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Abstract Constitutive TGFb signaling is important in maintaining retinal neurons and blood

vessels and is a factor contributing to the risk for age-related macular degeneration (AMD), a

retinal disease involving neurodegeneration and microglial activation. How TGFb signaling to

microglia influences pathological retinal neuroinflammation is unclear. We discovered that ablation

of the TGFb receptor, TGFBR2, in retinal microglia of adult mice induced abnormal microglial

numbers, distribution, morphology, and activation status, and promoted a pathological microglial

gene expression profile. TGFBR2-deficient retinal microglia induced secondary gliotic changes in

Müller cells, neuronal apoptosis, and decreased light-evoked retinal function reflecting abnormal

synaptic transmission. While retinal vasculature was unaffected, TGFBR2-deficient microglia

demonstrated exaggerated responses to laser-induced injury that was associated with increased

choroidal neovascularization, a hallmark of advanced exudative AMD. These findings demonstrate

that deficiencies in TGFb-mediated microglial regulation can drive neuroinflammatory contributions

to AMD-related neurodegeneration and neovascularization, highlighting TGFb signaling as a

potential therapeutic target.

DOI: https://doi.org/10.7554/eLife.42049.001

Introduction
The development of neuroinflammatory changes in the retina is a significant factor in the pathogene-

sis of multiple retinal disorders including glaucoma (Williams et al., 2017), diabetic retinopathy

(Xu and Chen, 2017), and age-related macular degeneration (Guillonneau et al., 2017). Abnormal

immune responses arising from physiological changes in microglia, the primary resident innate

immune cell in the retina, are thought to drive aspects of disease progression, including neuronal

degeneration and pathological neovascularization (Karlstetter et al., 2015; Silverman and Wong,

2018). Under healthy conditions, microglia in the retina integrate a variety of constitutive regulatory

signals from other neighboring cells (Fontainhas et al., 2011; Liang et al., 2009), enabling them to

perform homeostatic roles in maintaining retinal structure and function (Wang et al., 2016). How

retinal microglia transition from a homeostatic physiological state to ones that promote disease pro-

gression is however not well understood. Elucidation of molecular mechanisms governing these
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transitions is likely central to designing strategies for microglial modulation in retinal disease

(Arroba and Valverde, 2017; Bell et al., 2018).

TGFb signaling is a significant influence on the regulation of microglial development and mature

function in the brain in vivo (Butovsky et al., 2014; Buttgereit et al., 2016) and promoting micro-

glial survival and specification in vitro (Bohlen et al., 2017). Altered TGFb signaling in microglia has

been linked to pathogenic mechanisms of neurodegenerative disorders in the brain and spinal cord

(Lund et al., 2018a; Taylor et al., 2017). In the retina, TGFb signaling exerts pleotropic effects on

multiple retinal cell types that underlie numerous functions ranging from maintaining retinal neuronal

differentiation and survival (Braunger et al., 2013; Walshe et al., 2011) to regulating the develop-

ment and structural integrity of retinal vessels (Braunger et al., 2015; Walshe et al., 2009). How-

ever, the specific role of TGFb signaling to retinal microglia in the regulation of homeostatic vs.

pathologic states, and how this may contribute to retinal disease pathogenesis, are not known. Sig-

nificantly, TGFb signaling has been implicated in the pathobiology of age-related macular degenera-

tion (AMD), the leading cause of vision loss in older patients in the developed world (Jager et al.,

2008) and a condition still lacking comprehension prevention and treatment. Alterations in the levels

of TGFb ligands have been reported in eyes of AMD patients (Tosi et al., 2017; Tosi et al., 2018).

Genome-wide association studies have discovered that polymorphisms in TGFBR1, a receptor trans-

ducing TGFb signals in conjunction with TGFBR2, influence the risk for developing AMD (Fan et al.,

2017; Fritsche et al., 2013). HTRA1, another significant AMD risk-associated protein, has been

thought to confer increased AMD risk by differentially binding to and cleaving intraocular TGFb�1,

altering TGFb signaling to microglia (Friedrich et al., 2015). These findings have prompted the con-

sideration of TGFb signaling as a potential target for AMD therapy (Fisichella et al., 2016;

Platania et al., 2017). However, how direct TGFb signaling regulates microglial physiology in the

retina to influence inflammatory, neurodegenerative, and neovascular processes in AMD is not

elucidated.

Here, we investigate the role of direct and constitutive TGFb signaling to microglia by inducing

microglia-specific ablation of TGFBR2, a receptor required for TGFb signal transduction, in the adult

mouse retina. We found that inhibition of TGFb signaling in microglia induced abnormalities in

microglial homeostasis in the retina, altering overall microglial number, distribution, and morphol-

ogy. These changes resulted in reduced physical coverage of the retinal plexiform layers by micro-

glial processes, and likely diminished microglial trophic support. TGFb signaling ablation resulted in

a downregulation of microglial ‘sensome’ genes and an upregulation of microglial activation

markers. These microglial changes were highly consequential to the maintenance of a healthy retina,

inducing widespread Müller cell gliosis and structural and functional degeneration of retinal neurons.

Retinal microglia deficient in TGFb signaling also demonstrated abnormal injury responses that pro-

moted increased choroidal neovascularization in a laser-induced model of injury. Taken together,

our findings indicate that constitutive neuron-microglia interactions in the form of TGFb signaling are

necessary in the maintenance of the orderly organization and trophic function of microglia in the ret-

ina; in its absence, microglia undergo pathologic transformation in ways that promote retinal

changes resembling those observed in AMD pathology. These results provide insight into how

abnormal TGFb signaling in retinal microglia can contribute causally to AMD pathobiology, and raise

the possibility that microglia may be modulated via TGFb signaling as a potential therapeutic

strategy.

Results

Constitutive TGFBR2 expression in microglia of the adult mouse retina
is specifically ablated in Cx3cr1CreER/+, Tgfbr2flox/flox (TG) mice
We characterized TGFBR2 expression by performing immunohistochemical analysis in flat-mounted

retina from two-month old adult Cx3cr1+/GFP mice. CX3CR1-expressing microglia in both the inner

and outer plexiform layers (IPL, OPL) demonstrated immunopositivity for TGFBR2 in the cell mem-

branes of somata and ramified processes (Figure 1A), as did CD31+ retinal endothelial cells. These

findings were in agreement with RNAseq mRNA expression profiles in specific cells types; in the

adult mouse retina (Siegert et al., 2012), Tgfbr2 mRNA expression was high in microglia but low in

other retinal neurons (Figure 1B), while in the postnatal mouse brain (Bennett et al., 2016), Tgfbr2
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Figure 1. TGFBR2 is constitutively expressed in adult mouse retinal microglia and is specifically ablated in retinal microglia of adult Cx3Cr1CreER/+,

Tgfbr2flox/flox (TG) mice upon tamoxifen induction. (A) Immunohistochemical labeling for TGFBR2 (red) in the adult CX3CR1+/GFP mouse retina was

localized prominently to CD31-immunopositive vascular endothelial cells (white) and to CX3CR1-expressing, GFP+ microglia cells (green) in both the

inner and outer plexiform layers (IPL, OPL). Insets (yellow boxes) show microglia demonstrating colocalization of microglial marker CX3CR1 with

TGFBR2. Scale bar = 100 mm. (B) Reference to an atlas of specific cell type transcriptomes from the adult mouse retina highlighted constitutive

expression of Tgfbr2 mRNA in retinal microglia, with very low or no expression in different classes of retinal neurons (expression levels >20 correspond

to significant expression). (C) Reference to an atlas of specific cell type transcriptomes from the neonatal (P7-17) mouse brain indicated significant levels

of constitutive expression in microglial and endothelial cell populations, with considerably lower expression in other brain neuronal and glial cell types.

(D) Specific ablation of Tgfbr2 expression from retinal microglia of Cx3Cr1 CreER /+,TGFbR2flox/flox (TG) mice was enabled by tamoxifen (TMX)-induced

Cre recombinase activity in CX3CR1-expression microglia, resulting in the genetic excision of exon 4 of the Tgfbr2 gene. CD11b+ microglia (blue

points) and CD31+ endothelial cells (green points) were sorted from retinas of untreated TG mice, and from control and TG mice 3 weeks after

tamoxifen administration using flow cytometry and analyzed. Cre recombinase-mediated excision of exon 4 of the Tgfbr2 gene from the genomic DNA

in microglial, endothelial, and the remaining retinal cell types (purple points) was assessed using qPCR; CD11b+ microglia demonstrated a significant

Figure 1 continued on next page
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mRNA expression was high in both microglia and endothelial cells, with little or no expression in

astrocytes, neurons, and oligodendrocytes (Figure 1C).

To evaluate the functional significance of constitutive in vivo TGFb signaling in retinal microglia,

we employed a transgenic mouse in which TGFBR2 can be specifically and inducibly ablated in

CX3CR1-expressing microglia. We employed the Cx3cr1CreER/+, Tgfbr2flox/flox (termed TG) mouse

model in which tamoxifen administration activates CreERT2 recombinase activity, enabling the exci-

sion of exon 4 of the Tgfbr2 gene, ablating TGFb signaling. Following induction, retinal CD11b+-

microglia cells and CD31+ endothelial cells were isolated by flow sorting; experimental controls

included age-matched TG animals that were not administered tamoxifen, and age-matched trans-

genic Tgfbr2flox/flox (termed Control) mice that lacked Cre recombinase and which were administered

tamoxifen on the same dosing regimen as TG mice. Quantitative PCR analysis of genomic DNA for

the targeted exon 4 of the Tgfbr2 gene showed a significant reduction (relative to the preserved

exon 3) in CD11b+ microglia isolated from tamoxifen-administered TG animals, but not in CD11b

+ microglia from both control groups (Figure 1D). No changes in the relative presence of exon 4

were detected in CD31+ endothelial cells or in the remaining (non-CD11b+, non-CD31+) retinal cell

populations for all three experimental groups. Quantitative rtPCR analysis of mRNA isolated from

flow-sorted CD11b+ retinal microglia correspondingly demonstrated a marked reduction of exon 4-

containing transcripts in tamoxifen-administered TG animals but not in TG animals not administered

tamoxifen, nor in tamoxifen-administered control mice (Figure 1E). These results indicate that

Tgfbr2 expression can be ablated in an inducible manner in adult TG animals and specifically in

microglia among retinal cell types.

Specific in vivo ablation of TGFBR2 in retinal microglia induces rapid
morphological transformation and proliferation
We examined microglial morphology and distribution in the retinas of TG mice at different time

points following tamoxifen-induced TGFBR2 ablation (1, 2, 5 days; 3 and 10 weeks) in flat-mounted

samples. At one day post-tamoxifen administration, retinal microglia showed slight decreases in the

length and branching of their processes but still retained a ramified morphology (Figure 2). At 2 to

5 days post-tamoxifen, microglia demonstrated marked reductions in process ramification, and pos-

sessed mostly short, stubbly processes. At 3 to 10 weeks post-tamoxifen, microglia transitioned to

an elongated cellular morphology that had only a few processes that showed little branching. Inter-

estingly, elongated microglia in TG animals were closely adherent to isolectin B4 (IB4)-labelled reti-

nal blood vessels, with their processes conforming to the branched structure of retinal vessels

(Figure 2A,E, Videos 1 and 2). These features were prominently seen at 3 weeks post-tamoxifen in

both the OPL (Figure 3A) and the IPL (Figure 3—figure supplement 1A). Microglia in control ani-

mals administered tamoxifen were morphologically unchanged, resembling microglia in age-

matched wild type animals not administered tamoxifen. Isolated Iba1+ microglia with elongated

morphologies were also found in the subretinal space, a zone lacking retinal blood vessels (Fig-

ure 3—figure supplement 1B), indicating that the morphological transformations in microglia likely

originated from cell-autonomous changes in microglia, rather than indirectly induced by signals from

retinal vessels.

Morphological transformations in retinal microglia were accompanied by general increases in

overall microglial density. Quantification of CD11b+ retinal microglia using flow cytometry showed

significant increases in TG mice at 3 weeks and 10 weeks following tamoxifen administration com-

pared with tamoxifen-administered control mice (Figure 3B). Microglia densities, as assessed by cell

counting in flat-mounted retinal specimens using immunochemical analyses, also demonstrated

increases in all retinal laminae (IPL, OPL, and SRS) (Figure 3C), which corresponded to the

Figure 1 continued

loss of exon 4 relative to the exon 3 in TMX-treated TG animals, but not in untreated TG or TMX-treated control animals. Exon 4 excision was not

observed in non-microglial cell types. (E) Quantitative rtPCR analysis demonstrated a corresponding reduction in the transcription of exon 4 of Tgfbr2

mRNA from flow-sorted CD11b+ retinal microglia of TMX-treated TG animals relative to those of TMX-treated control animals and TG animals not

treated with TMX. (Graphical data in (D) an (E) are presented as means ± SEM; p values are from one-way analysis of variance (ANOVA) and Sidak’s

multiple comparison test, n = 4 animals of mixed sex for each group).

DOI: https://doi.org/10.7554/eLife.42049.002
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Figure 2. Specific TGFBR2 ablation in retinal microglia induces rapid and progressive changes in microglial morphology and distribution. The time

course of morphological changes in retinal microglia following tamoxifen (TMX)-induced ablation of TGFBR2 expression was followed using

immunohistochemical analysis in retinal flat-mounts. Panels show changes at the level of the OPL; microglia were labeled using an antibody to IBA1

and retinal vessels labeled with IB4. Gliotic changes in radial Müller glia processes were marked using an antibody to GFAP. At 1 day following TMX

administration, a slight reduction in ramification in microglia processes was observed. From 2–5 days post-TMX, a further decrease in microglial

ramification and an increase in microglia numbers were detected. From 3–10 weeks post-TMX, retinal microglia transitioned to a branched morphology,

demonstrating a close fasciculation with the retinal vasculature. GFAP immunopositivity in Müller glia was prominently upregulated at this time. Scale

bar = 100 mm.

DOI: https://doi.org/10.7554/eLife.42049.003
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emergence of proliferating, Ki67+, microglia.

(Figure 3D). Ki67 immunopositivity was absent in

subretinal microglia, suggesting that increased

subretinal microglia numbers may have resulted

from migration of microglia from the inner retinal

layers. Monocytic infiltration into the retina was

unlikely to have contributed to the increased IBA

+ cell numbers as cell-fate mapping of retinal

microglia vs. systemic monocytes using TG mice

crossed into the Ai14 background (Ma et al.,

2017) revealed that IBA1+ cells 4 months follow-

ing tamoxifen uniformly expressed tdTomato,

indicating that systemic monocytes (which at this

time had been turned over and replaced by tdTo-

mato-negative cells) had not contributed to the

increased numbers of IBA1+ cells induced by

TGFBR2 ablation (Figure 3—figure supplement

1C). In addition, we observed that the myeloid

cells in the retina demonstrating progressive mor-

phological change in the first week following tamoxifen administration were immunopositive for

P2RY12, a marker for endogenous microglia, as well as for Ki67, a marker of proliferating cells (Fig-

ure 3—figure supplement 1D). Although P2RY12 immunopositivity was gradually lost after one

week following TGFBR2 ablation, these findings indicated that the population of morphologically-

transformed myeloid cells in the retina arose from the proliferation and modification of pre-existing

endogenous retinal microglia.

As the constitutive presence of microglia in the adult retina is required for ongoing maintenance

of retinal synapses (Wang et al., 2016), and may be mediated by repeated microglia-synapse con-

tacts via dynamically motile microglial processes (Lee et al., 2008), we examined how areal coverage

in the synapse-rich plexiform layers by microglial processes may be altered following TGFBR2 abla-

tion. We found that following TGFBR2 ablation, individual microglial cells in both the IPL and OPL of

TG animals demonstrated marked reductions in the number of branch points per cell (Figure 3E,F)

and in the area subtended by the processes of each cell (Figure 3G). Consequently, despite

increased microglial density, the proportion of retina lacking direct coverage by microglial processes

was significantly greater (Figure 3H), translating to decreased microglia-synapse contact and likely

diminished microglial supportive functions.

Specific ablation of TGFBR2 in retinal microglia results in decreased
microglial ‘sensome’ function and
increased activation
Corresponding to the decreased spatial cover-

age of the retina by TGFBR2-ablated microglia,

we investigated if the ability of retinal microglia

to sense environmental signals may be affected

by the loss of TGFb signaling. Previous transcrip-

tomic profiling studies of microglia in the mouse

brain have defined a cluster of microglial spe-

cific/enriched transcripts encoding proteins that

confer the ability to sense environmental signals,

collectively referred to as the microglial ‘sen-

some’ (Hickman et al., 2013). Quantitative RT-

PCR analysis of flow-sorted microglia from the

TG retinas 2 weeks following tamoxifen adminis-

tration revealed that mRNA expression levels of

‘sensome’ transcripts such as Cx3cr1, P2yr12,

Tmem119, and Siglech, were markedly reduced

relative to control mice (Figure 4A). These

Video 1. 3D rotation depiction of the morphology and

distribution of IBA1-immunolabelled retinal microglia

(green) in the OPL with respect to IB4-labeled retinal

vessels (white) in TG animals prior to the administration

of tamoxifen.

DOI: https://doi.org/10.7554/eLife.42049.007

Video 2. 3D rotation depiction of the morphology and

distribution of IBA1-immunolabelled retinal microglia

(green) in the OPL with respect to IB4-labeled retinal

vessels (white) in TG animals 2 weeks following the

administration of tamoxifen to induce TGFBR2 ablation

in retinal microglia.

DOI: https://doi.org/10.7554/eLife.42049.008
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Figure 3. Specific TGFBR2 ablation in retinal microglia induces abnormalities in microglial density, distribution, and morphology. (A) TG animals

administered tamoxifen (TMX) 3 weeks prior, relative to wild type (WT) mice and control mice, demonstrated that TGFBR2 ablation resulted in

increased microglial numbers and decreased ramification in the OPL. Scale bar = 100 mm. (B) Analysis of CD11b+ microglia numbers in each animal

(two retinas combined) using flow-cytometry showed a significant increase in microglial numbers in TG vs. control animals at 3- and 10 weeks post-TMX.

Figure 3 continued on next page
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changes are likely to be a direct consequence of the loss of TGFb signaling in retinal microglia as in

vitro administration of TGFb ligands (TGFB1, TGFB2) to cultured retinal microglia isolated from wild

type mice resulted in upregulation of sensome transcripts, Tmem119 and Siglech (Figure 4B). Down-

regulation of sensome gene expression with TGFBR2-ablation was also apparent on a protein level;

fluorescence associated with EYFP expression as driven by the Cx3cr1 promoter in TG mice, a surro-

gate marker for the level of Cx3cr1 expression, was significantly reduced by TGFBR2 ablation

(Figure 4C,D), which was also associated with decreased TMEM119 immunopositivity in Iba1+ micro-

oglia (Figure 4E,F). Microglial responses to endogenous signals include the provision of trophic sup-

port to nearby neurons in the form of growth factors, such as BDNF (Parkhurst et al., 2013) and

IGF1 (Lalancette-Hébert et al., 2007). We found that mRNA expression of growth factors, Bdnf and

Pdgfa, were decreased in retinal microglia following TGFBR2 ablation, while that for Igf1 was

unchanged (Figure 4—figure supplement 1). Accordingly, the addition of TGFb ligands also

increased the expression of these growth factors in isolated retinal microglia in culture. Together,

these observations indicated that TGFb-signaling to microglia sustains the microglial homeostatic

gene signature and promotes the ability of microglia to sense endogenous signals and exert trophic

influences in the retina.

As TGFb signaling has been associated with the induction of a quiescent microglial phenotype in

the brain (Abutbul et al., 2012), we evaluated if genetic ablation in microglia within the retina influ-

enced their activation status. We found that TGFBR2 ablation in microglia upregulated mRNA

expression of activation markers (MHCII (H2-Aa), Cd68, Cd74), chemotactic cytokines (Ccl2 and

Ccl8), and Apoe, a promoter of a proinflammatory, disease-associated microglial phenotype

(Kang et al., 2018; Krasemann et al., 2017) (Figure 5A). Cultured WT retinal microglia demon-

strated corresponding decreases in ApoE and Ccl2 mRNA levels when TGFb ligands were added in

vitro (Figure 5B). Immunohistochemical analysis of TG mice following tamoxifen administration

showed increased immunopositivity for markers of microglial activation, including CD68, MHCII

(Figure 5C–F), CD74, F4/80, and CD45 (Figure 5—figure supplement 1A–F) relative to control

mice. RT-PCR analysis of mRNA expression in the retina following microglial TGFBR2 ablation also

found progressively increasing expression of transcripts found to be enriched in macrophages over

that in homeostatic microglia (Saa3, Pf4, Cd5l) (Hickman et al., 2013) (Figure 5—figure supplement

1G). These data indicated that constitutive direct TGFb signaling is required for the general suppres-

sion of microglial activation.

TGFBR2-deficient microglia induce secondary Müller cell gliosis and
neuronal degeneration in the surrounding retina
We examined the consequences of microglia-specific TGFBR2 ablation to the structure and function

of the surrounding retina. Following tamoxifen administration in TG mice, we observed an emer-

gence of a radial pattern of GFAP immunopositivity beginning at 5 days which persisted at 10 weeks

Figure 3 continued

Manual counts of Iba1 +microglia numbers (C) and proliferating Ki67+, Iba1 +microglia (D) in retinal flat-mounts from animals 4 weeks post-TMX

demonstrated increases at the levels of the IPL, OPL, and subretinal space (SRS) in TG vs. control retina. (E) TGFBR2-ablated microglia 4 weeks post-

TMX showed reduced process ramification and decreased dendritic area (as highlighted in outlines of individual microglial dendritic arbors). TGFBR2-

ablated microglia demonstrated branched morphologies (example shown in yellow box, expanded in inset) that showed close adherent contact with

IB4-labelled (red) retinal vessels (arrows indicating points of contact). Scale bar = 100 mm. Morphological analysis of individual microglia showed

significant decreases in the number of branch points (F) and in the areas of individual arbors (G) of microglia in both IPL and OPL in TGFBR2-ablated

microglia. Despite having increased numbers of total microglia, TMX-treated TG retinas have a greater proportion of retinal area not directly occupied

by microglial processes (H, areas highlighted in blue), indicating decreased microglial coverage. Graphical data are presented as means ± SEM; p

values are from unpaired t-test with Welch’s correction, data points in (C), (D), and (H) represent four individual imaging fields from three animals in

each group, those in (F) and (G) represent 16 individual microglia cells from four animals in each group).

DOI: https://doi.org/10.7554/eLife.42049.004

The following figure supplements are available for figure 3:

Figure supplement 1. Specific TGFBR2 ablation in retinal microglia induces alterations in microglial morphology in the IPL and SRS.

DOI: https://doi.org/10.7554/eLife.42049.005

Figure supplement 2. TGFBR2 ablation in retinal microglia induces expression of CD206, a marker associated with perivascular macrophages.

DOI: https://doi.org/10.7554/eLife.42049.006
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Figure 4. Constitutive expression of microglial ‘sensome’ genes are downregulated upon TGFBR2 ablation in

retinal microglia. (A) Retinal microglia from control and TG mice were isolated by flow-cytometry 2 weeks

following tamoxifen (TMX) administration and mRNA levels of microglial ‘sensome’ genes compared using qPCR.

mRNA levels of Cx3cr1, P2yr12, Tmem119, and Siglech were all significantly decreased in microglia from TG vs.

control mice. (B) Microglia from the retinas of WT mice were cultured and exposed to media containing TGFB1 (10

or 20 ng/ml), or TGFB2 (10 ng/ml) (media containing 10 ng/ml of BSA served as a control), and mRNA levels of

microglial ‘sensome’ genes compared following 24 hr of exposure. mRNA levels of Tmem119 and Siglech were

increased by TGFBR2 ligands (TGFB1 or TGFB2), indicating positive regulation of microglial ‘sensome’ genes via

TGFBR2-mediated signaling. (C, D) As TG animals contained an IRES-EYFP cassette 3’ to CreERT recombinase in

the Cx3cr1 locus, EYFP expression, as regulated by the Cx3cr1 promoter, could be constitutively detected in IBA1-

immunopositive retinal microglia in control animals. In TG animals at 3 weeks post-TMX, Cx3cr1-driven EYFP

fluorescence was diminished in Iba1+ microglia, indicating downregulation of Cx3cr1 promoter activity. (E, G)

Immunohistochemical analysis of TMEM119 showed strong colocalization with Iba1 in microglia of control animals

but decreased immunopositivity in TGFBR2-ablated microglia in TG animals. Scale bars = 100 mm. Graphical data

in (A), (B), (D) and (F) are presented as means ± SEM; p values in (A), (D), and (F) are from multiple t-tests, while

that in (B) are from 2-way ANOVA analysis with Sidak’s multiple comparisons test, * indicate p<0.05 for

comparisons relative to control, data points indicate individual biological repeats in (A) and (B), and four imaging

fields from three animals in each group in (D) and (F).

DOI: https://doi.org/10.7554/eLife.42049.009

The following figure supplement is available for figure 4:

Figure supplement 1. Expression of growth factors genes are downregulated in microglia upon TGFBR2 ablation.

DOI: https://doi.org/10.7554/eLife.42049.010
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Figure 5. Expression of genes associated with microglial activation are upregulated on TGFBR2 ablation in retinal

microglia. (A) Retinal microglia from control and TG mice were isolated by flow-cytometry 2 weeks following

tamoxifen (TMX) administration and mRNA levels of genes associated with microglial activation and inflammatory

chemokines were analyzed and compared using qPCR. mRNA levels for H2-Aa (MHCII), Cd68, Cd74, Apoe, Ccl2,

and CCl8 were all significantly increased in microglia from TG vs. control mice. (B) Microglia from the retinas of

WT mice were cultured and exposed to media containing TGFB1 (10 or 20 ng/ml), or TGFB2 (10 ng/ml) (media

containing 10 ng/ml of BSA served as a control), and mRNA levels of microglial-expressed genes compared

following 24 hr of exposure. mRNA levels of Apoe and Ccl2 were decreased by TGFBR2 ligands (TGFB1 or

TGFB2), indicating negative regulation of microglial activation genes via TGFBR2-mediated signaling.

Immunohistochemical analysis of control vs. TG microglia in retinal flat-mounts showed prominent and significant

upregulation of activation markers CD68 (C, D) and MHCII (E, F) in Iba1+ microglia in both the IPL and OPL. Scale

bars = 100 mm. (Graphical data in (A), (B), (D) and (F) are presented as means ± SEM; p values in (A), (D), and (F)

are from multiple t-tests, while that in (B) are from 2-way ANOVA analysis with Sidak’s multiple comparisons test, *

indicate p<0.05 for comparisons to control, data points indicate individual biological repeats in (A) and (B), and

four imaging fields from 3 to 4 animals in each group in (D) and (F)).

DOI: https://doi.org/10.7554/eLife.42049.011

The following figure supplement is available for figure 5:

Figure supplement 1. Specific TGFBR2 ablation in microglia induces expression of markers of microglial

activation.

Figure 5 continued on next page
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(Figure 2) that colocalized with glutamine synthetase (GS)-immunopositive Müller cells processes

(Figure 6A). GFAP mRNA levels in the retina were also increased at 2 weeks following TGFBR2 abla-

tion and persistent at 8 weeks (Figure 6B). Also, a progressive upregulation of mRNA levels for

genes associated with neurotoxic A1 astrocytic gliosis (Liddelow et al., 2017) was induced, while

those for genes associated with the neuroprotective form of A2 gliosis were relatively unchanged

Figure 5 continued

DOI: https://doi.org/10.7554/eLife.42049.012

Figure 6. TGFBR2 ablation in retinal microglia induces Müller cell gliosis in the retina. (A) Immunohistochemical

analysis demonstrates upregulation of immunopositivity to GFAP 3 weeks post-TMX in TG animals relative to

control animals. GFAP immunopositivity was localized to glutamine synthetase (GS)-labeled Müller cell processes,

indicating the induction of Müller cell gliosis. Scale bar = 50 mm. (B) qPCR analysis of retinas isolated from control

and TG animals 2 and 8 weeks post-TMX demonstrates a significant upregulation of GFAP mRNA expression

following TGFBR2 ablation in retinal microglia. Graphical data are presented as means ± SEM; p values are from

one-way analysis of variance (ANOVA) and Sidak’s multiple comparison test, n = 3 animals of mixed sex in each

group.(C) RT-PCR analysis of retinal expression of genes associated with A1- and A2-specific astrocytic gliosis

following microglial TGFBR2 ablation found progressive upregulation of A1-associated transcripts relative to

control, while A2-associated transcripts were relatively unchanged (numbers indicate means, *, **, *** indicate p

values < 0.05,<0.01,<0.001 respectively, 2-way ANOVA analysis with Sidak’s multiple comparisons test, data from 3

to 4 animals in each group.).

DOI: https://doi.org/10.7554/eLife.42049.013
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(Figure 6C). These observations indicate that microglial transformation induced by TGFBR2 ablation

led to a rapid and durable induction of gliotic changes in surrounding Müller cells that resemble

reactive A1 astrocytic gliosis characterized in the brain under conditions of neurodegeneration and

aging (Clarke et al., 2018; Liddelow et al., 2017).

As chronic proinflammatory microglial activation in the retina has been associated with neuronal

degeneration (Langmann, 2007), we investigated if microglial alterations following TGFBR2 ablation

resulted in deleterious changes in retinal neurons. Using in vivo optical coherence tomography

(OCT) imaging we found total retinal thickness in TG mice decreased progressively with time follow-

ing tamoxifen administration, falling to 95% of controls at 3 weeks and to 80% at 10 weeks

(Figure 7A,B). These changes were contributed to by decreases in retinal thickness in the inner, as

well as in the outer retina. Quantitative assessment of the thickness of retinal laminae from histologi-

cal retinal sections also showed significant decreases in inner and outer nuclear layers, as well as the

inner and outer plexiform layers (Figure 7C,D). Analysis in flat-mounted retinal samples demon-

strated significant decreases in the density of BRN3A-immunopositive retinal ganglion cells and

cone arrestin-positive cone photoreceptors (Figure 7—figure supplement 1). These changes were

correlated with the appearance of apoptotic TUNEL +nuclei in all retinal nuclear layers, indicating an

induction of neuronal apoptosis (Figure 7E,F). Assessment of retinal function using electroretinogra-

phy (ERG) revealed that the amplitudes of dark-adapted, rod photoreceptor-dominant responses

were significantly reduced in TG vs. control animals, with b-wave amplitudes significantly more

reduced than a-wave amplitudes (Figure 7G). For light-adapted, cone photoreceptor-mediated

responses, only b-wave amplitudes were significantly reduced, while a-wave amplitudes were

unchanged (Figure 7H). Overall, significant decreases in the b-to-a amplitude ratios were observed

for both dark- and light-adapted responses, indicating that ablation of TGFBR2 in retinal microglia

resulted in some measure of rod photoreceptor dysfunction and also a loss of synaptic transmission

in both rod and cone photoreceptors, as previously described for the ablation of microglia in the

adult retina (Wang et al., 2016). Taken together, the physiological switch of retinal microglia from a

homeostatic mode to a more activated mode upon the loss of microglia TGFb signaling, is likely

causally associated with a loss of microglial support, a dysregulation of inflammatory responses

resulting in gliotic changes, and the induction of neuronal and synaptic degeneration.

Molecular pathways underlying retinal changes induced by microglial
TGFBR2 ablation
To further investigate the nature of molecular pathways underlying retinal changes following micro-

glial TGFBR2 ablation, we profiled the mRNA expression levels of 547 immunology-associated genes

using targeted multiplex analysis (nCounter, Nanostring). We compared expression in retinas iso-

lated from 4 groups of animals: two groups of control animals with and without tamoxifen adminis-

tration, and two groups of TG animals administered tamoxifen for either 2 or 8 weeks. Hierarchical

clustering revealed similar mRNA profiles between control animals with or without tamoxifen admin-

istration, indicating that tamoxifen per se did not exert a major effect on inflammatory retinal gene

expression (Figure 8A), while tamoxifen-administered TG animals showed significant differences

from control animals. Significantly upregulated genes (>2 fold increase in expression, p<0.05) follow-

ing either 2 or 8 weeks of tamoxifen administration in TG animals included: (1) markers of microglial

activation, such as Cd74, H2-Aa (MHCII), Cd163, Cd40, (2) proinflammatory cytokines, such as Ccl2,

Ccl4, Ccl12, and Ccl8, (3) complement components, such as C4a and C3, (4) regulator of inflamma-

tory responses, such as FcgR receptors and Casp1 (Figure 8B). Early downregulation of the micro-

glial sensome gene Cx3cr1 was also detected at 2 weeks. Gene ontology (GO) analysis of

differentially expressed genes revealed the differential involvement of pathways in neuroinflamma-

tory signaling and nuclear factor of activated T-cells (NFAT)-mediated signaling, which has been

implicated in the regulation of microglial activation (Nagamoto-Combs and Combs,

2010) (Figure 8C). Network analysis indicated that the differentially expressed genes associated

with microglial TGFBR2 ablation related to various aspects of cell function including (1) homeostasis

of leukocytes, (2) inflammatory response, (3) cytotoxicity, and (4) activation, which may be potentially

regulated by interferon-a, interferon-g , IL1b signaling, and NFKB-regulated transcription (Figure 8—

figure supplement 1).
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Figure 7. TGFBR2 ablation in retinal microglia induces degenerative changes in the retina. (A, B) In vivo evaluation of retinal structure by optical

coherence tomography (OCT) in control animals and in TG animals 3 and 10 weeks following tamoxifen (TMX)-administration showed a preserved

lamination in TG animals (insets at higher magnification in yellow boxes) but a progressive and significant reduction in the total retinal thickness relative

to controls. Scale bar = 300 mm. Significant reductions in overall thickness were contributed to by reductions in both the inner (measured from vitreal

Figure 7 continued on next page
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TGBR2 ablation in microglia does not affect the normal structure of
retinal blood vessels but promotes pathological choroidal
neovascularization
As TGFBR2 ablation in the entire retina at an early age (Braunger et al., 2015) or specifically in reti-

nal endothelial cells (Allinson et al., 2012; Schlecht et al., 2017) resulted in abnormal development

and structure of retinal blood vessels, we investigated whether TGFBR2 ablation specifically in adult

retinal microglia may result in similar effects. We found that 12 weeks following tamoxifen adminis-

tration in TG mice, despite increases in the expression of inflammatory genes in the retina and the

close adherence of deramified microglia to retinal vessels, the blood-retina barrier on fluorescein

angiography remained relatively intact, with no obvious vascular leakage or changes in overall retinal

perfusion (Figure 9A). In the absence of additional injury, microglial TGFBR2 ablation did not result

in histological abnormalities in retinal vascular structure; the arrangement of retinal endothelial cells

(marked by CD31 labeling and IB4 staining) and pericytes (marked by NG2 labeling) were similar to

that in controls (Figure 9B), and lacked signs of pericyte and endothelial cell loss with spontaneous

neovascularization previously described for TGFBR2 ablation in retinal endothelial cells

(Allinson et al., 2012; Schlecht et al., 2017). However, when we induced choroidal neovasculariza-

tion (CNV) using a laser injury model (Campos et al., 2006) and compared the neovascular pathol-

ogy in tamoxifen-administered control and TG mice, we observed in TG mice an increased number

of Iba1+ microglia/macrophages recruited to the site of laser injury, which was associated with a

larger RPE layer defect and an increased size of the CNV complex (Figure 9C-F) . This indicated that

TGFBR2 loss in microglia, while not inducing vascular change on its own, increased microglia recruit-

ment to retinal injury and promoted CNV growth at the site of microglial aggregation. This data indi-

cates that while microglial TGFBR2 expression was dispensable for the maintenance of normal

retinal vasculature, microglia lacking TGFb signaling can transition to phenotypes that can potentiate

pathological neovascularization in the presence of inducing factors.

Discussion
TGFb signaling exerts pleiotropic effects in various tissues that mediate a broad range of regulatory

influences on cell survival and inflammation (Fabregat et al., 2014; Travis and Sheppard, 2014). In

the retina, TGFb signaling is constitutively operational under healthy conditions, regulating the main-

tenance of normal retinal structure and function. TGFb ligands, TGFb1, TGFb2, and TGFb3, are

expressed by multiple retinal cell types, including different classes of retinal neurons, endothelial

cells, RPE cells, and retinal microglia (Anderson et al., 1995; Close et al., 2005; Lutty et al., 1993).

In particular, Tgfb2 and Tgfb3 mRNA have been detected in amacrine, bipolar, and retinal ganglion

cells (Siegert et al., 2012), and TGFB2 protein has been localized to photoreceptors (Lutty et al.,

1991). TGFb receptors are also broadly expressed in different retinal cell types (Obata et al., 1999);

Figure 7 continued

surface to the outer plexiform layer) and the outer retinal layers (measured from the outer plexiform layer to the apical surface of the RPE layer) (p

values are from 1-way ANOVA analysis with Tukey’s multiple comparisons test, data points are from 6 eyes of 3 animals). (C, D) Histological analysis of

retinal lamina thicknesses in paraffin-embedded sections show significant decreases in the thickness of the inner plexiform layer (IPL), inner nuclear layer

(ONL), outer plexiform layer (OPL), and outer nuclear layer (ONL) in TG animals 3 weeks post-TMX relative to controls (p values are from unpaired

t-tests with Welch’s correction, data points are from 3 sections from four animals). Scale bar = 50 mm. (E, F) Evaluation for apoptotic retinal cells using

TUNEL labeling demonstrated the emergence of apoptotic cells in both the INL and ONL in TG retinas 10 weeks post-TMX. (p values are from

unpaired t-tests with Welch’s correction, data points are from 3 sections from four animals). Scale bar = 50 mm. (G, H) Comparison of

electroretinographic (ERG) responses between control vs. TG animals 10 weeks post-TMX demonstrated in dark-adapted responses (G) a small but

significant decrease in a-wave amplitude and a marked decrease in b-wave amplitudes in TG animals. Light-adapted responses (H) were similar for

a-wave amplitude but significantly decreased in b-wave amplitude. The b-to-a amplitude ratios were significantly decreased in TG animals in both dark-

and light-adapted responses for a range of flash intensities (p values are from 2-way ANOVA analysis, data points are both eyes of 8 control and 8 TG

animals).

DOI: https://doi.org/10.7554/eLife.42049.014

The following figure supplement is available for figure 7:

Figure supplement 1. TGFBR2 ablation in retinal microglia induces degenerative loss of retinal neurons.

DOI: https://doi.org/10.7554/eLife.42049.015
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Figure 8. Changes in the mRNA expression of immune regulated genes in the retina following microglial TGFBR2 ablation using Nanostring-based

profiling. Four groups of animals (n = 3 animals per group) were analyzed: (1) Control animals not administered tamoxifen, (2) Control animals

administered tamoxifen, (3) TG animals 2 weeks after tamoxifen administration, (4) TG animals 8 weeks after tamoxifen administration. (A) Hierarchical

clustering of differentially expressed genes showed separate clustering of control and TG animals administered tamoxifen. (B) Volcano plots showing

genes that were differentially expressed between control and TG animals administered tamoxifen at 2 and 8 weeks respectively. (C) Gene ontogeny

(GO) analysis using IPA demonstrated a number of canonical pathways that were differentially represented between control and TG animals

administered tamoxifen at 2 weeks reflecting the activation of neuroinflammatory pathways and pathways involved in immune cell activation and

maturation.

DOI: https://doi.org/10.7554/eLife.42049.016

Figure 8 continued on next page
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specifically, TGFBR2 is expressed in retinal microglia and endothelial cells as shown here. As evi-

denced by these complex expression patterns, TGFb-mediated interactions in the retina are diverse

and context-dependent; for example, constitutive TGFb signaling to endothelial cells maintains the

structural stability of the choroidal and retinal vascular circulation (Schlecht et al., 2017;

Walshe et al., 2009), while that to retinal ganglion neurons promotes their differentiation and sur-

vival (Braunger et al., 2013; Walshe et al., 2011). Specific control of TGFb signaling across these

disparate contexts may be enabled by the local nature of interactions, such as through direct cell-

cell contact, as well as through the agency of ‘milieu molecules’, such as LRRC33, which can influ-

ence localized and selective activation of TGFb in specific cell types (Qin et al., 2018).

In our study here, we investigated the specific regulatory influence of constitutive TGFb signaling

on microglia in the retina. In the healthy adult retina, microglia are spatially organized in regular,

non-overlapping, horizontal arrays concentrated within the synaptic plexiform layers (Santos et al.,

2008). This ordered organization of ramified cells, together with the dynamic motility of microglial

processes, provides for comprehensive spatial coverage and microglia-synapse contact in the IPL

and OPL (Lee et al., 2008), enabling the maintenance of retinal synapses; depletion of retinal micro-

glia results in progressive synaptic degeneration which can be rescued by microglial repopulation

(Wang et al., 2016; Zhang et al., 2018). Microglia distribution in the retina also shows laminar spec-

ificity, with the outer retina being uniformly devoid of microglia under healthy conditions. This exclu-

sion is functionally significant as the infiltration of microglia into the outer retina, which occurs in

aging (Xu et al., 2008) and photoreceptor injury (Ng and Streilein, 2001), is associated with delete-

rious changes to photoreceptors and RPE cells (Combadière et al., 2007; Ma et al., 2009). We

found in the current study that constitutive TGFb signaling to retinal microglia is necessary for the

maintenance of this overall organization, with retinal microglia demonstrating progressive disorgani-

zation in number, morphology, and distribution with TGFBR2 ablation. It is likely that TGFb signaling

can serve as a direct signal for microglial homeostasis; also, the induction of microglial ‘sensome’

gene products can enable microglia to orient themselves to environmental guidance cues. With

TGFBR2 ablation, the downregulation of key receptors such as Cx3cr1 and P2ry12 can render micro-

glia less responsive to CX3CL1, which regulates microglial activation and distribution (Carter and

Dick, 2004; Combadière et al., 2007), and to ATP which promotes microglial morphological ramifi-

cation and dynamic behavior (Fontainhas et al., 2011; Liang et al., 2009).

We found that this loss of microglial organization in the absence of TGFb signaling is highly con-

sequential to the function of the retina, such as in its electric response to light stimuli which sub-

serves vision. The induced loss in microglial ramification, which likely resulted in decreased

microglia-synapse contact, was associated with significant decrements of synaptic function in the

form of abnormal b-to-a wave ratios in ERG responses. The mechanisms underlying microglia-syn-

apse maintenance, while incompletely understood, have been related to local microglia-mediated

delivery of neurotrophic factors. For example, genetic ablation of microglia-specific BDNF expres-

sion in the brain inhibited learning-related synapse formation and decreased cognitive behavior

(Parkhurst et al., 2013). In support of these mechanisms, we observed that TGFBR2-ablation in reti-

nal microglia resulted in a downregulated Bdnf expression, while exogenous TGFb ligand stimulation

conversely increased it in cultured retinal microglia. TGFBR2 ablation in microglia also resulted in

abnormal microglial displacement into the subretinal space, akin to that seen with aging, suggesting

that aging-related decreases in microglial responses to TGFb (Rozovsky et al., 1998) may be a

mechanism contributing to the misdistribution of microglia in the senescent retina.

We observed that the loss of TGFb signaling in retinal microglia was also accompanied by the

induction of microglial proliferation, increased mRNA expression of microglial activation markers

(Cd68, Cd74), antigen presentation molecules (H2-Aa), proinflammatory cytokines (Ccl2, Ccl8), and

increased immunopositivity to microglial activation markers (CD68, MHCII, F4/80, CD74, CD45). As

also noted in TGFBR2-deficient brain microglia (Buttgereit et al., 2016; Lund et al., 2018a), these

Figure 8 continued

The following figure supplement is available for figure 8:

Figure supplement 1. Gene ontology analysis of differentially expressed retinal genes induced by microglial TGFBR2 ablation in functional networks.

DOI: https://doi.org/10.7554/eLife.42049.017
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Figure 9. TGFBR2 ablation in retinal microglia increases pathological choroidal neovascularization (CNV) in an in vivo laser injury model. (A) In vivo

evaluation for abnormalities in retinal vascular permeability using fluorescein angiography was performed in control and TG mice 12 weeks following

tamoxifen (TMX) administration beginning at the age of 2 months. No abnormal leakage or vascular structure were detected. (B) Immunohistochemical

analysis of endothelial cells (labeled with IB4 and an antibody to CD31) and retinal pericytes (labeled with an antibody to NG2) in retinal vasculature

showed normal morphologies and distributions following TGFBR2 ablation in TG mice 12 weeks post-TMX. Scale bar = 100 mm. (C) Control and TG

mice 3 weeks post-TMX were subjected to in vivo laser injury in a model of CNV formation. CNV complexes were analyzed in RPE flat-mounts using

immunohistochemistry 7 days after laser injury and compared. Scale bar = 200 mm. TGFBR2-ablated TG animals demonstrated a higher recruitment of

Iba1+ myeloid cells to the laser injury site (D), which was correlated with a larger laser lesion size (as labeled with phalloidin) (E) and a larger CNV area

(F). (p values are from unpaired t-tests with Welch’s correction, data points are from 40 lesions from six animals in each group).

DOI: https://doi.org/10.7554/eLife.42049.018
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changes indicated a transition of resident microglia from a homeostatic to a more proinflammatory

phenotype. Our experiments with cell-fate mapping and P2RY12-immunohistochemical analyses

indicated that this alteration was predominantly constituted by a transition in resident microglia; we

did not detect the infiltration of monocyte-derived macrophages, as was the case in comparable

experiments examining the brain (Lund et al., 2018a). The reasons for why monocytic infiltration did

not occur in this context are unclear and may be related to the absence of evident breakdown of the

blood-retinal barrier, despite increased microglial activation, and also to the absence of an empty

myeloid cell niche available to accommodate infiltrating monocytes (Lund et al., 2018b). It is possi-

ble that long-lived Cx3cr1-expressing perivascular macrophages resident within the retina may also

contribute to the transformed population, but this is likely a smaller contribution, owing to their

sparser numbers at baseline (Goldmann et al., 2016; Mendes-Jorge et al., 2009). We observed

that retinal microglia following tamoxifen administration gradually acquired immunopositivity for

CD206, a marker typically positive for perivascular macrophages. However, prominent proliferation

and migration of CD206+ perivascular macrophages present at baseline prior to TGFBR2 ablation

were not detected, indicating that true perivascular macrophages are unlikely to contribute substan-

tially to the final population of transformed cells (Figure 3—figure supplement 2).

We found that this altered microglial phenotype induced by TGFBR2 ablation perturbed the reg-

ulation of neuroinflammation in the retina, which is mediated in part by microglia-Müller cell interac-

tions (Portillo et al., 2017; Wang and Wong, 2014). We found evidence for widespread secondary

gliotic changes in Müller cells that were spatiotemporally-coincident with microglial changes. Inter-

estingly, these featured the selective upregulation of gliosis genes associated with neurotoxic reac-

tive A1 astrocytes (Liddelow et al., 2017), indicating that a neurotoxic influence from Müller cells

may be induced by TGFBR2-deficient microglia. These changes in Müller cells may additionally feed-

back onto nearby microglia via secreted signals to influence their activation (Wang et al., 2011;

Wang et al., 2014). In addition, we found that TGFBR2 ablation resulted in a significant upregula-

tion of Apoe in microglia, which has been linked with a reciprocal downregulation of TGFb signaling

in microglia, as well as an induction of a neurodegenerative microglial phenotype (Krasemann et al.,

2017), that is also observed in profiling studies of brain microglia in models of aging and Alzheimer’s

disease (Kang et al., 2018). Correspondingly, we found that retinal microglia and Müller cells

changes were accompanied by progressive retinal thinning and neuronal apoptosis, demonstrating

that a deficiency in TGFb-mediated microglial regulation results in dysregulated neuroinflammation

that increases the vulnerability of the retina to neurodegenerative changes.

In a study published following the submission of our manuscript, Zöller et al., (Zöller et al., 2018)

using a similar transgenic model, had induced the ablation of exon 2/3 of TGFBR2 in Cx3cr1-

expressing cells (Chytil et al., 2002) and described in the brain an upregulation of microglial activa-

tion markers, but had failed to detect alterations in microglial density, microglia-specific gene

expression or neuronal survival. This contrasts with our findings here and those in previous reports in

which TGFBR2 ablation in adult microglia resulted in increased microglial proliferation and numbers,

downregulation of microglia-specific genes such as Siglech, and the onset of behavioral phenotypes

of degeneration (Buttgereit et al., 2016; Lund et al., 2018a). In Zöller et al., the stability in the

expression of microglia-specific genes following TGFBR2 ablation may have arisen from experiments

in which mRNA profiling was performed on microglia that had been sorted as CD45low, which may

have selected against TGFBR2-ablated microglia (which upregulate CD45 expression) and selected

for the fraction of microglia that had not undergone gene recombination. The authors had assayed

for neurodegenerative changes using only counts of NeuN+ cortical neurons, a method that is less

sensitive than measures of neuronal apoptosis or assays of neuronal function for detecting neurode-

generative changes. Combined with findings in vitro demonstrating a requirement for TGF-b for the

expression of a microglia-specific gene signature, and those in vivo in showing that decreased TGF-b

signaling to microglia resulted in the downregulation of microglia-specific gene expression and neu-

rodegenerative changes (Butovsky et al., 2014; Qin et al., 2018), it is likely that microglia in the ret-

ina require constitutive TGF-b signaling to maintain a microglia-specific gene signature and to

prevent a transition to an activated phenotype that helps drive retinal neurodegeneration.

We found that in addition to regulating the homeostatic status of microglia, TGFb signaling was

also important in mediating injury-induced microglial responses in the retina. In a model of laser

injury of choroidal neovascularization, we found that an increased number of TGFBR2-deficient

microglia was recruited to the area of laser injury, which was associated with a greater area of RPE
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disruption and an increased size of pathological CNV. Previous studies have found an association

between CNV and recruited myeloid cells which can promote neovascularization by the expression

of pro-angiogenic factors and inflammatory cytokines (Crespo-Garcia et al., 2015; Li et al., 2017);

alterations in the polarization state of these myeloid cells were also influential in the extent of the

CNV formed (Kelly et al., 2007; Yang et al., 2016). In this context, our observations posit a poten-

tial mechanism by which TGFb signaling to microglia may regulate the level of chronic inflammation

in the aged retina in pathologically significant ways, particularly with respect to AMD. The mecha-

nism underlying the increased risk for AMD development in patients with polymorphisms associated

with Tgfbr1 (Fritsche et al., 2013) may relate to decreased levels of TGFb signaling from the retinal

environment to microglia in the AMD retinas, consequently shifting microglia from a homeostatic

physiological state to a pathological state (Figure 10). This results in altered interactions between

microglia and Müller cell and neurons, increasing the retina’s vulnerability to synaptic and neuronal

degeneration and exacerbating the severity of CNV development in response to pathogenic trig-

gers, phenotypes that are both hallmarks of advanced AMD. Pathogenic mechanisms related to

polymorphisms in Htra1, another gene associated with AMD risk, have also been related to altera-

tions in the ability of HTRA1 to modulate TGFb signaling in microglia (Friedrich et al., 2015). Also,

in an amyloid-b-induced rodent model for AMD, intraocular delivery of exogenous TGFb1 resulted in

decreased markers of neuronal apoptosis (Fisichella et al., 2016), prompting proposals of modula-

tion of TGFb signaling as a potential AMD therapeutic strategy (Platania et al., 2017). Analogously,

delivery of TGFb ligands in rodent models of multiple sclerosis (De Feo et al., 2017) and hemor-

rhagic stroke (Taylor et al., 2017) has been found to facilitate immunomodulation of brain

Figure 10. Schematic showing the role of TGFb signaling in the regulation of retinal microglial physiology and the

consequences of altered TGFb signaling in the retina. TGFb ligands, expressed constitutively by retinal neurons

(TGFb�2 and �3) and retinal microglia (TGFb�1), signal to TGFBR2-expressing microglia to promote their

homeostatic phenotype and to suppress a pathologic phenotype. Conversion between these phenotypes, which

are associated with corresponding patterns of gene expression, results in a loss of microglial organization and

microglial trophic functions and increased pathological neurodegeneration and neovascularization.

DOI: https://doi.org/10.7554/eLife.42049.019
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microglia/macrophages to favor structural and functional neuronal recovery. As such, altered TGFb

signaling may constitute an important mechanism underlying the contribution of microglia to AMD

pathobiology (Guillonneau et al., 2017).

Collectively, these results demonstrate that constitutive TGFb signaling in retinal microglia is nec-

essary in maintaining the organization of microglia in the healthy retina and is indispensable for their

homeostatic function in synapse maintenance. This signaling is also necessary for the regulation of

the neuroinflammatory status within the retina as insufficient levels results in aberrant microglial acti-

vation that drives chronic inflammatory changes, leading to a transformation of Muller cells to a mal-

adaptive gliotic form, and an increased vulnerability of retinal neurons to neurodegeneration. TGFb

signaling also negatively regulates microglial responses to injury triggers without which exacerbated

pathological choroidal neovascularization results. This combination of AMD-related phenotypes that

involve chronic inflammation, neuronal degeneration, and pathological choroidal neovascularization,

together with the genetic risk for AMD in TGFBR1 polymorphisms, implicate TGFb regulation of reti-

nal microglia as an influential contributing pathologic mechanism in AMD.

Materials and methods

Experimental animals
Experiments were conducted according to protocols approved by the National Eye Institute Animal

Care and Use Committee and adhered to the Association for Research in Vision and Ophthalmology

(ARVO) Statement for the use of animals in ophthalmic and vision research. Animals were housed in

a National Institutes of Health animal facility under a 12 hr light/dark cycle with food ad libitum.

Transgenic mice in which the Cx3cr1 gene was replaced by a sequence encoding Cre recombinase

with a tamoxifen-dependent estrogen ligand-binding domain and a downstream sequence for IRES-

EYFP (Cx3cr1 CreER mice, provided by Dr. Wen-Biao Gan, Skirball Institute) (Parkhurst et al., 2013)

were crossed with mice possessing loxP sites that flank exon 4 of the transforming growth factor,

beta receptor II (Tgfbr2) (Tgfbr2flox/flox, The Jackson Laboratory, #012603) (Levéen et al., 2002) to

generate Cx3cr1CreER/+,Tgfbr2flox/flox mice (termed TG mice) which enabled the inducible deletion of

exon 4 of Tgfbr2. EYFP expression, as driven by the Cx3cr1 promoter, was used as a marker for

Cx3cr1 expression. Transgenic mice in which one copy of the Cx3cr1 gene was replaced by sequen-

ces coding for green fluorescent protein (GFP) (designated Cx3cr1+/GFP mice, The Jackson Labora-

tory, #005582) (Jung et al., 2000) were used to label microglia. Cx3cr1CreER mice were crossed with

Ai14 mice harboring a loxP-flanked STOP cassette preventing the transcription of a CAG promoter-

driven red fluorescent protein variant (tdTomato) inserted into the Gt(ROSA)26Sor locus

(Madisen et al., 2010) (The Jackson Laboratory, #007914) constituted an alternative system to label

microglia. These mice were also crossed with Cx3cr1CreER/+,Tgfbr2flox/flox mice to generate Cx3cr1
CreER/+,Tgfbr2flox/flox, Ai14/+ mice to enable cell-fate mapping of microglia vs. monocytes as previ-

ously performed (Ma et al., 2017). Cre recombinase activity was induced by tamoxifen administered

by oral gavage (10 mg dose twice one day apart). Tgfbr2flox/flox mice (termed ‘Control’ mice) which

were administered tamoxifen on the same regimen served as controls to tamoxifen-administered TG

mice. All experimental animals were genotyped by gene sequencing to confirm the absence of the

rd8 mutation (Mattapallil et al., 2012).

Immunohistochemical and TUNEL analysis of retinal tissue
Mice were euthanized by CO2 inhalation and their eyes were removed. Enucleated eyes were dis-

sected to form posterior segment eye-cups and fixed in 4% paraformaldehyde in phosphate buffer

(PB) for 2–4 hr at 4˚C. Eyecups were either cryosectioned (Leica CM3050S) or dissected to form reti-

nal flat-mounts. Flat-mounted retinas were blocked for 1 hr in blocking buffer containing 10% normal

donkey serum and 0.5% Triton X-100 in PBS at room temperature. Primary antibodies, which

included IBA1 (1:500, Wako, #019–19741), TGFBR2 (1:100, R and D, #AF-241), CD31 (1:100, Bio-

Rad, #MCA2388), GFAP (1:200, Invitrogen, #13–0300), TMEM119 (1:100, Abcam, #ab209064), CD68

(1:200, Biorad, #MCA1957), MHCII (I-A/I-E, 1:100, BD Bioscience, #556999), NG2 (1:200, Millipore,

#05–710), CD74 (1:100, BD Biosciences, #555318), F4/80 (1:100, Bio-Rad, #MCA497), CD45 (1:100,

Bio-Rad, #MCA1388), glutamine synthetase (1:200, Millipore, #MAB302), BRN3A (1:100, Santa Cruz,

#SC31984), cone arrestin (1:200, Millipore, #AB15282), choline acetyltransferase (ChAT) (1:100,
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Millipore, #AB144p), PKCa (1:200, Sigma-Aldrich, #p4334), CCL8 (1:100, Bio-Rad, #AAM62B), Ki67

(1:50, eBioscience, #50-5698-82), P2RY12 (1:100, ThermoFisher, #PA5-77671 and Sigma,

#HPA014518), CD206 (1:100, BioRad, #MCA2235GA), were diluted in blocking buffer and applied

overnight for sections and flat-mounts at room temperature on a shaker. Experiments in which pri-

mary antibodies were omitted served as negative controls. After washing in 1 � PBST (0.2% Tween-

20 in PBS), retinal samples were incubated for 2 hr at room temperature with secondary antibodies

(AlexaFluor 488-, 568- or 633-conjugated anti-rabbit, mouse, rat or goat IgG) and DAPI (1:500;

Sigma-Aldrich) to label cell nuclei. Isolectin B4 (IB4), conjugated to AlexaFluor 568/647 (1:100, Life

Technologies), was used to label activated microglia and retinal vessels. Apoptosis of retinal cells

was assayed using a terminal deoxynucleotidyl transferase dUTP Nick End Labeling (TUNEL) assay

(in situ cell death detection kit, TMR red; Roche) according to the manufacturer’s specifications.

Stained retinal samples were imaged with confocal microscopy (Olympus FluoView 1000, or Zeiss

LSM 880). For analysis at high magnification, multiplane z-series were collected using 20 � or

40 � objective; each z-series spanned from vitreal surface to the outer plexiform layer (OPL) for reti-

nal flat-mounts, and over a depth of 20 mm for retinal sections, with each section spaced 1–2.5 mm

apart. Confocal image stacks were viewed and analyzed with FV100 Viewer Software (Olympus), Zen

software (Zeiss), and/or ImageJ (NIH).

Isolation of retinal microglia by flow cytometry
Enucleated globes were immersed in ice-cold Hank’s balanced salt solution (HBSS) and retinas were

isolated by dissection before transfer into 0.2% papain solution including glucose (1 mg/mL),

DNAse1 (100 U/mL; Worthington, Lakewood, NJ, USA), superoxide dismutase (SOD) (5 mg/mL;

Worthington), gentamycin (1 mL/mL; Sigma), and catalase (5 mg/mL; Sigma, St Louis, MO, USA) in

HBSS, and incubated at 8˚C for 45 min and then at 28˚C for 7 min. The digested tissue was dissoci-

ated by trituration and centrifuged at 150G for 5 min at 4˚C. The resulting cell pellet was resus-

pended with neutralization buffer containing glucose (2 mg/mL), DNAse1 (100 U/mL), SOD (5 mg/

mL), catalase (5 mg/mL), antipain (50 mg/mL Roche, Indianapolis, IN, USA), d-a-tocopheryl acetate

(10 mg/mL; Sigma), albumin (40 mg/mL), and gentamycin (1 mL/mL, Sigma), and again centrifuged

at 150 g for 5 min at 4˚C. The cellular pellet was resuspended in 100 mL of staining buffer (catalog

no. 554656, BD Pharmingen, San Diego, CA, USA) containing an Alexa Fluor 488-conjugated anti-

body to CD11b (1:50; catalog no. 53-0112-82, eBioscience, San Diego, CA, USA) and incubated for

20 min on ice. The cells were washed twice in 5 mL of staining buffer containing 2 mM ethylenedia-

minetetraacetic acid (EDTA) and suspended with 0.5 mL of staining buffer. Labeled retinal microglia

were isolated by fluorescence-activated cell sorting (FACS)(BD FACSAria II Flow Cytometer; BD,

Franklin Lakes, NJ, USA) at the NEI Flow Cytometry Core Facility. Sorted cells were collected into a

1.5 mL Eppendorf tube containing 200 mL of RNAlater solution (Ambion, AM7021) and stored at

�80˚C for subsequent RNA extraction.

Quantitative PCR analysis
Quantitative PCR analysis of genomic DNA and mRNA from FACS-sorted cells was performed. Total

RNA was extracted from sorted cells (RNeasy Mini kit, Qiagen, Valencia, CA, USA) and used to syn-

thesize cDNA with MessageBooster cDNA synthesis kit (Epicentre) following the manufacturer’s

instructions and analyzed with qPCR in CFX96 real time PCR system (BioRad). Levels of mRNA

expression were normalized to those in controls as determined using the comparative CT (2DDCT)

method. Ribosomal protein S13 (RPS13) was used as an internal control. Oligonucleotide primer

pairs used are listed in Supplementary file 1.

mRNA profiling in retinal tissue using Nanostring
mRNA expression in retinal tissue was profiled and analyzed using the Nanostring platform nCounter

Mouse Immunology panel containing 547 immunology-related mouse genes and 14 internal refer-

ence controls (Nanostring, Seattle, WA, #XT-CSO-MIM1-12). Briefly, the total RNA from a single ret-

ina was extracted using the RNeasy kit (Qiagen, Valencia, CA, USA). A total of 100 ng RNA in a

volume of 5 ml was then hybridized to the capture and reporter probe sets at 65˚C for 16 hr accord-

ing to the manufacturer’s instructions. The individual hybridization reactions were washed and eluted

per protocol at a NIH Core Facility (CCR Genomics Core, NCI, Bethesda, MD) and the data collected
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using the nCounter Digital Analyzer (Nanostring). Generated data was evaluated using internal QC

process and the resulting data were normalized with the geometric mean of the housekeeping

genes using the nSolver 4.0 and nCounter Advanced Analysis 2.0 software (Nanostring). Retina from

4 groups of animals, each comprising three biological repeats, were analyzed: control animals, not

administered tamoxifen (Control), control animals, administered tamoxifen for 2 weeks

(Control + TMX), TG animals, administered tamoxifen for 2 weeks (TG + TMX, 2 weeks), TG animals,

administered tamoxifen for 8 weeks (TG + TMX, 8 weeks). Differentially expressed genes between

two comparison groups were defined as those demonstrating a difference in expression level of fold

change >2, with a p-value of <0.05 (adjusted p-value, t- test). The unsupervised hierarchical cluster-

ing analysis was performed using JMP statistical software (V13, SAS, Cary, NC). Canonical pathway

analyses were performed using Ingenuity Pathway Analysis (IPA, Qiagen, Venlo, Netherlands).

Retinal microglia cell culture
Retinal microglia were isolated from postnatal day (P)20 C57BL/6J wild type mice and heterozygous

Cx3cr1+/GFP transgenic mice as previously described (Ma et al., 2013). Briefly, retinal cells were dis-

sociated by digestion in 2% papain, followed by trituration and centrifugation. Resuspended cells

were transferred into 75 cm2 flasks containing Dulbecco’s Modified Eagle Medium (DMEM): Nutrient

Mixture F-12 media with 10% fetal bovine serum (FBS) (Gibco, Carlsbad, CA, USA) and nonessential

amino acids solution (Sigma, St. Louis, MO, USA). Following overnight culture, the medium and any

floating cells were discarded and replaced with fresh medium. When the cultures approached conflu-

ence and cells begin to show detachment, the culture flasks were shaken gently to detach microglial

cells that were then subcultured in 6-well plates. When microglial cultures reached 60–70% conflu-

ence, they were exposed to TGFb ligands for 6 or 24 hr and then harvested for mRNA analysis.

In vivo optical coherence tomographic (OCT) imaging
Mice were anesthetized with intraperitoneal ketamine (90 mg/kg) and xylazine (8 mg/kg) and their

pupils were dilated. Retinal structure was assessed using an OCT imaging system (Bioptigen; InVivo-

Vue Software). Volume scans of 1.4 mm by 1.4 mm centered on the optic nerve (1000 A-scans/hori-

zontal B-scan, 33 horizontal B-scans, average of three frames per B-scan, each spaced 0.0424 mm

apart) were captured. Retinal thicknesses in each quadrant of a circular grid of diameter 1.2 mm

were measured using the "measure" tool in the manufacturer’s software. Total retinal thickness,

measured from the nerve fiber layer to the retinal pigment epithelium (RPE) layer, and outer retinal

thickness, measured from the outer plexiform layer to the inner surface of the RPE layer, were

obtained. Inner retinal thickness was computed as the difference between total retinal thickness and

outer retinal thickness.

Electroretinographic (ERG) analysis
ERGs were recorded using an Espion E2 system (Diagnosys). Mice were anesthetized as described

above after dark adaptation overnight. Pupils were dilated and a drop of proparacaine hydrochlo-

ride (0.5%; Alcon) was applied on cornea for topical anesthesia. Flash ERG recordings were obtained

simultaneously from both eyes with gold wire loop electrodes, with the reference electrode placed

in the mouth and the ground subdermal electrode at the tail. ERG responses were obtained at

increasing light intensities over the ranges of 1 � 10�4 to 10 cd/s/m2 under dark-adapted conditions

and 0.3 to 100 cd/s/m2 under a rod-saturating background light. The stimulus interval between

flashes varied from 5 s at the lowest stimulus strengths to 60 s at the highest ones. Two to 10

responses were averaged depending on flash intensity. ERG signals were recorded with 0.3 Hz low-

frequency and 300 Hz high-frequency cutoffs sampled at 1 kHz. The a-wave amplitude was measured

from the baseline to the negative peak and the b-wave was measured from the a-wave trough to the

maximum positive peak. Statistical comparisons between tamoxifen-treated control and TG mice

were analyzed using a two-way ANOVA.

Image analysis
To analyze the total numbers of microglia in the retina, manual counts of Iba1+ cells were performed

over the entire retina in flat-mounted specimens. Microglial counts, as well as the proportion of

microglia that were Ki67+, were evaluated in the separate retinal lamina (IPL, OPL, and subretinal
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space) using high-magnification image stacks captured at consistent retinal regions of interest (ROIs)

positioned midway between the optic nerve and the retinal periphery. Morphological analysis of

microglia on the parameters of number of branch points/cell and area of dendritic field were per-

formed manually using Image J software (NIH). The intensity of immunohistochemical labeling was

assessed by quantifying the mean fluorescent intensity within each labeled microglial cell using

Image J software.

Fluorescein angiography
Mice were injected intraperitoneally with Fluorescein AK-FLUOR (100 mg/mL; Akorn) at 100 mg/g

(body weight). Fluorescein angiography (FA) of the retina was performed using a Phoenix Micron III

retinal imaging system (Phoenix Research Labs) at various times following fluorescein injection.

Bright-field and fluorescence images of the central fundus were captured during early and late tran-

sit phases.

In vivo laser model for choroidal neovascularization
Choroidal neovascularization was induced in vivo using a laser injury model as previously described

(Campos et al., 2006). Experimental animals were anesthetized with an intraperitoneal injection of

ketamine (90 mg/kg) and xylazine (8 mg/kg) and their pupils were dilated with 1% tropicamide

(Akorn Inc, Buffalo Grove, IL, USA) and 2.5% phenylephrine (Alcon Laboratories Inc, Fort Worth, TX,

USA). Corneal anesthesia was provided using topical 0.5% proparacaine (Alcon Laboratories Inc).

Laser injury was applied to the retina using a slit-lamp-mounted, 532 nm wavelength, photocoagula-

tion laser (Iridex, Mountain View, CA, USA) and a handheld focusing lens. Using laser settings to cre-

ate burns that ruptured Bruch’s membrane (power, 50 mW; duration, 100 ms; spot size, 100 mm),

four well-spaced laser burns were placed circumferentially approximately 375 mm from the optic

nerve. Animals were sacrificed 7 days after laser injury and the size of choroidal neovascularization

(CNV) complexes was evaluated in RPE-choroidal flat-mounts following immunohistochemical stain-

ing with DAPI, Iba1, Alex633-conjugated phalloidin (1:100), and Alex568-conjugated lectin IB4

(1:100). Microglial recruitment was evaluated by measuring the intensity of the Iba1+ signal, the area

of RPE cell disruption was determined using phalloidin labeling, and the area of CNV determined by

IB4 labeling and image analysis.
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