bins (24 evenly spaced hue angles at 10 chroma values in u0 v0). Object-color probability was computed as follows: number of

pixels having a given color in the objects divided by the number of pixels having the same color in the objectsþ backgrounds. The

colors of the bars correspond to the sRGB colors of the bins. The bars are rank-ordered with the most frequently occurring object

�
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cordings used either 16 equiluminant colors defined
by the cone-opponent color space (stimulus details
given below), or 45 equiluminant colors that spanned
the gamut of the monitor (chromaticity values are
given in (Bohon, Hermann, Hansen, & Conway,
2016)). Colors were modulated around a neutral gray,
ensuring a constant neutral adaptation state. The
gray was [x,y,Y], [0.3170, 0.423, 55.1] for the 12 fMRI
colors; [0.27, 0.296, 55.6] for the 16 colors used in the
first set of microelectrode recording experiments; and
[0.314, 0.370, 3.05] for the 45 colors used in the
second set of microelectrode recording experiments.
The cone contrast for the 12 fMRI colors is given in
Figure 7. The maximum cone contrast for the 16
colors used in the first set of microelectrode recording
experiments wasþ/� 0.104 L-M, andþ/� 0.79 S. The
maximum cone activation for the MSRA data set was
þ/� 0.37 L-M and þ/�1.63 S.

Object analysis: Color in the Kriegeskorte et al.
image set

Support vector machine (SVM) classifiers built using
the LIBSVM library (Chang & Lin, 2011) in MATLAB
were used to sort the 92 images from Kriegeskorte et al.
(2008). Several color statistics were calculated from
each image: (a) the average hue of the image averaged
over object pixels (we computed the average color
across the object, and used the u0 and v0 values that
define this average color to train the classifier); (b) the
average luminance of the object; (c) the average color
of the image, using L in addition to u0 and v0; and (d)
the average chroma of the object. Chroma was
calculated as the average Euclidean distance of the
pixels in an image from the average pixel value across
all images. The SVM classifiers were tasked with
discriminating between images labeled as ‘‘animate’’ or
‘‘inanimate,’’ following the classification of the images

Figure 3. Color chroma and luminance-contrast statistics of objects. (A) Histograms showing the chroma of the pixels identified as part of

objects (black bars), and the chroma of the pixels identified as part of backgrounds (open bars; same data sampling as in Figure 2B).

Chroma was defined as the CIE 1976 chroma. Insets bin chroma values 0–0.10 as ‘‘low,’’ 0.11–0.20 as ‘‘medium,’’ and 0.01–0.30 as

‘‘high’’. (B) The chroma of pixels identified as naturally colored (black bars) and artificially colored (open bars). Artificially colored objects

were biased towards the chroma extremes, showing more low-chroma pixels and more high-chroma pixels compared to naturally

colored objects (this observation is not apparent when chroma values are binned more coarsely, as shown in the inset). Other

conventions as in panel (A). (C) The luminance contrast of all image pixels identified as part of naturally colored objects (black bars) are

compared against the contrast of the pixels identified as part of artificially colored objects (white bars). Michelson contrast was

computed by taking, for each image, the average luminance across the pixels of the object minus the average luminance of the pixels in

the background divided by the sum of these luminance values. Insets bin luminance contrast values�1 to 0 as ‘‘dark,’’ and 0 to 1 as

‘‘bright’’. All differences between pairs of bars identified by an asterisk were significant (chi-square test of proportions, p , 0.03).

 
colors on the left. The error bars show the standard deviation of the probability of a given hue being in the foreground, computed

over 1000 bootstraps (bar height is the mean of the bootstrapped values). During each bootstrap, 20000 images were picked

randomly to generate probabilities. The results across bootstraps were averaged together to generate mean object-background

probabilities (bar height); (B) as for panel (A), but using for each image only one randomly selected pixel for each object and one

randomly selected pixel for each background. (C) Correlation of object-color probability as a function of u0, for all pixels (left) and

single pairs of pixels per image (right). The colors were binned in 101 bins (0.0014 u0 bin widths), evenly sampling the u0 values

symmetric over the white point (arrowhead); error bars show standard deviations, computed as in panel A.
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used by Kriegeskorte et al. For each decoding task, the
classifiers were trained on 91 images to generate a
model which was tested on the remaining image; this
process iterated 92 times, such that each stimulus was
the test image in one iteration. Classification accuracy
is reported as the proportion of 92 images for which the
classifier was accurate and the standard error is of the
binomial distribution. We used an SVM classifier with
a linear kernel, as well as an SVM with a radial basis
function. Linear SVM parameters were selected as
follows: for decoding only based on average u0 and v0

coordinates, cost ¼ 1; c¼ 0.01; for decoding only on
luminance, cost ¼ 2; c ¼ 0.01; for decoding with L, u0,
and v0, cost¼ 3; c¼ 0.01; for decoding on chroma, cost
¼ 120; c¼ 0.01. Radial basis function decoding
parameters for average u0 and v0 coordinates were: cost
¼ 11; c¼ 70. The cost term reflects a trade-off between
correctly categorizing all examples and having the
categories separated by a wide margin. Gamma (c)
defines how much influence a single training example
has when updating the classifier (larger values meaning
less influence). Note that the images used by Kriege-
skorte et al. depicted objects that were cropped from
natural backgrounds. A broad gridsearch, as recom-
mended by the developers of lib-svm (https://www.csie.
ntu.edu.tw/;cjlin/papers/guide/guide.pdf), was used to
select initial values of cost and gamma, and these values
were optimized through a series of narrower grid-
searches to optimize performance for each classifier
individually. There were 48 animate images and 44
inanimate images in the dataset, giving the classifier a
52% chance of guessing animacy correctly and a 48%
chance of guessing inanimacy correctly.

Object analysis: Categorizing object/background
of the MSRA image set with color

Support vector machine (SVM) classifiers using
different color features were used to classify pixels as
belonging to objects or backgrounds. Each image
contributed two values: the mean pixel values across
the ‘‘object,’’ and the mean pixel values across the
‘‘background’’. The SVM classifiers trained on half the
total data to generate an optimal hyperplane dividing
the data into the two classes on the basis of the input
features. The trained classifiers were then tested on the
other half of the data, returning predictions about class
membership for each test image. Each classifier was run
25 times, with a different random 50/50 split of the data
for training and testing each time. Accuracy is the mean
of these 25 iterations (running more iterations did not
cause substantial changes in mean). The standard error
of the mean of the binomial distribution was calculated
for each iteration, and we report the largest value of the
25 iterations as the SEM. Classifiers were run on hue,
chroma, and luminance values using D50 as the white
point, and with cone values defined in LMS space using
the CIECAM02 transformation matrix (Fairchild,
2001). To generate the ROC curves of Figure 4, which
quantify the diagnostic ability of the different features,
an SVM model was fit to all the image data and object/
background labels. MATLAB’s fitPosterior function
was used to determine the optimal mapping of scores
assigned by the classifier to posterior probabilities, and
resubPredict used this mapping to return the posterior
probability of each value being from an object or
background. Finally, the perfcurve function, using the
class labels and the posterior probabilities, generated
an ROC curve along with 95% CI obtained through

Figure 4. Receiver operating characteristic (ROC) analysis showed that objects can be discriminated from backgrounds based on color.

(A) ROC curves when using hue, chroma, and luminance, and all three as input to a support vector machine (SVM) classifier. All ROC

curves were significantly different from the null curve (Wilcoxon rank sum test, p , 0.0001). (B) ROC curves when using L, M, S, L-M,

S�(L-M), and the two intermediate directions in cone-opponent space as features for SVM for classification (Int1¼ orange-blue axis;

Int2¼ green-purple axis). All ROC curves were different from the null curve (Wilcoxon rank sum test, p , 0.0001). Only the L-M curve

and the S curve were different from all other curves, and each other (p , 0.0001).

Journal of Vision (2018) 18(11):1, 1–21 Rosenthal et al. 7

https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf


bootstrapping (n¼ 1000). Additional parameters for all
MSRA SVM analyses were as follows: Expected
proportion of outliers in training data¼ 0.05; kernel
function ¼ radial basis function; box constraint
(regulating how much loss a data point violating the
margin incurs) ¼ 1.

Object analysis: Categorizing animate/
inanimate of the MSRA image set using shape
features versus color features

To compare the performance of color-based features
with state of the art computer vision methods in
recognizing animate and inanimate objects, we deter-
mined the performance of an SVM trained using
features generated in three analyses of the MSRA
images: first, using color (L u0 v0 coordinates) alone;
second, using a deep convolutional neural network
(DCNN; Krizhevsky, Sutskever, & Hinton, 2012); and
third, using a histogram of oriented gradients (HOG;
Dalal & Triggs, 2005). The early convolutional layers in
a DCNN act as Gabor-like filters to capture oriented
gradients (Krizhevsky et al., 2012; Zeiler & Fergus,
2014). HOG is based on calculating the image
derivative and binning the gradients into a histogram
(Dalal & Triggs, 2005). The Gabor-like filters of
DCNNs and the image derivative of HOG capture
luminance variations in a local neighborhood of pixels,
providing a quantitative metric of shape information.
Pretrained networks such as the AlexNet have been
widely used for transfer learning applications: They are
efficient in terms of training, and generally perform well
(Huang, Pan, & Lei, 2017; Yosinki, Clune, Bengio, &
Lipson, 2014). HOG has also been used in computer
vision applications, including distinguishing humans
from other objects (Dalal & Triggs, 2005), estimating
object pose (Chiu & Fritz, 2015), and general object
recognition (Felzenszwalb, Girshick, McAllester, &
Ramanan, 2010; Mammeri, Boukerche, Feng, & Wang,
2013). HOG features are reasonably robust to illumi-
nation and size (Dalal & Triggs, 2005).

The DCNN that we used is the AlexNet (Krizhevsky
et al., 2012), which was trained on the ImageNet
(http://www.image-net.org/) database. The ImageNet
database contains almost 15 million annotated photo-
graphs that comprise about 22,000 object categories.
Our procedure was as follows: For half of the MSRA
image database (about 10,000 photographs), we deter-
mined features using the AlexNet DCNN. Then we
trained an SVM using the MATLAB implementation
(fitcsvm) on the features from the last fully connected
layer of the network and the animate/inanimate labels
that we had previously assigned to the images. We
tested accuracy of the SVM in assigning animate/
inanimate labels on the second half of the image set

(images used for training and testing were indepen-
dent). Each image yields one feature, and the size of the
features in the FC8 layer is 1000 dimensions. We
performed this procedure 100 times, using a random
draw of half of the MSRA image set for each iteration.
We trained the SVM using linear, polynomial, and
exponential kernels, and used the SVM that obtained
the best performance. For the DCNN, the best
performance was obtained using the polynomial kernel.
Note that the ImageNet database that was used to
create the AlexNet DCNN comprises mostly colored
photographs, and we generated features using the
original colored MSRA images. Thus the DCNN likely
exploits both shape and color information.

The analysis using HOG was performed by training
the SVM with the features recovered using the HOG
implementation in MATLAB. The MSRA images were
rendered in black and white, and resized to 300 3 400
pixels so that the HOG feature vector for each image
had the same length. Each image was subdivided into
16316 cells to calculate the HOG features. We used an
SVM with an exponential kernel function to classify the
MSRA images into animate and inanimate (the
exponential kernel yielded better performance than a
linear or polynomial kernel). As above, we used half of
the MSRA image set for training the SVM and the
other half for testing, and the process was repeated 100
times using a random draw of half of the MSRA image
set for each iteration. The HOG procedure used
achromatic images, so the features do not reflect a
contribution of color.

For the color-alone analysis, we trained the SVM
using the three coordinates (L, u0, v0) obtained by
averaging all the pixels within the object boundary of
each image as features for that image. We report the
results using an exponential kernel for the SVM, which
performed better than a linear or polynomial kernel. As
in the DCNN and HOG analyses, we trained the SVM
using features from half of the MSRA image set, and
tested performance on the remaining half of the images.
We repeated the procedure 100 times, with a random
draw of half of the MSRA images for each iteration.

The mean recognition rate and standard deviation of
animate and inanimate classification performance for
SVMs trained on the three types of features (color
alone, HOG, and DCNN), each for 100 iterations, are

Deep CNN HOG CIEL u0 v0 Color

Animate

Mean (%) 83.1 54.4 76.0

STD 0.9 0.9 1

Inanimate

Mean (%) 28.6 73.8 55.0

STD 0.9 1 1

Table 1. Animate versus inanimate classification accuracy.
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listed in Table 1. The analysis provides a fair
comparison because in each case the features (color,
DCNN, or HOG) were obtained on the same
segmented images. There were a slightly uneven
number of animate and inanimate stimuli in the
dataset, rendering the odds of a correct ‘‘animate’’
guess at 47% and a correct ‘‘inanimate’’ guess at 53%.

ROC analysis was performed on the color, DCNN,
and HOG classifiers in the same manner as described
for the object/background SVM classifiers.

Neural measurements of color tuning: fMRI
experiments

Color tuning was measured in a Siemens 3-T Tim
Trio scanner with AC88 gradient insert, in two alert
male macaque monkeys (7–8 kg), using our previously
published procedures for MION-contrast-enhanced
alert-monkey fMRI (Lafer-Sousa & Conway, 2013;
Verhoef, Bohon, & Conway, 2015). Voxel sizes were 1
mm3. The animals were trained to fixate a spot on a
screen on which we displayed, in 32-s blocks, each of 12
colors defined by the equiluminant plane of cone-
opponent color space (Derrington et al., 1984; MacLeod
& Boynton, 1979) (see Figure 7). The colors (Figure 7B)
were generated on color-calibrated displays; specifica-
tion of the color stimuli is given in our prior report
(Lafer-Sousa & Conway, 2013). Stimulus blocks were
interleaved with 32-s of adapting gray (TR¼ 2s; echo
time¼ 13 ms). All stimuli maintained an average
luminance of 55 cd/m2, and were defined to be of equal
chroma in CIELUV (note that, typically, stimuli defined
in cone-opponent color space are not of equal chroma).
The CIE x, y coordinates for the 12 colors are given in
Figure 7. The colors were presented as color-gray
gratings (2.9 cycles/8, drifting at 0.75 cycles/s, alternating
directions every 2 s) on a screen (418 3 318) 49 cm in
front of the animal using a JVC-DLA projector (1,0243
768 pixels). In addition to color-gray gratings, we also
presented a block of 10% achromatic luminance-
contrast gratings. Stimuli were presented in two runs.
First run: colors 1, 3, 5, black/white, 7, 9, 11; Second
run: colors 2, 4, 6, black/white, 8, 10, 12 (color
numbering starts with L-M, and progresses counter
clockwise in the cone-opponent color space). To
measure color tuning, we analyzed a total of 13,600 TRs
(TR¼ repetition time, 2 s) in one animal and 7,072 TRs
in the second animal. The percent signal change (psc) for
a given condition was computed against the response to
the last eight TRs of the gray conditions before and
after. Responses for a given region of interest were
computed by averaging the signals across all the voxels
within the ROI. High-resolution anatomical scans (0.35
30.3530.35 mm3 voxels) were obtained for each animal
while it was lightly sedated. Maps of the correlation of

the fMRI response to each color and the probability of
each color appearing as part of an object were painted
on inflated surfaces of each animal’s anatomical volume.
Color-biased regions, face patches, and meridian
boundaries demarcating retinotopic visual areas were
reproduced from our prior report, using data collected
in the same animals (Lafer-Sousa & Conway, 2013;
Verhoef et al., 2015). We defined V1 using retinotopic
mapping, guided by an anatomical atlas (Paxinos,
Huang, & Toga, 2000).

To calculate the correlation between color statistics
in the MSRA dataset and the color-tuning responses of
voxels in the fMRI dataset (Figure 8B), the pixels
labelled as ‘‘natural’’ in the MSRA dataset were binned
into the 12 colors used during the fMRI experiment.
The probability of the colors in these 12 bins being in
objects (rather than background) was then computed.
We then determined the correlation of the percent
signal change within each voxel within each region of
interest with the object-color probabilities, individually
for each hemisphere within each monkey. The mean of
these correlations across voxels in a unilateral ROI was
the average correlation of that unilateral ROI to the
object-color probabilities. A paired t test was per-
formed to test the hypothesis that the correlation in IT
was different than the correlation in V1.

Neural measurements of color tuning:
Physiology experiments

Two sets of physiological experiments were ana-
lyzed: a first set of experiments in which we targeted
color-biased regions of PIT, just anterior to the V4
complex, in the same animals used for the fMRI color-
tuning experiments; and a second set of experiments
that we have previously described (Conway, Moeller, &
Tsao, 2007; Conway & Tsao, 2009), in which micro-
electrode recordings were targeted to color-biased globs
that are part of the V4 Complex. In the first set of
experiments, we measured single-cell responses to 16
colors defined in cone-opponent color space. The CIE
x, y coordinates for the 16 colors were as follows:
0.3129, 0.2784; 0.3341, 0.3296; 0.3503, 0.3949; 0.3547,
0.4633; 0.3382, 0.5077; 0.3026, 0.5013; 0.2636, 0.4478;
0.2355, 0.3781; 0.2213, 0.3155; 0.2177, 0.2684; 0.2218,
0.2367; 0.2304, 0.2172; 0.2421,0.2089; 0.2567, 0.2102;
0.2730, 0.2208; 0.2922, 0.2430; neutral-adapting gray:
0.2700, 0.2959. In the second set of experiments, we
measured single-unit responses to stimuli defined by the
gamut of CIE xyY color space (stimulus details are
provided in Bohon et al., 2016). The targets in IT and
the V4 Complex were identified using fMRI, as
previously described (Conway et al., 2007; Conway &
Tsao, 2005; Lafer-Sousa & Conway, 2013). Color-
biased regions were defined as those showing greater
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fMRI activity to equiluminant colored gratings than to
achromatic luminance-contrast gratings. In the first set
of experiments, the fMRI colors were single color-gray
gratings, enabling us not only to identify the color-
biased regions but also to assess color tuning across the
cortex (details of the fMRI experiments are provided
above). In the second set of experiments, the colors
used in the fMRI experiment were red-blue gratings of
relative luminance contrast defined by a minimum
response in area MT. All microelectrode recording
protocols were those that we have described previously
(Conway, 2001; Conway et al., 2007). Recording
chambers were installed over regions of interest, under
sterile surgical procedures; custom-made plastic grids
fitted to the inside dimensions of the chamber were used
to define relative positions within the grid coordinates,
and to hold guide tubes through which electrodes were
advanced through the cortex. Physiological responses
were amplified and filtered, and spikes were sorted
either on-line or off-line using Plexon software. While
recording, the animals were rewarded with a drop of
water or juice for maintaining fixation; eye position was
monitored using an infrared camera directed at the
eyes. Once a neuron was isolated, bars or patches
centered on the receptive field were flashed. The length,
width, and orientation of the bar/patch were chosen
using hand mapping, to elicit the maximal response.
The background of the monitor was a constant, neutral
gray, maintaining a consistent adaptation state (7 cd/
m2 in the first experiments; 55 cd/m2 in the second
experiments). The color of the bar/patch was pseudo-
randomly selected for each stimulus presentation such
that the average number of presentations of all colors
was about the same during a recording session. Data
were included if we collected responses to at least three
presentations of each color. Stimuli were on for 200 ms,
and there was a 200 ms delay between stimuli during
which time the entire screen (except the small fixation
spot) was the neutral-adapting gray. To evaluate the
population color-tuning response, and to relate this
measurement to the object-color statistics and the
color-tuning assessed using fMRI, we determined the
average response across the entire population of
recorded cells to each of the colors used. This method is
different from what we have done previously, in which
we conducted population analyses by generating
histograms of the number of neurons with peak tuning
to each of the colors used (Conway & Tsao, 2009;
Stoughton & Conway, 2008). The present method
accurately reflects the global number of spikes elicited
by each stimulus, and therefore is a more likely cellular
correlate of the fMRI response. To relate the micro-
electrode recording results (using 16 colors) and the
fMRI results (using 12 colors), we fit a smooth curve
through the color-tuning function of the fMRI data,
and subsampled the curve at color intervals defined by

the microelectrode recording stimuli. All experimental
procedures conformed to local and US National
Institutes of Health guidelines and were approved by
the Harvard Medical School, Wellesley College,
Massachusetts Institute of Technology, and the Na-
tional Eye Institute Institutional Animal Care and Use
Committees.

Results

Color statistics of objects

The color statistics of natural images are biased for
orange and blue (Webster & Mollon, 1997), across
ecosystems and seasons (Webster, Mizokami, & Web-
ster, 2007), and are reflected in a subtle bias in V1 for
an intermediate color direction that roughly corre-
sponds to the colors associated with the daylight locus
(Lafer-Sousa, Liu, Lafer-Sousa, Wiest, & Conway,
2012). Here we extended the approach of relating color
statistics to human behavior by testing the extent to
which those parts of natural scenes that human
observers define as ‘‘objects’’ show distinct color
statistics from backgrounds. Our goal is to determine
the statistics of those parts of the scenes that humans
care about, rather than simply the distribution of colors
across natural scenes. We consider this information an
important prerequisite towards testing hypotheses
about how the brain uses color to generate object
knowledge. The Microsoft database (Liu et al., 2007)
consists of 20,840 images that contain a salient object;
these images were selected from among 200,000 total
images. Human observers at Microsoft identified
pictures that contained a salient object and then drew
bounding boxes around the objects. The database
samples many categories of objects, including faces,
fruit, butterflies, birds, eggs, flowers, shells, insects,
dogs, toys, cars, clocks, fireworks, light houses,
motorcyclists, barns, flags, and road signs (Figure 1A).
In the present study, two naı̈ve observers segmented the
pixels within the object bounding boxes as belonging to
objects or backgrounds, and identified the objects as
artificially colored or naturally colored (masked regions
in Figure 1A).

The colors of the objects were systematically
different from the colors of the backgrounds: Back-
grounds tended to have cooler colors (bluer, greener,
grayer), while objects tended to have warmer colors
(yellower, redder), for both naturally colored and
artificially colored objects (Figure 1B). Objects were
distinguished from backgrounds predominantly in
terms of the CIE u0 component (Figure 1C, left panel
inset), which reflects a strong contribution of the L-M,
rather than S, postreceptoral mechanism. These color
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statistics are quantified in Figure 1C, plotted in the u0 v0

chromaticity space, which is designed to be perceptu-
ally uniform. The inset in Figure 1C left panel shows an
enlarged region of the diagram, showing that the
consistent shift in the average color of artificial and
natural objects is along the u0 direction.

The probability of a given hue being in an object
rather than a background correlated with the warmth
of the color (the L-M contrast) (Figure 2), especially in
the case of natural objects (Figure 2C). Object
probability was correlated with u0 for both naturally
colored objects (Pearson correlation coefficient r¼0.93,
p¼ 0) and artificially colored objects (r ¼ 0.88, p ¼ 0)
(Figure 2C, left panel). The correlation coefficient was
higher for naturally colored objects (Fisher’s z¼ 1.9, p
¼ 0.05); the average u0 value for artificially colored
objects was higher than for naturally colored objects
(Figure 2C).

One possibility is that the correlations described
above are biased because the colors of pixels within an
image are not independent. To address this, we
randomly sampled a single pair of pixels for each
image, one pixel within the ‘‘object’’ pixels and one
within the ‘background’’ pixels (Figure 2B). This
subsampling yielded the same result: Warmer colors
had a higher probability of occurring in the ‘‘objects’’
of the images (among naturally colored surfaces, paired
t test, p¼10�241; among artificially colored surfaces, p¼
10�69), and the correlation of object-color probability
and u0 was higher for natural (r¼0.79, p¼ 0) compared
to artificial objects (r ¼ 0.51, p ¼ 0; Fisher’s z0

comparing natural and artificial¼ 5.8, p¼ 10�9; Figure
2C).

These results uncover three properties of the colors
of objects: First, that all objects, regardless of how their
coloring is determined (artificial or natural), have a bias
for warm colors; second, that the average color among
artificially colored objects is warmer than among
naturally colored objects; and third, that the correla-
tion between u0 (extent of warm coloring) and the
likelihood of being an object is less steep for artificially
colored objects compared to naturally colored objects.
Prior work has shown that objects selected by
nonhuman primates in the wild are identified predom-
inantly by differential L versus M signals (Regan et al.,
2001). The results in Figure 1 and Figure 2 extend these
findings to humans, and to objects that are artificially
colored.

The higher probability for objects to have a relatively
warm color compared to backgrounds did not depend
on chroma level (bars of the same hue but different
chroma cluster in Figure 2A and B). Nonetheless, there
were subtle systematic differences in the chroma
statistics of objects compared to backgrounds. Figure 3
shows the analysis of a single pair of pixels per image.
Most pixels across the images (including both objects

and backgrounds) had low chroma (appearing rela-
tively desaturated). But at most chroma levels, objects
differed from backgrounds (pairs of bars in Figure 3
identified by an * are different, chi-square test of
proportions, p , 0.03). Notably, among pixels with
highest chroma, more were found in objects rather than
backgrounds (inset Figure 3A, right bars, p¼ 10�12),
showing that on average objects tended to be more
saturated than backgrounds.

The color statistics of naturally colored objects show
that among the most saturated pixels in an image, more
of them are found in the objects than in the
backgrounds. This suggests that high saturation is a
feature of objects. If humans are more likely to identify
as an object a surface with a relatively high chroma,
humans should choose a pigment with relatively high
chroma when making objects (on average artificial
pigments have a wider gamut than natural pigments).
Thus we hypothesized that artificially colored objects
would exhibit higher chroma than naturally colored
objects. The data support our hypothesis: Among the
pixels with highest chroma, more were found among
artificially compared to naturally colored objects (inset
Figure 3B, right bin, p¼ 10�12). But on close inspection
of data binned more finely, the relationship was not
that simple: For pixels of the lowest possible chroma,
more were artificially colored than naturally colored
(main Figure 3B, left-most bin, p¼ 0.02).

We also performed a luminance-contrast calculation.
Michelson contrast was computed by taking, for each
image, the average luminance across the pixels of the
object minus the average luminance of the pixels in the
background divided by the sum of these luminance
values. Most of the objects of both classes (naturally
colored and artificially colored) were of relatively low
luminance contrast, with a peak in both distributions
that was slightly to the left of zero, indicating a slightly
darker contrast on average for all objects (Figure 3C).
The results also show that for very high contrasts,
objects were more likely to be bright than dark (bars at
the right tail of the distribution are higher than bars at
the left tail of the distribution). Among the objects of
highest contrast (the bins at the tails of the distribu-
tion), there were more artificially colored objects than
naturally colored objects, paralleling the results on
chroma of artificial coloring. When binned into two
gross categories of bright or dark, again there were
more dark objects than bright objects (naturally
colored objects: p ¼ 0.0013; artificially colored objects:
p¼ 10�17), but there were slightly more naturally
colored bright objects than artificially colored bright
objects, and slightly more artificially colored dark
objects compared to naturally colored dark objects
(chi-square test of proportions, p¼ 0.005). Thus
artificial coloring is associated with an exaggeration of
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the tendency among natural objects for objects to be
relatively darker compared to backgrounds.

Classifying objects from backgrounds using
color statistics

To quantify the extent to which the brain could exploit
the differences in hue, chroma, and luminance of objects
compared to backgrounds, SVM classifiers were trained
to distinguish between objects and backgrounds. We
divided the image set in half and used one half to train
the classifier and the other half to test the classifier; we
repeated this process 25 times, with different (random)
partitions of the data. Using hue (color angle in CIE u0 v0

space) information alone, the classifier correctly identi-
fied an object 64.5% of the time (mean of 25 iterations;
standard deviation over the 25 iterations¼ 1.7%; SEM¼
0.4%). We also analyzed a classifier using just chroma
(object accuracy¼ 60.2%, SD¼ 1.4%; SEM¼ 0.3%);
using just luminance (object accuracy¼ 48.2%, SD¼
2.1%, SEM¼0.4%); and using combined hue, chroma,
and luminance (object accuracy¼ 65.1%, SD¼ 2.1%,
SEM¼ 0.4%), To quantify how well objects could be
distinguished from backgrounds, we ran a classifier on
the entire image set using for each image the mean of the
pixels comprising the object in the image, and the mean
of the pixels in the background. The classifier assigned a
posterior probability of being an object for each of these
values. The MATLAB function perfcurve was used to
generate an ROC curve that describes how separable the
posterior probability distributions were for objects and
backgrounds (the function generated confidence intervals
by 1000 bootstraps with replacement; Figure 4A).
Classification using all three features (hue, chroma, and
luminance) yielded the best performance (area under the
ROC¼ 0.77 [95% CI¼ 0.77, 0.78]), followed by
classification using only the hue feature (area under the
ROC¼ 0.72 [95% CI¼ 0.71, 0.73]), only chroma (area
under the ROC¼ 0.63 [95% CI¼ 0.63, 0.64]), and only
luminance (area under the ROC¼ 0.63 [95% CI¼ 0.63,
0.64]). All ROC curves in Figure 4A were significantly
different from the null curve, as assessed by a Wilcoxon
rank sum test (p , 0.0001). Additionally, the curves were
all different from one another (p , 0.0001) except one
instance: The chroma curve was not different from the
luminance curve (p¼ 0.08). These results confirm the
observation above that objects are systematically differ-
ent from backgrounds in terms of their hue.

We next sought to determine for each pixel the
extent to which it modulated the three cone classes,
using the predicted cone responses as the features for
the classifier. The cone responses each in isolation
yielded similar classification performance for identify-
ing objects, all hovering around chance (L¼ 50.7%, SD
¼ 1.6%, SEM¼ 0.4%; M¼ 49.7%, SD¼ 2.0%; SEM¼

0.4%; S¼ 49.0%, SD¼ 1.8%, SEM¼ 0.4%; Figure 4B).
The comparable results for the three cone types are
perhaps not surprising because the cone sensitivity
functions of the three cone classes broadly overlap. But
we found a substantial difference in the classification
performance between the two postreceptoral mecha-
nisms: classifiers trained using L-M (object accuracy¼
68.1%, SD¼ 1.1%, SEM¼0.3%; area under the ROC¼
0.72 [0.71, 0.73]) performed substantially better than
classifiers trained using S�(LþM): object accuracy¼
50.9%, SD¼ 4.6%, SEM¼ 0.4% area under the ROC¼
0.61 [0.6, 0.61]). This difference is consistent with the
observation described above, that the main chromatic
feature that distinguishes objects from backgrounds is
the extent to which they modulate the so-called ‘‘red-
green’’ postreceptoral channel. Classifiers trained using
the two intermediate axes in cone-opponent color space
were comparable: orange-blue: ¼ 47.7%, SD ¼ 1.6%,
SEM¼ 0.4%, area under the ROC curve ¼ 0.63 [0.62,
0.64]; green-purple:¼ 48.7%, SD¼ 1.8%, SEM¼ 0.4%;
area under the ROC curve¼ 0.63 [0.62, 0.63]. All ROC
curves in Figure 4B were different from the null curve,
as assessed by a Wilcoxon rank sum test (p , 0.0001).
Among the curves, the only two to be significantly
different from all other curves on the plot, and each
other, were the L-M curve and the S curve (p , 0.0001).

Contribution of color to animacy versus
inanimacy

The above results show that there are systematic
differences in color statistics between objects and

Figure 5. Color statistics differed for animate and inanimate

objects. Average chromaticity coordinates for pixels identified

as part of animate or inanimate objects. Pixels were drawn from

a tapestry of 10,000 randomly selected pixels from each

category. This analysis was repeated 100 times (see Figure 2C).

Pixels of animate objects were different from pixels of

inanimate objects along the u0 dimension (p , 0.05 for 77/100

iterations), and along the v0 direction (p , 10�80 for all 100

iterations). Error bars are SEM.
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backgrounds that could be exploited by the brain for
object vision. Object vision involves distinguishing not
only that an object exists, but also the category that it
belongs to, and ultimately its identity. Could color
provide a signal that informs the computation of
behaviorally relevant object categories? To address this
question, two observers labeled all the objects in the
database of 20,840 images. They subsequently deter-
mined whether each object label belonged to the
‘‘animate’’ supercategory, or ‘‘inanimate’’ supercate-
gory. The color statistics of the objects belonging to the
animate category were different from those of the
objects belonging to the inanimate category (Figure
5A). While the distinction between all kinds of objects
and backgrounds involved predominantly a modula-
tion of CIE u0 (reflecting the warm bias of object colors
shown in Figure 2), the distinction between the two
major categories of objects (animate and inanimate)
involved predominantly a difference in CIE v0 (blue-
yellow). These results show that in principle color can
provide reliable information for the brain’s object-
category computation. We are currently testing
whether some specific categories are more distinguish-
able than others using color, and whether some levels
of categorization (basic, superordinate, or subordinate)
are more reliably distinguished using color.

Research in monkeys and humans suggests that
sensitivity to object animacy is a fundamental opera-
tion of the primate visual system, and possibly an
organizing principle in IT. When stimuli are grouped
by the similarity of the responses they elicit in IT, they
form clusters of animate versus inanimate categories
(Kriegeskorte, Mur, Ruff, et al., 2008); moreover, the
sensitivity to animacy versus inanimacy accounts for
the bulk of object-category tuning across IT (Naselaris
et al., 2012). As Naselaris et al. (2012) showed, voxels
showing stronger tuning to animate objects form a
band along the posterior-anterior axis, flanked dorsally
and ventrally by voxels preferring inanimate objects.
Prior work has argued that color is not a feature used
by the brain for animacy calculations (Kriegeskorte et
al., 2008). But the results in Figure 5 suggest that color
could provide a useful feature for the neural compu-
tation of animacy. To test the role of color in bringing
about the similarity in responses to items of the same
category. we analyzed the 92 images used by Kriege-
skorte et al. (2008)—the same images that were used to
support the conclusion that animacy categorization is
the primary determinant of IT responses. Figure 6A
shows the average chromaticity of the images, sorted by
animacy. Linear classifiers using several color statistics
to identify ‘‘animacy’’ were tested on the images: The
most accurate one employed the average chroma of
each image as the only feature, at 76.1% correct (SEM
of binomial distribution¼ 4.5%). A classifier that used
only luminance (CIE L) was accurate at 56.5% correct

(SEM¼ 5.2%), and a linear classifier using color (CIE
L, u0 and v0) saw no increase in performance (accuracy
56.5%, SEM ¼ 5.2%) suggesting that hue information
could not be linearly separated to yield animacy
information. Indeed, a linear classifier employing only
hue (CIE u0 v0) was no better than chance at 52.2%
correct (SEM¼ 5.2%). Yet, a u0 v0 classifier with a
radial basis function performed better than any of the
linear classifiers at 81.5% correct (SEM¼ 4.1%). This
finding, combined with the high performance of the
linear chroma classifier, suggests that the u0 v0 data of
the images can be nonlinearly separated to yield high
amounts of information in this dataset about which
images are animate, and that this nonlinear informa-
tion is mostly captured in the chroma of the images.
Figure 6B shows that the images formed surprisingly
clear animate and inanimate categories when they were
sorted with this radial basis function support vector
machine, informed solely by the average color of each
of the 92 objects.

The SVM applied to the MSRA data, also employ-
ing a radial basis function, confirmed that animate and
inanimate objects could be distinguished based on color
alone. Using only hue angle, the mean classification
accuracy for animate objects was 76.0% and for
inanimate objects was 55.0% (Table 1), showing that
the classifier was better at recognizing animate objects
than inanimate objects. The performance of the SVM
trained using only shape features (histogram oriented
gradient, HOG) or using a deep convolutional neural
network (DCNN) that likely reflects contributions of
both shape and color were not substantially better. We
also computed the area under the ROC for each
classifier in Table 1, to better understand how the
features each used as inputs were able to provide
information about animacy. The Deep CNN AUC was
0.56 [0.56, 0.57]; the HOG AUC was 0.88 [0.88, 0.89];
the color SVM AUC was 0.70 [0.69, 0.71]. A Wilcoxon
rank sum test shows that all curves were different from
the null curve and from each other (p , 0.0001). The
classifier results are remarkable: The prevailing view is
that shape by itself is necessary and sufficient for
categorizing objects. The results here uncover remark-
ably good categorization of animate and inanimate
with hue alone.

Color statistics of objects and color tuning of IT

Most of visual cortex is activated by equiluminant
color stimuli (Conway et al., 2007; Conway & Tsao,
2005; Harada et al., 2009; Tootell, Nelissen, Vanduffel,
& Orban, 2004), but some regions within the visual
cortex show a greater response to equiluminant stimuli
than achromatic stimuli. Within the V4 Complex, these
color-biased regions, dubbed globs, are on the order of
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a few millimeters in diameter (assessed with fMRI
(Conway et al., 2007) or optical imaging (Tanigawa,
Lu, & Roe, 2010)). In IT, color-biased regions are
much larger (Conway et al., 2007; Harada et al., 2009),

and are arranged somewhat regularly from posterior to
anterior, sandwiched between face-biased regions
dorsally and place-biased regions ventrally (Lafer-
Sousa & Conway, 2013). Figure 7 shows the color

Figure 6. Images could be categorized as animate versus inanimate using only the average color of the object in each image. (A)

Chromaticity coordinates for the 92 images used by Kriegestkorte et al. (2008). The asterisks show the neutral point of the color

space. The blue circles are the average u0 v0 value of all the color values plotted in the figure. (B) A support vector machine with a

radial basis function trained on only the average CIE u0 v0 of the object in each image categorized animate images at an accuracy of

91.67% and inanimate images at an accuracy of 70.45%. Inset shows the chromaticity coordinates for all images as in A, in which open

symbols indicate images classified as ‘‘animate’’ and filled symbols indicated images classified as ‘‘inanimate’’. Stimuli are reproduced

with permission from Nico Kriegeskorte.
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tuning of color-biased regions identified with fMRI as
reported by Lafer-Sousa and Conway (2013), com-
pared with the object-color probability (the object-
color probability is the likelihood that a pixel will have
a given color given it is part of an object; see Figure 2).
All color-biased regions in IT showed greater responses
to colors that were more likely associated with objects
(Figure 7C).

The results described above prompted us to ask
about the color tuning properties across the cerebral
cortex. To address this question, for each voxel, we
computed the correlation of the color-tuning profile
with the object-color statistics (Figure 8A). The
strongest correlation with object-color statistics formed
a band that spanned color-biased regions and face
patches, encompassing parts of IT outside color-biased
regions and face patches. V1 showed a much weaker
correlation between object-color statistics and color
tuning. To quantify this pattern, we computed the
average response within V1 and IT of both hemispheres
of the two animals tested. The correlations were
stronger in IT compared to V1 (Figure 8B; paired t test
across V1 and IT, p¼ 0.03).

The pattern of the correlation of object-color
statistics and fMRI responses across the cortex suggests

that the neural representation of object colors arises
anterior to V1, possibly in V4. As a first test of this
hypothesis, we reanalyzed the color-tuning responses
from our earlier report (Conway et al., 2007), of the
glob and interglob populations within the V4 Complex.
The population of glob cells showed a relatively strong
correlation with the pattern of object-color statistics (r
¼0.66, p¼6310�07); interglob cells, on the other hand,
showed a lower correlation (r ¼ 0.30, p ¼ 0.04;
significantly different from glob cells: Fisher z’¼ 2.2, p
¼ 0.02; Figure 9). More experiments will be required to
draw firm conclusions regarding the origin of the
cortical bias for object colors, but the present results
are consistent with the idea that the linking of objects
and their colors is computed within V4/IT.

Discussion

What is an object? There is a strong tendency to
think of objects as defined independently from an
observer. But in the same way that color is a construct
of the brain, what constitutes an object is a manifes-
tation of neural operations responsible for parsing a

Figure 7. Correlation of object-color statistics and color-tuning of IT color-biased regions. A. Diagram of the lateral view of the

macaque brain showing the location of the color-biased regions in inferior temporal cortex (IT), anterior is to the right (Posterior

Lateral color, PLc; Central Lateral color, CLc; and Anterior lateral color, ALc; Lafer-Sousa & Conway, 2013). (B) Chromaticities of the

colors used in these fMRI experiments. (C) Relationship of the probability of object colors versus color-tuning of color-biased regions

within IT. Object-color probability was computed as follows: number of pixels having a given color in the objects divided by the

number of pixels having the same color in the objectsþbackground, in natural images. All three regions showed higher responses for

colors that were more likely to be the colors of objects (PLc: r¼ 0.7, p¼ 0.01; CLc: r¼ 0.72, p¼ 0.01; ALc: r¼ 0.65, p¼ 0.03). fMRI

response (psc) ¼ percent signal change (measured against the signal measured for gray blocks between each colored block).
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Figure 8. Correlation of object-color statistics across the cerebral cortex. (A) Correlation coefficients between fMRI color tuning and

object-color probabilities assessed for each voxel across both hemispheres for one monkey (M1). Color-biased regions are outlined in

white; face patches are outlined in black. Vertical meridians are shown as broken lines; horizontal meridians are shown as solid lines. (B)

Correlation coefficients were higher in IT compared to V1; the IT region of interest was defined by combining the color-biased regions

and the face patches (paired t test across V1 and IT, p¼ 0.03; LH¼ left hemisphere; RH¼ right hemisphere). (C) The population of

neurons recorded in fMRI-guided recordings of the posterior color-biased region showed a bias for colors more often associated with

objects, consistent with the fMRI results (r¼ 0.56, p¼ 0.025). Data were obtained from 117 cells in 54 penetrations in M1.

Figure 9. Color-tuning of the population of neurons recorded in posterior IT (the V4 Complex) was correlated with object-color statistics.

(A) Responses of cells located within globs (fMRI-identified color-biased regions of the V4 Complex; N¼300 cells. The glob-cell population

showed a stronger response to the colors more likely associated with naturally colored objects (r¼ 0.7, p¼ 10�07). (B) Responses of cells

located within interglob regions (N¼ 181 cells). The interglob-cell population showed a stronger response to the colors more likely

associated with objects, but a lower correlation coefficient than was found among glob cells (r¼ 0.3, p¼ 0.04, Fisher z0 ¼ 2.2, p¼ 0.02).
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scene into its useful parts. Prior work has emphasized
the importance of shape features in object vision. Here
we provide evidence that the brain can also exploit
chromatic information to encode objects. We analyzed
the color statistics of objects and the relationship of
these statistics to neural color tuning. The colors of
objects were systematically different from the colors of
backgrounds, and the probability of an object having a
given color was correlated with color tuning of inferior
temporal cortex. We confirmed the correlation using
fMRI-guided microelectrode recording of IT and the
V4 Complex.

Classifiers trained using color alone not only
distinguished objects from backgrounds but also made
the superordinate distinction of animate versus inani-
mate objects, suggesting that color facilitates both
object detection and object categorization. The results
suggest that brain systems that code hue separately
from luminance would be advantageous, providing a
functional role for hue representations that are tolerant
to variations in luminance (Bohon et al., 2016). The
distinction between objects and backgrounds involved
predominantly a modulation of CIE u0 (reflecting the
warm bias of object colors), consistent with the idea
that trichromacy evolved to support object vision. The
distinction of animate and inanimate objects, mean-
while, involved predominantly a difference in chroma
(in both image sets tested) and CIE v0 (only in the
MRSA image set). The Kriegeskorte image set com-
prises only 92 images and is perhaps not large enough
to uncover the bias in v0 found in the larger sample of
images.

The coloring of artificial objects might seem arbi-
trary, but it is not random. The results here show that
the color statistics of artificially colored objects reflect,
and in some cases accentuate, trends found among
naturally colored objects. Natural objects showed a
warm bias compared to backgrounds. On average,
artificially colored objects showed a higher u0 compared
to naturally colored objects. Likewise, artificial color-
ing was associated with exaggerated luminance contrast
and saturation of objects. These properties of artifi-
cially colored objects were found in the context of a
lower correlation, compared to naturally colored
objects, between warm coloring and probability of
being an object; this relaxation might be attributed to
technological developments that have made it possible
to create pigments that are relatively rare in nature.
Taken together, these results support the idea that
color provides an important cue for object vision that is
exploited when artificially coloring objects.

The results presented here are the first comparison of
the color statistics of objects and neural color tuning,
and they provide a foundation for future tests relating
neural mechanisms to color cognition. The results
depend on the validity of the MSRA image set of

objects. It will be important to replicate the results
using other large image sets, and to probe how robust
the results are against differences in the object
identification task used, the background/expertise of
the participants making the object judgments, and the
conditions under which the object-identification task is
performed. It will also be important to test color tuning
in a larger sample of brains (including human brains),
as well as neural sensitivity to chroma.

How is color processed in the cortex? Cumulative
evidence shows that color processing is not restricted to
area V4, or any single ‘‘color center’’. Instead, color-
biased regions in both monkeys (Conway et al., 2007;
Harada et al., 2009; Komatsu, 1998) and humans
(Bartels & Zeki, 2000; Beauchamp, Haxby, Jennings, &
DeYoe, 1999; Lafer-Sousa et al., 2016) stretch across
much of visual cortex, including V4 and IT, a swath of
tissue implicated in high-level object vision that resides
beyond V4 in the putative visual-processing hierarchy.
While color-biased regions show especially strong
responses to color, most parts of IT that do not show
an overt color bias nonetheless respond to equilumi-
nant color stimuli (Lafer-Sousa & Conway, 2013),
suggesting that color contributes in diverse ways to the
operations of many, if not most, cells in IT. The present
observations are consistent with the idea that color
contributes to neural computations related to the
perception and cognition of objects, and lay the
groundwork for future work aimed at determining the
specific role of color in color-biased regions and other
parts of IT.

Previous work has emphasized the role of IT cortex
in computing animacy (see Introduction). The results
here suggest that color could contribute to the way in
which IT establishes animacy: Classifiers could reliably
distinguish animate from inanimate objects using color
alone, and IT showed a color-tuning response that was
correlated with the object-color statistics. The organi-
zational structure of animate versus inanimate across
the cortical surface is correlated with the organizational
structure that exists for category-preferring regions:
Color-biased regions are sandwiched between face-
biased and place-biased regions, forming parallel bands
of activity along the posterior-anterior axis of IT
(Lafer-Sousa & Conway, 2013). The regions showing
strongest preferences for animate objects are centered
on the face-processing regions (Naselaris et al., 2012).
Our hypothesis—that some part of the animacy
response is afforded by systematic variation in color
among animate compared to inanimate objects—
therefore predicts a systematic difference in the color-
tuning within IT, which the electrophysiological results
support. The peak correlation of fMRI color tuning
and object-color probability formed a band running
along the length of IT, centered on the face patches.
L-M signals (warm coloring) relays social information
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in monkey and human faces (Rhodes et al., 1997;
Stephen, Law Smith, Stirrat, & Perrett, 2009); we
hypothesize that the warm coloring of socially impor-
tant stimuli is partially responsible for driving the
organization of IT, exerted either during evolution or
development.

The potential role of color in the organization and
operations of IT may have been overlooked because
many investigations of object recognition have used
achromatic images. The choice to use achromatic
images reflects an implicit understanding of the
potential confounds introduced by color, and a desire
to control for them. But ironically, one consequence of
this decision may be the widespread belief that color is
not important for object recognition—a belief that may
have led to the uncontrolled use of color in some
contemporary research. The consequence is that the
organizational patterns in IT associated with animacy
that were attributed to semantic (or shape) features,
may be caused in part by systematic differences in the
colors of animate versus inanimate objects (or system-
atic differences in natural versus artificial coloring). In
any event, the present work underscores the likely
importance of color to high-level object processing,
possibly beyond the animate-inanimate (or natural-
artificial) category distinction. Among the 20,840
images, observers identified 2,781 unique object labels.
We are currently testing the extent to which color can
classify each of these object types. Determining this
information could prove useful in exploiting color for
the design of artificial object-recognition systems. One
hypothesis is that classification will be better for
natural objects of high behavioral relevance.

What is color for? Color is clearly not the only
property used in neural computations supporting
object vision, nor is it an essential feature for all object-
recognition tasks. But behavioral evidence regarding
the importance of color to vision (Conway, in press;
Gegenfurtner & Rieger, 2000; Rowland & Burriss,
2017; Tanaka et al., 2001), along with the results
presented here, behooves the incorporation of color
into mainstream object-recognition algorithms (Zhang,
Barhomi, & Serre, 2012) and predictive encoding
models (Naselaris et al., 2012). Yet how should color be
incorporated into these algorithms? Most object-
recognition algorithms have failed to find a strong
advantage when color edges are incorporated as an
additional shape feature, which raises the possibility
that the information about objects that color provides
is distinct from the information provided by luminance
contrast (shape). The history of technology is charac-
terized by an ever-increasing push to develop new ways
of making colors (Finlay, 2014), and a desire for a
larger gamut, even though this information ostensibly
provides little benefit for object recognition (Lee & Ju,
2017; Zamir, Vazquez-Corral, & Bertalmio, 2017).

Instead of suggesting a role of color in object
identification, the history of color science underscores
the important association of color and subjective
experience (e.g., pleasure, emotion): Color does not tell
us what an object is, but instead whether we should
care about it (Conway, 2018). Consider a banana. Over
its lifespan, its shape changes little, while its color
changes substantially. The shape tells us what it is; the
color tells us whether we want to eat it. In this
framework, an important role of color in behavior is to
provide valence information about objects. Indeed,
color can provide information about material changes
that often accompany changes in valence (Yoonessi &
Zaidi, 2010). We wonder whether some circuits in IT
exploit shape information to determine the identity of
objects; and separate networks within IT use color
information to establish the extent to which we care
about the objects. Formalizing such a model could
impact object-recognition efficiency: Rather than pro-
cessing for recognition everything within the visual
field, the system could exploit color information to
identify the parts that are most likely to contain
behaviorally relevant information, allowing a more
efficient allocation of the computationally draining
resources of object (shape) recognition.

Another important property of vision is view-
invariant object recognition. Traditional approaches to
the problem have centered on an analysis of luminance
edges and object shape. Overlooking the role of color
might be a mistake. In the present report we have
focused on a first-order analysis of the colors of objects,
treating the pixels within an object as independent
samples, selecting out one pixel per image as repre-
sentative of all pixels, or averaging over them to obtain
a single index for the color of an object. This analysis
shows how important color could be for object vision,
but color may provide even more information if one
considers that the distribution of colors within an
object might distinguish one object from another even
if two objects have the same average color. This ‘‘color
index’’ is not only relatively distinct but also largely
immune to changes in the 2-D projection caused by
differences in viewing geometry (Swain & Ballard,
1991). Object identification using color indexing can
fail when the illumination changes, but these failures
can be remedied by indexing RGB (or LMS) ratios
instead of raw RGB signals (Funt & Finlayson, 1995).
Computations of local cone ratios such as those
implemented by double opponent cells in V1 (Conway,
2001) can support color constancy (Foster & Nasci-
mento 1994), giving rise to color representations that
are stable against changes in illumination. Taken
together, these results suggest that the output of V1
made available to IT would enable IT to extract
chromatic signatures from objects that could support
view-invariant shape calculations. Thus color could
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contribute not only to the calculation of valence but
also recognition.

Keywords: objects, color, scene statistics, machine
vision, neurophysiology

Acknowledgments

We thank the intramural research program of the
NIH for financial support, June Kim and Shridhar Singh
for help collecting and analyzing the data, and Nico
Kriegeskorte for providing images used in Figure 6.

Commercial relationships: none.
Corresponding author: Bevil R. Conway.
E-mail: bevil@nih.gov.
Address: Laboratory of Sensorimotor Research,
National Eye Institute, National Institute of Mental
Health, National Institutes of Health, Bethesda, MD,
USA.

References

Bartels, A., & Zeki, S. (2000). The architecture of the
colour centre in the human visual brain: New
results and a review. The European Journal of
Neuroscience, 12(1), 172–193.

Beauchamp, M. S., Haxby, J. V., Jennings, J. E., &
DeYoe, E. A. (1999). An fMRI version of the
Farnsworth-Munsell 100-Hue test reveals multiple
color-selective areas in human ventral occipito-
temporal cortex. Cerebral Cortex, 9(3), 257–263.

Bohon, K. S., Hermann, K. L., Hansen, T., & Conway,
B. R. (2016). Representation of perceptual color
space in macaque posterior inferior temporal cortex
(the V4 complex). eNeuro, 3(4):e0039–16.2016, 1–
28.

Caramazza, A., & Shelton, J. R. (1998). Domain-
specific knowledge systems in the brain: The
animate-inanimate distinction. Journal of Cognitive
Neuroscience, 10(1), 1–34.

Chang, C.-C., & Lin, C.-J. (2011). LIBSVM : A library
for support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2(27), 1–27,
http://www.csie.ntu.edu.tw/;cjlin/libsvm.

Chiu, W. C., & Fritz, M. (2015). See the difference:
Direct pre-image reconstruction and pose estima-
tion by differentiating HOG. 2015 IEEE Interna-
tional Conference on Computer Vision, arXiv:
1505.00663, 468–476.

Conway, B. R. (2001). Spatial structure of cone inputs

to color cells in alert macaque primary visual cortex
(V-1). Journal of Neuroscience, 21(8), 2768–2783.

Conway, B. R. (2018). The organization and operation
of inferior temporal cortex. Annual Review of Vision
Science, 4, 381–402, https://doi.org/10.1146/
annurev-vision-091517-034202.

Conway, B. R., Moeller, S., & Tsao, D. Y. (2007).
Specialized color modules in macaque extrastriate
cortex. Neuron, 56(3), 560–573.

Conway, B. R., & Tsao, D. Y. (2005). Color
architecture in alert macaque cortex revealed by
fMRI. Cerebral Cortex, 16(11), 1604–1613.

Conway, B. R., & Tsao, D. Y. (2009). Color-tuned
neurons are spatially clustered according to color
preference within alert macaque posterior inferior
temporal cortex. Proceedings of the National
Academy of Science, USA, 106(42), 18034–18039.

Dalal, N., & Triggs, B. (2005). Histograms of oriented
gradients for human detection. 2005 IEEE Com-
puter Society Conference on Computer Vision and
Pattern Recognition, Vol 1, Proceedings, 1, 886–893.

Derrington, A. M., Krauskopf, J., & Lennie, P. (1984).
Chromatic mechanisms in lateral geniculate nucleus
of macaque. Journal of Physiology, 357, 241–265.

DiCarlo, J. J., & Cox, D. D. (2007). Untangling
invariant object recognition. Trends in Cognitive
Science, 11(8), 333–341.

Fairchild, M. D. (2001). A revision of CIECAM97s for
practical applications. Color Research and Appli-
cation, 26(6), 418–427.

Felzenszwalb, P. F., Girshick, R. B., McAllester, D., &
Ramanan, D. (2010). Object detection with dis-
criminatively trained part-based models. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 32(9), 1627–1645.

Finlay, V. (2014). The brilliant history of color in art.
Los Angeles, CA: Getty Publications, J. Paul Getty
Museum.

Foster, D. H., & Nascimento, S. M. C. (1994).
Relational colour constancy from invariant cone-
excitation ratios. Proceedings of the Royal Society
of London, B: Biological Sciences, 257 (115–121).

Funt, B. V., & Finlayson, G. D. (1995). Color constant
color indexing. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 17(5), 522–529.

Gauthier, I., & Tarr, M. J. (2016). Visual object
recognition: Do we (finally) know more now than
we did? Annual Review of Vision Science, 2, 377–
396.

Gegenfurtner, K. R., & Rieger, J. (2000). Sensory and
cognitive contributions of color to the recognition
of natural scenes. Current Biology, 10(13), 805–808.

Journal of Vision (2018) 18(11):1, 1–21 Rosenthal et al. 19

mailto:bevil@nih.gov
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://doi.org/10.1146/annurev-vision-091517-034202
https://doi.org/10.1146/annurev-vision-091517-034202


Gibson, E., Futrell, R., Jara-Ettinger, J., Mahowald,
K., Bergen, L., Ratnasingam, S., . . . Conway, B. R.
(2017). Color naming across languages reflects
color use. Proceedings of the National Academy of
Sciences, USA, 114(40), 10785–10790.

Harada, T., Goda, N., Ogawa, T., Ito, M., Toyoda, H.,
Sadato, N., Komatsu, H. (2009). Distribution of
colour-selective activity in the monkey inferior
temporal cortex revealed by functional magnetic
resonance imaging. The European Journal of
Neuroscience, 30(10), 1960–1970.

Huang, Z. L., Pan, Z. X., & Lei, B. (2017). Transfer
learning with deep convolutional neural network
for SAR target classification with limited labeled
data. Remote Sensing, 9(9), 1–21, https://doi.org/
10.3390/rs9090907.

Huth, A. G., Nishimoto, S., Vu, A. T., & Gallant, J. L.
(2012). A continuous semantic space describes the
representation of thousands of object and action
categories across the human brain. Neuron, 76(6),
1210–1224.

Kanwisher, N. (2010). Functional specificity in the
human brain: A window into the functional
architecture of the mind. Proceedings of the
National Academy of Sciences, USA, 107(25),
11163–11170.

Kiani, R., Esteky, H., Mirpour, K., & Tanaka, K.
(2007). Object category structure in response
patterns of neuronal population in monkey inferior
temporal cortex. Journal of Neurophysiology, 97(6),
4296–4309.

Koenderink, J. J. (2010). The prior statistics of object
colors. Journal of the Optical Society of America. A,
Optics, Image Science, and Vision, 27(2), 206–217.

Komatsu, H. (1998). Mechanisms of central color
vision. Current Opinion in Neurobiology, 8(4), 503–
508.

Konkle, T., & Caramazza, A. (2013). Tripartite
organization of the ventral stream by animacy and
object size. The Journal of Neuroscience, 33(25),
10235–10242.

Kriegeskorte, N., Mur, M., & Bandettini, P. (2008).
Representational similarity analysis - connecting
the branches of systems neuroscience. Frontiers in
Systems Neuroscience, 2: 4.

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R.,
Bodurka, J., Esteky, H., . . . Bandettini, P. A.
(2008). Matching categorical object representations
in inferior temporal cortex of man and monkey.
Neuron, 60(6), 1126–1141.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012).
Imagenet classification with deep convolutional

neural networks. Communications of the ACM,
60(6), 84–90, https://doi.org/10.1145/3065386.

Lafer-Sousa, R., & Conway, B. R. (2013). Parallel,
multi-stage processing of colors, faces and shapes in
macaque inferior temporal cortex. Nature Neuro-
science, 16(12), 1870–1878.

Lafer-Sousa, R., Conway, B. R., & Kanwisher, N. G.
(2016). Color-biased regions of the ventral visual
pathway fie between Face- and place-selective
regions in humans, as in macaques. The Journal of
Neuroscience, 36(5), 1682–1697.

Lafer-Sousa, R., Liu, Y. O., Lafer-Sousa, L., Wiest, M.
C., & Conway, B. R. (2012). Color tuning in alert
macaque V1 assessed with fMRI and single-unit
recording shows a bias toward daylight colors.
Journal of the Optical Society of America. A, Optics,
Image Science, and Vision, 29(5), 657–670.

Lee, S. U., & Ju, B. K. (2017). Wide-gamut plasmonic
color filters using a complementary design method.
Science Reports, 7: 40649.

Liu, T., Sun, J., Zheng, N.-N., Tang, X., & Shum, H.-
Y. (2007). Learning to detect a salient object. 2007
IEEE Conference on Computer Vision and Pattern
Recognition (pp. 1–8), Minneapolis, MN, https://
doi.org/10.1109/CVPR.2007.383047.

MacLeod, D. I., & Boynton, R. M. (1979). Chroma-
ticity diagram showing cone excitation by stimuli of
equal luminance. Journal of the Optical Society of
America, 69(8), 1183–1186.

Mammeri, A., Boukerche, A., Feng, J. W., & Wang, R.
F. (2013). North-American speed limit sign detec-
tion and recognition for smart cars. Proceedings of
the 2013 38th Annual IEEE Conference on Local
Computer Networks (pp. 154–161), Sydney, NSW,
https://doi.org/10.1109/LCNW.2013.6758513.

Mely, D. A., Kim, J., McGill, M., Guo, Y., & Serre, T.
(2016). A systematic comparison between visual
cues for boundary detection. Vision Research, 120,
93–107.

Moroney, N., & Beretta, G. (2011). Validating large-
scale lexical color resources. HP Laboratories
Technical Report, HPL-2011-226 AIC Midterm
Meeting, 2011, Zurich.

Naselaris, T., Stansbury, D. E., & Gallant, J. L. (2012).
Cortical representation of animate and inanimate
objects in complex natural scenes. Journal of
Physiology, Paris, 106(5–6), 239–249.

Paxinos, G., Huang, X-F., & Toga, A. W. (2000). The
rhesus monkey brain in stereotaxic coordinates. San
Diego, CA: Academic Press.

Regan, B. C., Julliot, C., Simmen, B., Vienot, F.,
Charles-Dominique, P., & Mollon, J. D. (2001).

Journal of Vision (2018) 18(11):1, 1–21 Rosenthal et al. 20

https://doi.org/10.3390/rs9090907
https://doi.org/10.3390/rs9090907
https://doi.org/10.1145/3065386
https://doi.org/10.1109/CVPR.2007.383047
https://doi.org/10.1109/CVPR.2007.383047
https://doi.org/10.1109/LCNW.2013.6758513


Fruits, foliage and the evolution of primate colour
vision. Philosophical Transactions of the Royal
Society of London B: Biological Sciences, 356(1407),
229–283.

Rhodes, L., Argersinger, M. E., Gantert, L. T.,
Friscino, B. H., Hom, G., Pikounis, B., . . . Rhodes,
W. L. (1997). Effects of administration of testos-
terone, dihydrotestosterone, oestrogen and fadro-
zole, an aromatase inhibitor, on sex skin colour in
intact male rhesus macaques. Journal of Reproduc-
tion and Fertility, 111(1), 51–57.

Riesenhuber, M., & Poggio, T. (1999). Hierarchical
models of object recognition in cortex. Nature
Neuroscience, 2(11), 1019–1025.

Rowland, H. M., & Burriss, R. P. (2017). Human
colour in mate choice and competition. Philosoph-
ical Transactions of the Royal Society B: Biological
Sciences, 372(1724): 20160350.

Sha, L., Haxby, J. V., Abdi, H., Guntupalli, J. S.,
Oosterhof, N. N., Halchenko, Y. O., Connolly, A.
C. (2015). The animacy continuum in the human
ventral vision pathway. Journal of Cognitive Neu-
roscience, 27(4), 665–678.

Stansbury, D. E., Naselaris, T., & Gallant, J. L. (2013).
Natural scene statistics account for the representa-
tion of scene categories in human visual cortex.
Neuron, 79(5), 1025–1034.

Stephen, I. D., Law Smith, M. J., Stirrat, M. R., &
Perrett, D. I. (2009). Facial skin coloration affects
perceived health of human faces. International
Journal of Primatology, 30(6), 845–857.

Stoughton, C. M., & Conway, B. R. (2008). Neural
basis for unique hues. Current Biology, 18(16),
R698–R699.

Swain, M. J., & Ballard, D. H. (1991). Color Indexing.
International Journal of Computer Vision, 7(1), 11–
32.

Tanaka, J., Weiskopf, D., & Williams, P. (2001). The

role of color in high-level vision. Trends in
Cognitive Sciences, 5(5), 211–215.

Tanigawa, H., Lu, H. D., & Roe, A. W. (2010).
Functional organization for color and orientation
in macaque V4. Nature Neuroscience, 13(12), 1542–
1548.

Tootell, R. B., Nelissen, K., Vanduffel, W., & Orban,
G. A. (2004). Search for color ‘center(s)’ in
macaque visual cortex. Cerebral Cortex, 14(4), 353–
363.

Verhoef, B. E., Bohon, K. S., & Conway, B. R. (2015).
Functional architecture for disparity in macaque
inferior temporal cortex and its relationship to the
architecture for faces, color, scenes, and visual field.
The Journal of Neuroscience, 35(17), 6952–6968.

Webster, M. A., Mizokami, Y., & Webster, S. M.
(2007). Seasonal variations in the color statistics of
natural images. Network, 18(3), 213–233.

Webster, M. A., & Mollon, J. D. (1997). Adaptation
and the color statistics of natural images. Vision
Research, 37(23), 3283–3298.

Yosinki, J., Clune, J., Bengio, Y., & Lipson, H. (2014).
How transferable are features in deep neural
networks? Advances in Neural Information Pro-
cessing Systems, arXiv:1411.1792, 3320–3328.

Zamir, S. W., Vazquez-Corral, J., & Bertalmio, M.
(2017). Gamut extension for cinema. IEEE Trans-
actions on Image Processing, 26(4), 1595–1606.

Zeiler, M. D., & Fergus, R. (2014). Visualizing and
understanding convolutional networks. In: Fleet
D., Pajdla T., Schiele B., Tuytelaars T. (Eds.).
Computer Vision - ECCV 2014. ECCV 2014.
Lecture Notes in Computer Science, vol 8689.
Switzerland - Cham: Springer, https://doi.org/10.
1007/978-3-319-10590-1_53.

Zhang, J., Barhomi, Y., & Serre, T. (2012). A New
Biologically Inspired Color Image Descriptor.
Computer Vision - Eccv 2012, Pt V, 7576, 312–324.

Journal of Vision (2018) 18(11):1, 1–21 Rosenthal et al. 21

https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53

	Introduction
	Materials and methods
	f01
	f02
	f03
	f04
	t01
	Results
	f05
	f06
	Discussion
	f07
	f08
	f09
	Bartels1
	Beauchamp1
	Bohon1
	Caramazza1
	Chang1
	Chiu1
	Conway1
	Conway2
	Conway3
	Conway4
	Conway5
	Dalal1
	Derrington1
	DiCarlo1
	Fairchild1
	Felzenszwalb1
	Finlay1
	Foster1
	Funt1
	Gauthier1
	Gegenfurtner1
	Gibson1
	Harada1
	Huang1
	Huth1
	Kanwisher1
	Kiani1
	Koenderink1
	Komatsu1
	Konkle1
	Kriegeskorte1
	Kriegeskorte2
	Krizhevsky1
	LaferSousa1
	LaferSousa2
	LaferSousa3
	Lee1
	Liu1
	MacLeod1
	Mammeri1
	Mely1
	Moroney1
	Naselaris1
	Paxinos1
	Regan1
	Rhodes1
	Riesenhuber1
	Rowland1
	Sha1
	Stansbury1
	Stephen1
	Stoughton1
	Swain1
	Tanaka1
	Tanigawa1
	Tootell1
	Verhoef1
	Webster1
	Webster2
	Yosinki1
	Zamir1
	Zeiler1
	Zhang1

