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Accurate segmentation of the mandibular canal is essential in dental implant and maxillofacial 
surgery, which can help prevent nerve or vascular damage inside the mandibular canal. Achieving 
this is challenging because of the low contrast in CBCT scans and the small scales of mandibular 
canal areas. Several innovative methods have been proposed for mandibular canal segmentation 
with positive performance. However, most of these methods segment the mandibular canal 
based on sliding patches, which may adversely affect the morphological integrity of the tubular 
structure. In this study, we propose whole mandibular canal segmentation using transformed 
dental CBCT volume in the Frenet frame. Considering the connectivity of the mandibular 
canal, we propose to transform the CBCT volume to obtain a sub-volume containing the whole 
mandibular canal based on the Frenet frame to ensure complete 3D structural information. 
Moreover, to further improve the performance of mandibular canal segmentation, we use clDice 
to guarantee the integrity of the mandibular canal structure and segment the mandibular canal. 
Experimental results on our CBCT dataset show that integrating the proposed transformed volume 
in the Frenet frame into other state-of-the-art methods achieves a 0.5% ∼ 12.1% improvement in 
Dice performance. Our proposed method can achieve impressive results with a Dice value of 
0.865 (±0.035), and a clDice value of 0.971 (±0.020), suggesting that our method can segment 
the mandibular canal with superior performance.

1. Introduction

The mandibular canal, which is located in the mandible, is continuous with the mental foramen (opening in front of the mandible) 
and mandibular foramen (on the inside of the mandibular ramus) (Fig. 1). The mandibular canal consists of the inferior alveolar 
nerve (IAN), inferior alveolar artery (IAA), and inferior alveolar vein (IAV), which is a major supplier of sensation and blood to the 
lower jaw [1]. In clinical practice, cone beam computed tomography (CBCT) is the most commonly used for 3D diagnostics and 
operation planning in dental and maxillofacial radiology due to its lower doses of radiation and cost [2]. The accurate location of the 
mandibular canal is of great importance to assist in implant placement and other maxillofacial surgeries. Injuries to the mandibular 
canal during oral surgery can lead to adverse consequences such as facial nerve dysfunction and rupture of blood vessels. The 
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Fig. 1. Mandibular canal segmentation in CBCT images. (a) represents the CBCT image in the axial view. The green curve indicates the ground truth of the mandibular 
canal and the red curve indicates the mandibular canal mask segmented using our method. (b) A 3D visualization of the mandibular canal (indicated in red) in the 
mandible (indicated in yellow) via the proposed method.

radiologist’s manual localization of the mandibular canal is undoubtedly tedious and time-consuming. A computer-aided diagnostic 
system can present a 3D view of the target object that is more useful to the clinician in understanding its anatomy compared with 
a 2D anatomical view. However, automatic segmentation of the mandibular canal is still challenging because of low contrast or 
even invisible radiographic appearance of the mandibular canal on CBCT images. Existing computer-aided segmentation methods 
achieve modest performance due to the complexity of the mandibular canal and surrounding tissue anatomy, especially in the molar 
and submandibular glandular fossa (SDF) areas [3–5]. Therefore, it would be necessary to develop an accurate mandibular canal 
segmentation method to effectively assist dental clinicians in implant placement and maxillofacial surgery.

Several methods are proposed to automatically segment the mandibular canal in CBCT images based on the prior knowledge of 
shape models [6–10]. These methods typically use statistical shape models (SSM) to segment the mandible and then segment the 
mandibular canal using fast matching or tracking algorithms. For example, Kainmueller et al. [6] proposed to segment the mandibular 
canal in CBCT images by combining a statistical shape model to segment the mandibular surface and the mandibular canal with a 
Dijkstra-based algorithm optimization. Moris et al. [7] proposed to detect the mandibular foramen and mental foramen first by 
searching for high-contrast gaps in the mandible and then tracing the path of the mandibular canal between the two points using 
a matching method. In [8,9], Abdolali et al. achieved automatic segmentation of the mandibular canal based on a statistical shape 
model in combination with shape context registration and the Lie group, respectively. A similar solution as [6] was also proposed 
by Abdolali et al. [10]. This framework was proposed for CBCT image enhancement using low-rank matrix decomposition, and a 
combination of statistical shape model and fast matching method was employed for mandibular bone and canal segmentation. The 
results of these classical methods were promising. However, the aforementioned methods depend on prior knowledge and a robust 
mandibular segmentation model. Due to the low contrast of the CBCT images, using predefined thresholds based on the grayscale 
values for image preprocessing in these methods will limit the accuracy of segmentation in the mandibular canal.

Recently, convolutional neural networks (CNNs), especially U-type networks, have achieved superior performance in medical 
image segmentation [11–16]. For 2D medical images, the segmentation of tubular structures is well developed, especially for retinal 
blood vessel segmentation [17,18]. Implementing CNNs for automatically segmenting tubular structures in 3D medical images is 
still challenging in medical image segmentation for structures such as liver vessels [19] and tracheas [20]. Current segmentation of 
tubular structures on 3D medical images [19–21] often requires an a priori shape of the tubular structure. Shit et al. [22] proposed 
a topology-preserving similarity metric (clDice) for tubular structural segmentation using its differentiable form to obtain more 
accurate connectivity information for segmentation. Some studies in recent years have used CNNs for mandibular canal segmentation 
[23–25]. Jaskari et al. [23] trained a full convolutional network for automatic mandibular canal segmentation and obtained higher 
accuracy than previous classical segmentation methods. In [24], Kwak et al. used threshold processing to obtain the mandibular 
region and further trained 2D and 3D segmentation networks to obtain the mandibular canal. Note that the roughly annotated 
mandibular canal used in [23,24] greatly hinders developing an accurate mandibular canal segmentation model in clinical practice. In 
[25], the voxels of the input to the network are restricted to the mandibular range to improve the segmentation accuracy. Segmenting 
the areas with low contrast between the mandibular canal and the surrounding tissue on CBCT images is challenging. Considering 
the large spatial dimensions of the CBCT image and the computational efficiency, these 3D CNN-based methods mainly sample 
local patches from the whole image. However, patch-based segmentation methods cannot sufficiently learn the global information 
of the mandibular canal because of the low proportion of voxels in the mandibular canal on CBCT images. Furthermore, due to the 
variation of the mandibular canal structure, the ability to distinguish the mandibular canal near the mandibular foramen and mental 
foramen is limited by these CNN-based methods. Moreover, none of these methods can guarantee the integrity of the mandibular 
canal structure.

To tackle the above issues, we propose whole mandibular canal segmentation using transformed dental CBCT volume in the Frenet 
frame. We first extract the mandibular centerline via automatic segmentation of the mandible and localization of the mandibular 
foramen and mental foramen. The sub-volumes containing the mandibular canal information are then obtained using a double 
reflection method based on the Frenet frame. The transformed sub-volumes are fed into the 3D segmentation network, and the 
clDice is used to constrain the topology of the mandibular canal. Lastly, the prediction masks are inversely transformed back into the 
original CBCT images to obtain final segmentations.
2

Overall, the main contributions of this paper are summarized as follows:
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Fig. 2. Workflow of the proposed segmentation of the mandibular canal on CBCT. * represents the coordinates of the mandibular foramen and mental foramen. The 
green arrow indicates the process of obtaining the mask of the mandibular mask and the coordinates of mandibular foramen and mental foramen. The blue arrow 
indicates the sub-volume mask conversion to the original image, and the orange box shows the prediction details.

Fig. 3. (a) Diagram of the mandibular centerline under the Frenet frame; (b) Combined with the double reflection method; (c) Illustration of the point P. The gray 
areas indicate the surface perpendicular to the tangent vector at point P.

(1) We propose to transform the CBCT volume based on the Frenet frame for 3D whole mandibular canal segmentation, which 
guarantees the global information of the mandibular canal.

(2) Our proposed mandibular canal segmentation framework can achieve the automatic segmentation of mandible and mandibular 
canal and the automatic detection of the mandibular foramen and mental foramen.

(3) Experimental results demonstrate that by integrating the proposed transformed volume in the Frenet frame into other state-
of-the-art methods, the performance of these methods improves significantly on mandibular canal segmentation.

2. Methods

Our proposed mandibular canal segmentation method is shown in Fig. 2. We first segment the mandible and locate the mandibular 
foramen and mental foramen. Then, using the mandibular mask and the coordinates of the mandibular foramen and mental foramen 
in the mandible, the sub-volume containing the mandibular canal is obtained by the proposed transformed volume in Frenet frame. 
Finally, the transformed sub-volume is fed into the 3D segmentation network and the prediction mask is inverse-transformed back 
into the original CBCT image to obtain the final segmentation. The details of the method are described in the following subsections.

2.1. Transformed volume in Frenet frame

2.1.1. Frenet frame

In Euclidean ℝ3-space, a point P on a curve C in the Frenet frame consists of N, B, and T, three associated orthogonal unit vector 
fields [26]. For curve C, T is the unit tangent vector, N is the principal normal and B is the binormal (Fig. 3(c)).

𝑇 = 𝑃 ′

|𝑃 | ,𝑁 = 𝑃 ′ × 𝑃 ′′

|𝑃 ′ × 𝑃 ′′| ,𝐵 = 𝑇 ×𝑁 (1)

In the 3D Frenet frame, there are two curvatures, 𝜅 and 𝜏 . The constant, 𝜅 is called the curvature, 𝜏 is called the torsion. The 
Frenet equations are:

d𝑇
d𝐶

= 𝜅𝑁,
d𝑁
d𝐶

= −𝜅𝑇 + 𝜏𝐵,
d𝐵
d𝐶

= −𝜏𝑁 (2)

The Frenet frame is very convenient for calculating any point on the curve. However, the Frenet frame is undefined at curve 
inflection points or smooth variations, such as where 𝜅 = 0. The curvature vector can be on either side of the inflection point, causing 
a sharp distortion in the progression of the Frenet frame.

2.1.2. Transformed CBCT volumes

Suppose we extract the central line, a 3D curve 𝐶 ∶{𝑐𝑖|𝑖 = 1, ..., 𝑛}, of the mandible along the mandibular canal in the area where it 
exists between the mandibular foramen and mental foramen. If we compute the curve C directly and analytically in the Frenet frame, 
the curvature vector will twist uncontrollably and violently because of the presence of near-linear sections of C (Fig. 3(a)). Inspired 
by [27,28], we propose using the double reflection method to obtain the frame to transform mandibular canal voxels. We take the 
3

endpoint of the curve C as the initial point 𝑐0. The right-handed orthogonal frame at 𝑐0 is used as the initial frame 𝑢0(𝑛0, 𝑏0, 𝑡0). The 
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Fig. 4. Illustration of the transformed volume.

Fig. 5. Illustration of mandibular centerline extraction.

point 𝑐𝑖 on the curve C has the unit tangent vector 𝑡𝑖, the primary normal 𝑛𝑖 and the subnormal 𝑏𝑖, i.e. the frame 𝑢𝑖(𝑛𝑖, 𝑏𝑖, 𝑡𝑖). We 
obtain the left-handed orthogonal frame 𝑢𝐿

𝑖
(𝑛𝐿

𝑖
, 𝑏𝐿

𝑖
, 𝑡𝐿

𝑖
), using the reflection vector 𝑣1 = 𝑐𝑖+1 − 𝑐𝑖, with the following equations:

𝑡𝐿
𝑖
= 𝑡𝑖 − [2∕(𝑣1 ⋅ 𝑣𝑙)] ∗ (𝑣1 ⋅ 𝑡𝑖) ∗ 𝑣1 (3)

𝑛𝐿
𝑖
= 𝑛𝑖 − [2∕(𝑣1 ⋅ 𝑣𝑙)] ∗ (𝑣1 ⋅ 𝑛𝑖) ∗ 𝑣1 (4)

Next, we derive the frame 𝑢𝑖+1(𝑛𝑖+1, 𝑏𝑖+1, 𝑡𝑖+1) of the point 𝑐𝑖+1 by another reflection vector 𝑣2 = 𝑡𝑖+1 − 𝑡𝐿
𝑖

:

𝑛𝑖+1 = 𝑛𝐿
𝑖
− [2∕(𝑣2 ⋅ 𝑣2)] ∗ (𝑣2 ⋅ 𝑛𝐿𝑖 ) ∗ 𝑣2 (5)

𝑏𝑖+1 = 𝑡𝑖+1 × 𝑛𝑖+1 (6)

We obtain the frame 𝑈 ∶{𝑢𝑖(𝑛𝑖, 𝑏𝑖, 𝑡𝑖)|𝑖 = 1, ..., 𝑛} of the curve C via the double projection method by correcting the unwanted 
rotation of the Frenet frame, (Fig. 3(b)). We perform the volume transformation based on frame U along the curve C to obtain the 
transformed volume 𝑇 = 𝐶 + 𝑈 ′ ∗ 𝑉 . V is artificially set in the region of the centerline C by counting the sizes of the mandibular 
canal volumes contained in all cases. Here, we take advantage of the symmetry of the anatomical position of the mandibular canal 
to obtain the final sub-volume containing only one mandibular canal (Fig. 4).

2.2. Mandibular centerline extraction

To obtain the mandibular centerline, we implement a 3D CNN for the automatic segmentation of the mandible and localization of 
the mandibular foramen and mental foramen. We cropped the acquired mandibular mask at the locations of the mandibular foramen 
and mental foramen. Then we projected it in each of the three views to obtain the corresponding centerline C (Fig. 5). We utilize 
nnUNet as the backbone network to segment the mandibular bone and a joint loss composed of Dice loss and Cross-Entropy loss to 
train the mandibular segmentation network. The mandibular foramen and mental foramen detection are based on regressing heatmap 
images. Heatmap regression is a popular method for landmark detection due to its robustness and accuracy [29]. The network learns 
to regress heatmaps by minimizing the differences between the predicted heatmaps 𝑝𝑖(𝑥) and the corresponding target heatmaps 
𝑔𝑖(𝑥):

𝑚𝑖𝑛
𝑥

𝑁∑
𝑖

∑
𝑥

‖𝑝𝑖(𝑥) − 𝑔𝑖(𝑥)‖22 (7)

We set the mean squared error (MSE) as the regression loss to train the network. In the inference, we get the predicted coordinates 
4

by the location of the highest heatmap value obtained.
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2.3. The mandibular canal segmentation network

The sub-volumes containing the whole mandibular canal information obtained according to the above method are used as input 
to the 3D segmentation network. We utilize the currently popular medical image processing network UNet as the backbone network. 
The UNet structure comprises an encoding path, a decoding path and skip connections between them. The encoding path of the 
mandibular segmentation network consists of five down-sampling operations to extract high-level image features. Correspondingly, 
the decoding path has five up-sampling operations to restore the space size of the segmented output. Skip connections between 
the encoding and the decoding paths concatenate the hidden layers along the channel dimension to propagate spatial information 
and refine the outcomes. Here, we set the kernel size of each convolutional layer to 3 × 3 × 3 and every convolutional operation is 
followed by a batch normalization and a ReLU nonlinear. Each up-sampling operation is implemented by a transposed convolution 
with 2 × 2 × 2 kernel size and 2 × 2 × 2 stride. To further maintain the connectivity of the mandibular canal, we use clDice loss [22]
to train the mandibular canal segmentation network. The total loss function is formulated as bellow:

𝐿𝑡𝑜𝑡𝑎𝑙 = (1 − 𝜆)𝐿𝑑𝑖𝑐𝑒 + 𝜆𝐿𝑐𝑙𝑑𝑖𝑐𝑒 (8)

where 𝜆 is the scale factor,

𝐿𝑐𝑙𝑑𝑖𝑐𝑒 = −2 ×
𝑇𝑝𝑟𝑒𝑐(𝑆𝑃 ,𝑉𝐿) × 𝑇𝑠𝑒𝑛𝑠(𝑆𝐿,𝑉𝑃 )
𝑇𝑝𝑟𝑒𝑐(𝑆𝑃 ,𝑉𝐿) + 𝑇𝑠𝑒𝑛𝑠(𝑆𝐿,𝑉𝑃 )

(9)

and where 𝑉𝑃 is the prediction of the mandibular canal segmentation network and 𝑉𝐿 is the real mask. 𝑆𝑃 and 𝑆𝐿 are obtained from 
𝑉𝑃 and 𝑉𝐿 by the soft-skeleton method. 𝑇𝑝𝑟𝑒𝑐 (𝑆𝑃 , 𝑉𝐿) and 𝑇𝑠𝑒𝑛𝑠(𝑆𝐿, 𝑉𝑃 ) are defined bellow (𝜖 is set to 1):

𝑇𝑝𝑟𝑒𝑐(𝑆𝑃 ,𝑉𝐿) =
|𝑆𝑃 ∩ 𝑉𝐿|+ 𝜖

|𝑆𝑃 |+ 𝜖
(10)

𝑇𝑠𝑒𝑛𝑠(𝑆𝐿,𝑉𝑃 ) =
|𝑆𝐿 ∩ 𝑉𝑃 |+ 𝜖

|𝑆𝐿|+ 𝜖
(11)

3. Data and experiments

3.1. Data

Our CBCT dataset used in this paper were acquired at the Stomatological Hospital of Southern Medical University, Guangzhou, 
China. A total of 46 images were collected by a NewTom VGi (QR s.r.l., Verona, Italy) scanner with the following imaging parameters: 
110 kVp and 3-8 mA (pulse mode). All the CBCT images were acquired under natural bite or closed bite conditions. Each CBCT 
image varies in size, with the number of slices ranging from 376-533 and the axial width and length from 376-512 and 470-555, 
respectively. The dataset was randomly divided into 29 images as the training set, 7 images as the validation set, and another 10 
images as the independent test set. We resampled each volume to an isotropic resolution of 1 × 1 × 1 mm3 from 0.3 × 0.3 × 0.3 mm3. 
We calculated the Hounsfield unit (HU) values for all voxels in the foreground of the training data, clipped the images to the 0.5𝑡ℎ
and 99.5𝑡ℎ percentiles of these values, and performed z-score normalization based on the mean and variance of these values.

The publicly available dataset [30] included 347 CBCT images. The spatial resolution of each CBCT scan varies in size from 
148 × 265 × 312 to 178 × 423 × 463, with a pixel resolution of 0.3 × 0.3 × 0.3 mm3. Only 91 cases in this dataset are densely annotated. 
We performed the same preprocessing on this part of the dataset as on ours. In addition, as in [30], only 15 cases were split as the 
test set.

3.2. Experiment details

To ensure the integrity of the single mandibular canal in the sub-volume, we expanded the marginal area of the cropped CBCT 
volume by 32 pixels based on the coordinates of the mandibular foramen and mental foramen. Transforming the CBCT volume 
containing only the mandibular canal according to the mandibular 3D centerline, we set the size of each slice orthogonal to the 
tangent vector [64, 96]. The number of slices in the transformed sub-volumes ranged from 249 to 321. Therefore, 58 and 14 
volumes with only the single mandibular canal information were obtained as the training and validation sets for the mandibular 
canal segmentation model, respectively. All sub-volumes were resized to 64 × 96 × 280 during the training phase. In the mandibular 
foramen and mental foramen landmark localization model, we generated Gaussian heatmaps based on manually labeled coordinates, 
with 𝜎 taken as 3. To improve the performance of the segmentation model, we augmented the training dataset using the data 
augmentation method in nnUNet. We used test time augmentation for the test set data by mirroring along all axes to further improve 
the predictions. All models were implemented using PyTorch on NVIDIA RTX 2080 Ti (12G). SGD was adopted as the optimizer with 
momentum (𝜇 = 0.99) during training. We set the initial learning rate to 0.01, decreasing with training. The batch size was set as 2, 
5

and the epoch was 1000 for all models.
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Fig. 6. Quantitative evaluation of the segmentation results for independent test sets. ASSD and HD95 show the results of the left and right mandibular canals 
respectively.

3.3. Experiment metrics

We adopted four common metrics to evaluate the performance of the segmentation model: Dice similarity coefficient (Dice), 
Jaccard index (JI), Recall and intactness rate (IR). In particular, we defined a new metric to assess the performance of the model by 
counting the number of broken or incomplete mandibular canals, namely intactness rate (IR).

𝐷𝑖𝑐𝑒 = 2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(12)

𝐽𝐼 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(13)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(14)

𝐼𝑅 = 𝑊

𝐶
(15)

TP, FP, and FN denote the number of true positives, false positives and false negatives, respectively. W denotes the number of whole 
mandibular canals obtained by inference, and C denotes the number of all mandibular canals in the test set.

In addition, for the mandibular canal segmentation model, we also used two metrics based on distance evaluation: the average 
symmetric surface distance (ASSD), and the 95𝑡ℎ percentil of the robust Hausdorff distance (HD95).

𝐴𝑆𝑆𝐷 = 1
|𝑆(𝐴) + 𝑆(𝐵)| (

∑
𝑎∈𝑆(𝐴)

𝑑(𝑎,𝑆(𝐵)) +
∑

𝑏∈𝑆(𝐵)
𝑑(𝑏,𝑆(𝐴))) (16)

𝐻𝐷95 = max{max
𝑃95

𝑑(𝑎,𝑆(𝐵)),max
𝑃95

𝑑(𝑏,𝑆(𝐴))|𝑎 ∈ 𝑆(𝐴), 𝑏 ∈ 𝑆(𝐵)} (17)

𝑑(, ) is the shortest Euclidean distance; 𝑆(, ) is the surface pixel set.
For the performance of the mandibular foramen and mental foramen landmark localization model, we evaluated the mean (Mean) 

and standard deviation (Std) of the distances between the ground truth and predicted locations as the localization accuracy.

4. Results

This section presents the results of the experiments, including three sections on the overall qualitative and quantitative assessment 
of our proposed method, ablation studies, and a comparison of the results with other methods. We report results on the independent 
test set, and all experimental results indicate a positive effect of our proposed method on mandibular canal segmentation.

4.1. Overall segmentation performance of our method

For the mandibular canal segmentation results of our proposed method, the mean Dice was 0.865 (±0.035), the mean JI was 0.764 
(±0.053), the mean Recall was 0.886 (±0.053), the mean clDice was 0.971 (±0.020) and the high IR. The standard deviation results 
for all evaluation metrics indicate that our model performs stably. Additionally, our method showed promising results on distance 
evaluation metrics. To show this in more detail, the segmentation results for the 10 images are shown in Fig. 6. In the segmentation 
results of the independent test set, the highest Dice reached 0.903. For subjects with unclear images, the lowest Dice was 0.786. 
6

These results show that our method performs well on more complex segmented data. We show a specific example of the mandible 
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Fig. 7. An example of mandible and mandibular canal segmentation results.

Fig. 8. Examples of 3D visualization with different segmentation methods.

Table 1

Segmentation performance of different methods (mean ± standard deviation). * is a metric for tubular structure, as proposed in [22]. - shows that the result is 
calculated as NAN.

Method Dice JI Recall clDice* ASSD (mm) HD95 (mm) IR (%)

Jaskari et al. 0.679±0.237 0.550±0.203 0.719±0.203 - 16.242±40.208 31.651±55.171 50
DeepLabV3+ 0.730±0.161 0.594±0.157 0.730±0.157 0.882±0.166 1.833±1.501 5.187±5.721 90
VNet 0.769±0.095 0.634±0.118 0.742±0.118 0.756±0.097 6.079±4.013 31.405±49.953 45
3D UNet 0.813±0.038 0.686±0.053 0.864±0.059 0.955±0.055 1.133±0.636 3.780±4.780 90
nnUNet 0.860±0.036 0.757±0.055 0.875±0.055 0.965±0.044 0.836±0.457 2.964±3.430 90
Ours 0.865±0.035 0.764±0.053 0.886±0.053 0.971±0.020 0.772±0.226 2.098±0.707 100

and mandibular canal segmentation in Fig. 7(a-d). Besides, our method includes mandibular segmentation, mandibular foramen and 
mental foramen landmark localization. For accurate extraction of the mandibular centerline, the mandibular segmentation model 
achieved good performance with Dice, JI, and Recall at 0.986 (±0.002), 0.973 (±0.005), and 0.989 (±0.005) respectively. The 
results show that the mandibular segmentation model is highly reliable. The landmark localization model of the mandibular foramen 
and mental foramen achieves an average accuracy of 3.131 (±2.065) mm. This result satisfies our subsequent experiments. Lastly, 
according to our proposed method of transforming mandibular canal volumes, all the transformed sub-volumes were confirmed to 
7

contain whole mandibular canals.
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Fig. 9. Illustration of the segmentation results in the coronal view. Green represents the ground truth and red indicates the results predicted by different methods. 
Only green indicates that the mandibular canal is not segmented here.

Fig. 10. Comparison of Dice values for different segmentation networks. (w) indicates the use of the transformed volume method, (w/o) indicates no use.

Fig. 11. 3D visualization of the segmentation results with or without the clDice module.

4.2. Comparison with other methods

This section compares and analyzes our proposed method with other patch-based segmentation methods. Fig. 8(a-c) and Fig. 9
show the qualitative comparison of different methods. The FCN-based method proposed by Jaskari et al. [23], DeepLabV3+ [31], 
VNet [14], 3D UNet [15], nnUNet [16] and our method evaluated the performance of the independent test set. The mandibular 
canal tends to show an anatomical representation of a small canal diameter due to the compression of the mandibular canal by 
the surrounding tissue in the molar region. In this region, the patch-based segmentation methods perform poorly and the predicted 
mandibular canal masks appear broken. In addition, as these models learn patches outside of the mandibular canal region, they 
result in incorrect mandibular canal predictions. Our proposed method limits the regions and therefore avoids such errors. Our 
8

method also performs superiorly in the part of the mandibular canal near the lower teeth. Table 1 shows the results of the different 
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Table 2

Quantitative evaluation of ablation studies of the proposed method (mean ± standard deviation). 
T indicates the proposed transformed volume method. C indicates the clDice module.

Baseline Baseline+T Baseline+T+C

Dice 0.860±0.036 0.863±0.036 0.865±0.035

JI 0.757±0.055 0.760±0.054 0.764±0.053

Recall 0.875±0.055 0.879±0.054 0.886±0.053

clDice 0.965±0.044 0.968±0.030 0.971±0.020

ASSD(mm) 0.836±0.457 0.795±0.234 0.772±0.226

HD95 (mm) 2.964±3.430 2.224±0.839 2.098±0.707

IR (%) 90 90 100

Table 3

Performances under different convolutional neural networks with transformed volume (mean ± standard deviation).

Method Dice JI Recall clDice ASSD (mm) HD95 (mm) IR (%)

Jaskari et al. 0.800±0.136 0.684±0.157 0.779±0.157 0.900±0.148 1.855±3.540 8.439±21.951 80
DeepLabV3+ 0.824±0.060 0.704±0.082 0.837±0.082 0.956±0.039 0.990±0.322 2.736±1.033 95
VNet 0.850±0.051 0.743±0.074 0.868±0.074 0.951±0.053 1.033±0.655 3.575±5.208 85
3D UNet 0.855±0.042 0.749±0.062 0.870±0.062 0.949±0.044 0.822±0.259 2.295±0.903 100
Ours 0.865±0.035 0.764±0.053 0.886±0.053 0.971±0.020 0.772±0.226 2.098±0.707 100

Table 4

Comparison of the segmentation results with different 𝜆 values (mean ± standard deviation).

𝜆 Dice JI Recall clDice ASSD (mm) HD95 (mm)

0.1 0.864±0.037 0.762±0.056 0.883±0.056 0.967±0.028 0.782±0.234 2.155±0.777
0.2 0.863±0.041 0.761±0.061 0.882±0.061 0.966±0.030 0.785±0.247 2.177±0.813
0.3 0.863±0.036 0.761±0.054 0.881±0.054 0.965±0.028 0.809±0.289 2.206±1.016
0.4 0.857±0.753 0.753±0.067 0.879±0.067 0.965±0.037 0.833±0.292 2.338±1.202
0.5 0.865±0.035 0.764±0.053 0.886±0.053 0.971±0.020 0.772±0.226 2.098±0.707

methods for quantitative evaluations. The results of our method outperform other baseline networks. Even surpassing nnUNet in 
terms of evaluation metrics. The standard deviation values show that our method is more robust and performs well for images that 
are difficult to segment.

4.3. The effectiveness of the proposed transform volume method

We used the nnUNet framework as a baseline network. Quantitative evaluation metrics showed an improvement in segmentation 
performance for our proposed transform volume in the Frenet frame method, as shown in Table 2. Table 3 lists the results when 
integrating the proposed transformed volume in Frenet frame into other methods. The Dice, JI, Recall, clDice, and IR are all improved 
by the different segmentation methods integrated with the proposed transform volume method. These results show that using the 
transform sub-volumes effectively improves segmentation performance. Fig. 10 shows the Dice values of with or without transformed 
volumes using different networks in detail. The comparison shows that our proposed transform volume method positively affects the 
mandibular canal segmentation on different networks. This revelation shows that the mandibular canal segmentation network can 
be replaced with any up-to-date network.

4.4. Loss function analysis

The proposed mandibular canal segmentation network is combined with the clDice module. To demonstrate that the clDice 
module is effective for mandibular canal segmentation, we compared the segmentation metrics with or without it. Table 2 shows 
the results of the network with or without the clDice module. The model Dice value, JI, Recall, and clDice using the clDice module 
improved by 0.002, 0.004, 0.007, and 0.003, respectively. Additionally, the ASSD and HD95 are all reduced. The standard deviations 
show that the model stability has also been improved. For segmenting the mandibular canal, better connectivity is achieved with 
this model (Fig. 11). Table 4 demonstrates the segmentation performance for different values of 𝜆. The results show that the best 
performance is achieved for 𝜆 = 0.5.

4.5. Comparison on the public dataset

We also compared the segmentation results on the publicly available dataset [30] to demonstrate the effectiveness of our proposed 
method. Our previous mandibular segmentation model was still effective in segmenting the mandible from the public dataset. 
9

Similarly, the locations of the mandibular foramen and mental foramen were detected according to the previous landmark localization 
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Table 5

Comparison of the segmentation results on the public dataset.

Jaskari et al. [23] Cipriano et al. [32] Usman et al. [33] Ours

Dice 0.67 0.75 0.77 0.81

Fig. 12. Examples of poor segmentation results. The green indicates the labeling of experts and the red represents the segmentation results. The last row is the position 
of the shown slice in 3D.

model. We trained an independent mandibular canal segmentation model according to our proposed framework using publicly 
data densely annotated cases, as shown in Fig. 2. Compared with the state-of-the-art methods [23,32,33], our proposed method 
outperforms them in terms of the average Dice score on the test set (as in Table 5). However, since the size of the public dataset is 
not equal to the size of our dataset, the results in the public dataset did not perform as well as the results in our dataset.

5. Discussion

The automatic segmentation of the mandibular canal in CBCT images is of great importance for oral surgery planning and 
orthodontics [2–5]. It is still a challenging task for accurate mandibular canal segmentation resulting from the poor contrast between 
the mandibular canal and the surrounding tissue in CBCT images. Compared with the traditional segmentation techniques [6–8], 
the CNN-based methods [9,10,23,24] have achieved promising results of mandibular canal segmentation. However, existing deep 
learning-based methods use sliding windows to extract image patches for mandibular canal segmentation, which inevitably lacks the 
morphological integrity of the tubular structures. To overcome the problems of the poor contrast in CBCT images and the lacking 
integrity of the tubular structures, we propose whole mandibular canal segmentation using transformed dental CBCT volume in 
Frenet frame.

Mandibular segmentation is a critical step in our proposed method. Section 4.1 shows the results of mandibular segmentation with 
a Dice of 0.986 (±0.002), a JI of 0.973 (±0.005), and a Recall of 0.989 (±0.005). It performed equally well as the previously proposed 
methods [34,35]. With the superior performance of our mandibular segmentation model, it is sufficient to adopt the segmented 
mandible for further mandibular canal segmentation. Because the structural details of the mandible segmentation methods are not 
the primary concern of our study, the comparisons of mandible segmentation methods are not included in our study. Moreover, the 
high performance of landmark localization of the mandibular foramen and mental foramen meets the requirements for obtaining a 
sub-volume that contains the whole mandibular canal. Few studies have attempted to develop models for landmark localization of 
the mandibular foramen and mental foramen.

Extracting the whole mandibular canal, which ensures the complete 3D structural information of the mandibular canal, can 
improve inference efficiency. Compared with the inference time of the nnUNet [16] (about 2 min), our network inference takes 
approximately 2 s, and the inverse transformation to the original image size takes about 30 s. Note that our study is based on 
nnUNet [16] because of the excellent performance of image segmentation. The main contribution of our study is developing the 
transformed volume in the Frenet frame to extract the whole mandibular canals. Thus, the network structures of the mandibular 
10

canal segmentation can be replaced by any state-of-the-art image segmentation methods. Besides, Fig. 10 shows that when integrating 



Heliyon 9 (2023) e17651H. Zhao, J. Chen, Z. Yun et al.

the proposed transformed volume in the Frenet frame into other state-of-the-art methods, these methods achieve 0.5% ∼ 12.1% 
improvement in Dice performance. We use the IR indicators to indicate the positive effect on the maintenance of the mandibular 
canal topology. As shown in Table 1, all compared methods cannot ensure the integrity of the whole mandibular canal (50%∼90%). 
When integrating the proposed transformed volume in the Frenet frame, significant improvement of IR (80%∼100%) can be found 
in Table 3, which demonstrates that the proposed transformation volume performs well on different segmentation networks.

A limitation of our method is that in cases where the mandibular canal wall is missing or incomplete, there is also some uncertainty 
in the actual manually labelled mandibular canal by experts, which can also impact the mask obtained from the segmentation model. 
As shown in Fig. 12, even though our method ensures the integrity of the tubular structure of the mandibular canal, it is less effective 
in segmentation at locations where the canal wall is missing. To address this limitation, we consider developing image contrast 
enhancement methods to improve the boundary contrast in CBCT images. Another limitation is the small amount of data used in our 
method. More image data will be collected in our future study to further improve the accuracy of the model.

6. Conclusions

In this study, we propose a 3D transform volume of the mandibular canal based on the Frenet frame in CBCT images for mandibu-
lar canal segmentation. Our proposed mandibular canal segmentation framework can achieve the segmentation of mandible and 
mandibular canal and the detection of the mandibular foramen and mental foramen. Furthermore, the proposed transformed volume 
in Frenet frame can extract the whole mandibular canal to ensure the complete 3D structural information. The experimental results 
of this study can achieve accurate segmentation of the mandibular canal, which can help in planning oral surgery, such as oral 
orthodontic treatment, and dental implants.
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