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Abstract

Multisite magnetic resonance imaging (MRI) is increasingly used in clinical research

and development. Measurement biases—caused by site differences in scanner/image-

acquisition protocols—negatively influence the reliability and reproducibility of

image-analysis methods. Harmonization can reduce bias and improve the reproduc-

ibility of multisite datasets. Herein, a traveling-subject (TS) dataset including

56 T1-weighted MRI scans of 20 healthy participants in three different MRI

procedures—20, 19, and 17 subjects in Procedures 1, 2, and 3, respectively—was con-

sidered to compare the reproducibility of TS-GLM, ComBat, and TS-ComBat harmo-

nization methods. The minimum participant count required for harmonization was

determined, and the Cohen's d between different MRI procedures was evaluated as a

measurement-bias indicator. The measurement-bias reduction realized with different

methods was evaluated by comparing test–retest scans for 20 healthy participants.

Moreover, the minimum subject count for harmonization was determined by compar-

ing test–retest datasets. The results revealed that TS-GLM and TS-ComBat reduced

measurement bias by up to 85 and 81.3%, respectively. Meanwhile, ComBat showed

a reduction of only 59.0%. At least 6 TSs were required to harmonize data obtained

from different MRI scanners, complying with the imaging protocol predetermined for

multisite investigations and operated with similar scan parameters. The results indi-

cate that TS-based harmonization outperforms ComBat for measurement-bias reduc-

tion and is optimal for MRI data in well-prepared multisite investigations. One
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drawback is the small sample size used, potentially limiting the applicability of Com-

Bat. Investigation on the number of subjects needed for a large-scale study is an

interesting future problem.

K E YWORD S

ComBat, FreeSurfer, harmonization, MRI, multisite, traveling subject

1 | INTRODUCTION

The archiving and sharing of large-scale clinical data from multisite

brain magnetic resonance imaging (MRI) studies have gained consider-

able interest due to their potential to elucidate disease characteristics

in the field of neuropsychiatric disorders. For example, the Global

Alzheimer's Association Interactive Network project (Toga, Neu,

Bhatt, Crawford, & Ashish, 2016), which aggregated data archives

from 53 neuroimaging studies, such as the Alzheimer's Disease Neu-

roimaging Initiative (Jack et al., 2008), Open Access Series of Imaging

Study (Marcus et al., 2007; Marcus, Fotenos, Csernansky, Morris, &

Buckner, 2010), and Australian Imaging, Biomarker, & Lifestyle Flag-

ship Study of Aging (Ellis et al., 2009), can be used to explore the data

of more than 500,000 subjects. Other large-scale multisite imaging

cohorts include the Human Connectome Project (HCP; Glasser

et al., 2013), Human Brain Project (Rose, 2014), and UK Biobank

(Sudlow et al., 2015). Multisite clinical research on MRI data has been

expanding worldwide in recent years. Multisite MRI data can cause

nonbiological measurement biases resulting from the differences in

the properties of MRI scanners and procedures. These differences

include scanner manufacturer, image-acquisition protocol, scanner

coil, and field strength differences. Each of these can cause unwanted

measurement biases that can negatively influence the reproducibility

of the results and the ability to detect disease-related changes (He,

Byge, & Kennedy, 2020; Koike et al., 2021; Ma et al., 2019).

In their initial multisite MRI research, Jack et al. (2008) standard-

ized imaging protocols across sites in the ADNI project to reduce the

effects of different imaging protocols on the MRI quality. Moreover,

previous researchers have attempted to correct measurement biases

using image pre-processing methods to treat raw MRI data. For

instance, Sled, Zijdenbos, and Evans (1998) proposed a method to rec-

tify the MRI-intensity inhomogeneity (also referred to as the “bias
field”) using the nonparametric nonuniformity intensity normalization

(N3) approach. Further, Tustison et al. (2010) proposed an improved

version of N3 referred to as Nick's N3 (N4). The N3 approach involves

built-in prepossessing for the FreeSurfer pipeline. Janke, Zhao, Cowin,

Galloway, and Doddrell (2004) developed a gradient nonlinearity cor-

rection software package called Gradunwarp to reduce the spatial-

distortion bias based on the spherical-harmonic expansion, and finally,

Maikusa et al. (2013) proposed a phantom-based distortion–

correction method. Gradunwarp has been adopted by the ADNI pro-

ject and HCP.

The aforementioned attempts were made to standardize imaging

protocols and image pre-processing, but the measurement bias could

not be eliminated (Beer et al., 2020). Therefore, sites were utilized as

covariates in a general linear model (GLM) using dummy variables in

previous studies (Fortin et al., 2017, 2018). However, this method is

limited in that the effects of individual subjects and sites cannot be

separated. Thus, the existing GLM methods eliminate biologically

meaningless and meaningful biases. Recently, several large-scale

investigations have considered the application of the meta-analytic

approach to multisite datasets (Koshiyama et al., 2020; Okada

et al., 2016; Van Erp et al., 2018). However, this approach is limited in

that (a) the publication bias, wherein negative results are less likely to

be published, reveals positive results in the original data to be com-

bined; (b) the quality of brain images and clinical assessments varies

significantly; (c) individual-based statistics cannot be obtained; and

(d) survey literature and/or records are missing.

ComBat is an empirical Bayesian-based harmonization method

that was originally designed for genomic microarray data (Johnson,

Li, & Rabinovic, 2007). Fortin et al. effectively harmonized fractional

anisotropy and mean diffusivity data from diffusion tensor imaging

using ComBat (Fortin et al., 2017) and estimated the cortical thickness

(Fortin et al., 2018) using ComBat to improve the statistical and

machine-learning classification power (Radua et al., 2020).

Nevertheless, site differences include measurement and sampling

biases. A sampling bias is a difference in biological information

(e.g., age, sex, and pathology) between sites and can affect MRI sig-

nals. Numerous subjects or sites are required to separate measure-

ment bias from sampling bias; however, most multisite MRI studies

have failed to perform this distinction because both bias types have

been characterized based on their respective sites (Yamashita

et al., 2019).

To eliminate the effects of measurement bias, Yamashita

et al. (2019) extended GLM harmonization using a TS dataset. The

machine and protocol availabilities for each site can be inferred from

TS data, and therefore, TS measurements facilitate advanced prepara-

tion for multisite projects. Thus, because TS data are free from sam-

pling bias, they can be considered to differentiate between

measurement and sampling biases. In addition, the TS-GLM harmoni-

zation method can correct measurement bias and improve the signal-

to-noise ratio of resting-state functional connectivity data (Yamashita

et al., 2019).

Limited research has been conducted on the reproducibility of

data obtained at different sites or by different scanners using the TS

method. Furthermore, no researchers have compared the reproduc-

ibility of harmonized variables using the test–retest reproducibility,

where only the sampling bias or number of subjects required for
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harmonization could be considered. A test–retest dataset provides

variables without measurement or sampling bias. Given that a TS

dataset requires many subjects and incurs high scanning and travel

costs, it would be useful to define the minimum number of subjects

required for harmonization.

In this study, we evaluated the performance of three harmoniza-

tion methods: TS-GLM, ComBat, and TS-ComBat (combination of TS

and ComBat) harmonization. ComBat is a convenient method because

it does not require additional scans and is adaptable to retrospective

data. TS-GLM, on the other hand, has limitations in that it can only be

applied to prospective data and has a high scanning cost (requires

traveling), but it can be superior to separate biological bias and mea-

surement bias (Yamashita et al., 2019). TS-ComBat is similar in princi-

ple. Therefore, a quantitative comparison of these methods in terms

of their ability to improve reproducibility will provide useful insights

to determine whether TS, which has a high imaging cost, should be

implemented.

We assessed the abilities of the three methods to reduce the

measurement bias and improve the reproducibility of T1-weighted

MRI scans for the same subject. Furthermore, by evaluating the differ-

ences between the test and retest results, the minimum number of

subjects required to achieve reproducibility was determined.

2 | MATERIALS AND METHODS

2.1 | TS and test–retest datasets

We evaluated the effects of scan-procedure differences on the struc-

tural characteristics of T1-weight brain images taken from 20 healthy

control participants. We used two 3-T scanners and three procedures

to acquire data (Table 1). In Procedure 1, a Philips Achieva with an

8-channel head coil was used; in Procedure 2, a Siemens Prisma with

a 64-channel head coil was used; and in Procedure 3, the same Sie-

mens Prisma with a 32-channel head coil was used. The protocols of

Procedures 1 and 2 were determined according to previous Japanese

multisite projects and had similar scan parameters (Koizumi

et al., 2016; Taschereau-Dumouchel et al., 2018; Yamada et al., 2017;

Yamashita et al., 2019; Yamashita, Hayasaka, Kawato, &

Imamizu, 2017). The protocol of Procedure 3 was the same as that

provided by the HCP (Glasser et al., 2013).

Because one subject was missing in Procedure 2 and three other

subjects were missing in Procedure 3, 56 measurements were per-

formed in total: 20, 19, and 17 measurements in Procedures 1, 2, and

3, respectively. The control participants included 7 women

and 13 men, with a mean [SD] age of 24.3 [6.56] years, mean [SD]

height of 168.1 [6.58] cm, and mean [SD] weight of 61.1 [10.4] kg at

the first measurement. The median duration of the three scans was

22 days (range = 0–448 days). More detailed information, that is, age,

sex, height, weight, and scan duration for each subject, can be found

in Table S1.

To compare the harmonization methods in terms of their test–

retest result reproducibility, we performed TS-independent scans of

40 images of 20 healthy participants (11 women and 9 men; mean

[SD] age of 15.4 [0.42] years, height of 163.3 [7.03] cm, and weight of

52.1 [7.29] kg) with Procedure 3, considering a median interval

of 2.5 days (range = 1–54 days) between successive scans. The pre-

liminary analysis results reveal the Cohen's d between the test and

retest datasets to be quite high for long intervals.

This study was approved by the Ethics Committee at the Univer-

sity of Tokyo (Approval No. 19-298), and all the participants provided

informed consent to participate in this study prior to performing the

initial measurement.

2.2 | Image pre-processing

To extract the cortical and subcortical volumes and cortical thickness,

we used FreeSurfer software (version 6.0) (Dale, Fischl, &

Sereno, 1999; Fischl, 2012; Fischl et al., 2002, 2004; Fischl &

TABLE 1 Scanner information and
demographics of participants

Procedure 1 Procedure 2 Procedure 3

Manufacturer PHILIPS SIEMENS SIEMENS

Scanner model Achieva Prisma Prisma

Head coil (ch) 8 64 32

Repetition time (ms) 7 1900 2,400

Echo time (ms) 3.17 2.53 2.22

In-plate resolution (mm2) 1.0 � 1.0 1.0 � 1.0 0.8 � 0.8

Matrix size 256 � 256 256 � 256 256 � 240

Slice thickness (mm) 1.2 1.2 0.8

Slice direction AP AP AP

Slice orientation Sagittal Sagittal Sagittal

Pulse sequence MPRAGE MPRAGE MPRAGE

Flip angle (�) 9 9 8

Number of participants 20 19 17
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Dale, 2000; Fischl, Sereno, & Dale, 1999) with a CentOS PC and the

“recon-all” pipeline with the default parameters. The FreeSurfer pipe-

line performs N3 (Sled et al., 1998) as part of the pre-processing to

minimize the effect of intensity inhomogeneity. We obtained the cor-

tical volume and thickness from the rh.aparc.a2009s.stats and lh.

aparc.a2009s.stats files, derived from “Destrieux Atlas,” and included

74 anatomical cortical regions in each hemisphere. For the subcortical

volume, we used the aseg.stats file, which included 41 subcortical

anatomical regions (the left-WM-hypointensities, right-WM-

hypointensities, left-non-WM-hypointensities, and right-non-WM-

hypointensities were excluded because their values were zero). The

cortical volume, cortical thickness, and subcortical volume were used

to assess the reduction in measurement bias using the three kinds of

harmonization.

2.3 | Harmonization methods

In this study, y(i, j, v) was the vth FreeSufer variable, that is, cortical

thickness, volume, and subcortical volume within the arbitrary ana-

tomical label for imaging procedure i for the jth subject; k was the

number of procedures; and n was the total number of traveling sub-

jects. The harmonization methods considered in this study are

described as follows.

2.3.1 | ComBat harmonization

ComBat is a tool that was initially developed to correct the batch effect

in genomics (Johnson et al., 2007) and has more recently been applied

to MRI datasets (Fortin et al., 2017, 2018). ComBat corrects a type of

multivariate dataset using an empirical Bayesian estimation approach

and can be used to analyze datasets obtained through different scan-

ning procedures. The ComBat methodology can be described as

y i, j,vð Þ¼ a vð ÞþXT i, jð Þβ vð Þþ γ i,vð Þþδ i,vð Þε i, j,vð Þ, ð1Þ

where, α(v) is the average anatomical volume at the reference site

within the vth anatomical variable, β(v) is the p � 1 vector of coeffi-

cients associated with the design matrix of biological covariates of

interest (age, sex, weight, and height in this study), X(i, j) is the design

matrix of the vth anatomical variable, and p is the number of biological

covariates. ε(i, j, v) is the error term, following a normal distribution with

a mean of zero and a variance of σ2(v). The terms γ(i, v) and δ(i, v) repre-

sent the additive and multiplicative site effects of procedure i on the

vth anatomical volume or thickness, respectively. In ComBat harmoni-

zation, an empirical Bayesian framework is used to estimate γ*(i, v) and

δ*(i, v). The final ComBat harmonized values can be expressed as

ycombat
i,j,vð Þ ¼

y i,j,vð Þ �ba vð Þ �X i,jð Þbβ vð Þ � γ�i,vð Þ
δ�iv

þba vð Þ þX i,jð Þbβ vð Þ, ð2Þ

where, bβ vð Þ and ba vð Þ represent estimated coefficients associated with

the biological covariates of interest and estimated population mean of

the vth anatomical variable.

2.3.2 | TS-GLM harmonization

The use of GLM is the most basic approach to remove the site effects.

We followed the TS-GLM harmonization method reported by Yama-

shita et al. (2019), which extends the GLM harmonization model using

a TS dataset. The TS-GLM harmonization model can be described as

follows:

y i, j,vð Þ¼XT
s i, jð Þβs vð ÞþXT

p i, jð Þβp vð Þþε i, j,vð Þ, ð3Þ

where, βp(v) represents the participant factor and Xp (i, j) is the n � 1

vector of the participant indicator. βs(v) represents the coefficient of

the site factor, namely, the measurement bias, and Xs (i, j) is the k � 1

vector of the site indicator. To estimate the respective parameters,

we calculated the inverse matrix for Xp (i, j) and Xs (i, j). In this study,

all the subjects were healthy and identical at each site; thus, the sam-

pling bias was not considered. However, the design matrix of the

GLM was rank-deficient; thus, we used the Moore–Penrose pseudo

inverse matrix as the “pinv” function in MATLAB (R2016b) to esti-

mate bβs vð Þ and bβp vð Þ. After estimating bβs vð Þ, the TS-GLM harmonized

anatomical volumes and thicknesses were set as follows:

yTS glm i, j,vð Þ¼ y i, j,vð Þ�XT
s i, jð Þbβs vð Þ : ð4Þ

2.3.3 | TS-ComBat harmonization

We also extended the ComBat harmonization model to a TS dataset.

Conventional ComBat estimates covariates β, such as age and gender,

to exclude individual effects from the measurement values, but in this

model, individual effects are estimated by the traveling subjects, as in

TS-GLM. This approach enables TS-ComBat to have full-control sam-

pling bias like TS-GLM.

TS-ComBat is defined as follows:

y i, j,vð Þ¼ α vð ÞþXp i, jð Þβp vð Þþ γ i,vð Þþδ i,vð Þε i, j,vð Þ: ð5Þ

Thus, the TS-ComBat harmonized volumes can be set as follows:

ycombat
i,j,vð Þ ¼

y i,j,vð Þ �ba vð Þ �Xp i,jð Þbβp vð Þ � γ�i,vð Þ
δ�iv

þba vð Þ þX i,jð Þbβ vð Þ: ð6Þ

ComBat, TS-GLM, and TS-ComBat all assume a normal distribution.

We used the Kolmogorov–Smirnov test (KS-test) for all input data to

check the guarantee of normality.
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2.4 | Evaluation metrics

To investigate and compare the reproducibility of the different proce-

dures before and after the implementation of these harmonization

methods, we computed the Cohen's d effect size of different MRI pro-

cedures as the metric of the measurement bias or reproducibility of

the anatomical variables—cortical volume/thickness and subcortical

volume—between the different procedures.

sc¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1s21þn2s22
n1þn2

s
,

Cohen0sd¼ x1�x2j j
sc

: ð7Þ

In the above expression, n1 and n2 denote the numbers of subjects in

groups 1 and 2, respectively, and x1 and x2 and s1 and s2 denote the

average and SD of each variable in groups 1 and 2, respectively. In this

study, Cohen's d was calculated between Procedures 1 and 2, 1 and

3, and 2 and 3 for each FreeSurfer variable, that is, cortical thickness, cor-

tical volume, and subcortical volume within the brain region. If there is no

difference between the procedures, Cohen's dmust equal zero.

2.5 | Statistical analyses

2.5.1 | Comparison of three harmonization
methods

To explore the effects of the harmonization methods on reproducibil-

ity, we employed a general linear mixed model (GLMM) to estimate

Cohen's d as a dependent variable, with the procedure and harmoni-

zation method as independent variables and the anatomical structures

as within-subject variables. In this manner, we investigate whether

each harmonization method improves the Cohen's d between Proce-

dures 1 and 2, 1 and 3, and 2 and 3 with respect to the corresponding

raw values. Furthermore, by comparison with the Cohen's d between

test and retest, we investigate whether each harmonization method

achieves the same reproducibility as the test–retest dataset. To assess

the potential differences in the associations between the dependent

and independent variables among the anatomical structures, we set a

random effect for the intercept of anatomical structures. The GLMMs

were estimated using the “lmer” function in the “lmerTest” package

for R, version 3.1.2. A p value <.05 was considered significant. The

Bonferroni correction for multiple comparisons to control the

familywise error (FWE) was used for post-hoc analyses (FWE-

corrected p = .05/3 = .0166).

Next, we tested the differences in Cohen's d between the TS

dataset (no harmonization, TS-GLM, ComBat, and TS-ComBat) and

the test–retest dataset using a two-sample t-test. The Bonferroni cor-

rection was also applied (FWE-corrected p = .05/4 = .0125).

To test the effect of scan duration on the harmonization, we

obtained the effect size, that is, Cohen's d, for cortical thickness and

cortical/subcortical volume across MRI procedures, and then tested

Cohen's d (dependent variable) across MRI procedure difference, as

scan duration as an independent variable and subject as a within-

subject factor, using a repeated-measures analysis of variance

(ANOVA).

2.5.2 | Minimum number of participants for TS
harmonization

We re-sampled s subjects from the all S TSs corresponding to all com-

binations (S � 1Cs) and calculated Cohen's d as a function of s, that is, d

(s) after ComBat, TS-GLM, and TS-ComBat harmonization. Subse-

quently, we performed a two-sample t-test to compare the values of

d(s) obtained for the test and retest scans. We defined the minimum

number of subjects required for TS as the minimum s for which the

null hypothesis of a difference from test–retest was rejected.

We performed a preliminary assessment to ensure that the all

sampled data followed a normal distribution in the KS-test. We

applied the Benjamini–Hochberg procedure to control the false dis-

covery rate (FDR) of a family of hypotheses (q < 0.05) because

Bonferroni correction is conservative and, therefore, could over-

estimate the required number of TSs.

3 | RESULTS

3.1 | Evaluation of three harmonization methods

The GLMM showed that all harmonization methods significantly

reduced Cohen's d across all the procedures (p < .001, Figure 1). Com-

Bat harmonization reduced the averaged Cohen's d for each

FreeSurfer variable, namely, the cortical thickness, cortical volume,

and subcortical volume, in the corresponding brain region by 59.0,

29.1, and 40.1% when comparing Procedures 1 and 2, 2 and 3, and

1 and 3, respectively. Similarly, TS-GLM and TS-ComBat reduced the

averaged Cohen's d by 85.0%, 50.0%, and 68.5% and 81.3%, 48.1%,

and 65.6% in the three above-mentioned comparisons, respectively.

Cohen's d before harmonization was significantly greater than the

test–retest difference. Meanwhile, Cohen's d after ComBat harmoni-

zation was significantly greater than the test–retest difference when

comparing Procedures 2 and 3 (0.187 [0.0191] vs. the test–retest

effect size, FWE-corrected p < .001) and Procedures 1 and 3, but no

significant difference was found when comparing Procedures 1 and

2. The TS-GLM and TS-ComBat harmonization methods did not differ

significantly from the test–retest reproducibility when comparing Pro-

cedures 2 and 3; the values of Cohen's d after TS-GLM and TS-

ComBat were significantly smaller than the test–retest value when

comparing Procedures 1 and 2 (FWE-corrected ps < .0001) and Proce-

dures 1 and 3 (FWE-corrected ps < .005).

Repeated measure ANOVA did not show significant main effect

of scan duration in Cohen's d for cortical thickness (F[1, 45] = 0.508,

p = .480) and subcortical/ cortical volume (F[1, 45] = 1.130,
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p = .293).The mean Cohen's d for the maximum scan duration

(448 days) was 0.01.

3.2 | Spatial distribution of the different
procedures

There was a trend toward a higher averaged Cohen's d in the medial

prefrontal cortex and inferior occipital cortex for both volume and

thickness; specifically, the right medial orbital sulcus has the largest

Cohen's d before harmonization (Figure 2). After ComBat harmoniza-

tion, the Cohen's d values corresponding to the volume and thickness

of the medial prefrontal cortex are reduced. However, they nonethe-

less exceed those observed in other regions. After applying the TS-

GLM and TS-ComBat harmonization methods, Cohen's d values were

lower in all the cortical and subcortical regions.

The spatial distributions of Cohen's d between Procedures 1 and

2, 1 and 3, and 2 and 3 are shown in Figures S1, S2, and S3, respec-

tively. Irrespective of the procedures, a high Cohen's d was consis-

tently observed around the medial prefrontal cortex before

harmonization, which was well corrected by TS-GLM and TS-Combat.

ComBat had a moderate effect on harmonization; in other words,

ComBat could not remove the strong site effect around the medial

frontal cortex when comparing Procedures 1 and 3 (Figure S2).

3.3 | Minimum number of participants required for
harmonization

After TS-GLM harmonization, Cohen's d between Procedures 1 and

2 was not significantly different from the test–retest difference when

the number of TSs was at least 6 (FDR-corrected p > .05). Thus, the

minimum number of subjects required was 6 in Procedure 1, which

involved different MRI scanners with a similar MRI protocol (SRPB)

(Figure 3a). Similarly, with TS-ComBat harmonization, the minimum

number of TSs was 13 in Procedure 1. Furthermore, the

minimum number of TSs was 12 for TS-GLM and 14 for TS-ComBat

in Procedure 2, which involved the same MRI scanner but different

MRI protocols, that is, SRPB and CRHD (Figure 3b). In addition, the

minimum number of TSs for TS-GLM was 19; however, the Cohen's

d value after TS-ComBat harmonization remained significantly higher

than the test–retest difference in Procedure 3, which involved differ-

ent MRI scanners and protocols. (Figure 3(c)). In contrast, ComBat har-

monization consistently showed significantly higher Cohen's d values

than the test–retest differences (FDR-corrected p < .05), regardless of

the scanning procedure.

4 | DISCUSSION

We compared the three harmonization methods with three measure-

ment procedures using the TS dataset, as well as a test–retest dataset.

Although considerable measurement bias was confirmed prior to har-

monization, the TS-based harmonization results obtained by applying

the TS-GLM and TS-ComBat approaches to the test and retest results

were observed to be comparable and, hence, reproducible. Because

the test–retest dataset did not have measurement bias, Cohen's d was

expected to be zero, but the actual results were different. We

expected additional factors to be present that could have affected the

reproducibility such as image analysis error, individual errors, and

measurement bias. The advantage of the TS-GLM and TS-ComBat

methods are that they can harmonize these factors without modeling;

therefore, these TS-based harmonization methods showed better

reproducibility in the test–retest case (Figure 1).

In contrast, ComBat harmonization yielded a Cohen's d higher

than the test–retest difference. These facts indicate that the biological

covariates used in this study were not sufficient to estimate individual

effects and that the measurement bias and individual effects could

not be separated.

When we focused on the spatial distribution of Cohen's d, a

greater measurement bias was found in the medial prefrontal cortex.

The results indicate that the measurement bias between the proce-

dures has a moderate effect size, irrespective of procedure differ-

ences and structural characteristics. Larger effect sizes were observed

F IGURE 1 Bee-swarm plots for Cohen's d values before and after harmonization. Cohen's d values were derived from comparison of
(a) Procedures 1 and 2, (b) Procedures 2 and 3, and (c) Procedures 1 and 3. The test–retest results have been plotted in all the subplots for
comparison. The colored line indicates Cohen's d of an arbitrary FreeSurfer's anatomical label between procedures
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F IGURE 3 Average Cohen's d according to number of re-sampling subjects. Cohen's d as a function of s, the number of subjects resampled,
from the comparison of (a) Procedure 1 and 2, (b) Procedures 2 and 3, and (c) Procedures 1 and 3

F IGURE 2 Averaged Cohen's d maps overlaid on aparc.a2009s + aseg.mgz file. The upper and lower rows show sagittal and coronal images,
respectively. The columns indicate raw, ComBat, TS-GLM, TS-ComBat, and test–retest results obtained using each harmonization method.
Cohen's d values were calculated from (a) the cortical and subcortical volumes and (b) the cortical thickness
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in the ventral and medial parts of the frontal cortex (i.e., medial pre-

frontal cortex). The results agree with those of previous studies; the

specific bias in this region coincides with the location of high geomet-

ric distortion (Li, Williams, Frisk, Arnold, & Smith, 1995; Maikusa

et al., 2013). According to Li et al. (1995), the boundary of the nasal

cavity below the medial prefrontal cortex induces strong geomatical

distortion (i.e., measurement bias) in these areas. Although harmoniza-

tion methods cannot provide information on these characteristics,

they can harmonize and statistically correct differences between scan-

ners without the need to know the details of these characteristics.

This is the advantage of TS-based harmonization methods.

We defined the minimum TS sample size for nonsignificance

between the harmonization and test–retest reproducibility. For TS-

GLM, it was 6 with different MRI scanners but similar protocols

(Procedures 1 and 2). TS-GLM required a minimum TS sample size of

12 and 19 when comparing Procedures 1 and 3 and Procedures 2 and

3, respectively. To the best of our knowledge, this study was the first

to compare the effectiveness of harmonization methods and to sug-

gest a sample-size requirement for TS-based harmonization. Further-

more, the procedure comparisons, in the decreasing order of

minimum TS sample sizes, were Procedures 1 versus 2, Procedures

2 versus 3, and Procedures 1 versus 3, which coincides with the result

presented in Section 3.1, that is, the procedure comparisons, in the

increasing order of reduction rates of Cohen's d after harmonization,

were Procedures 1 versus 2, Procedures 1 versus 3, and Procedures

2 versus 3.

The measurement bias could not be fully corrected when ComBat

harmonization was used, perhaps because ComBat harmonization

does not exhibit the ability to harmonize the test–retest dataset with

20 subjects or less. In contrast, both TS-GLM and TS-ComBat suc-

cessfully corrected the measurement bias, irrespective of procedural

and brain region differences. A previous multisite fMRI study revealed

the well-harmonized factors from a functional connectivity matrix

using TS-GLM harmonization (Yamashita et al., 2019), suggesting the

applicability of this method to the structural characteristics of

the brain.

Although TS-based harmonization methods have caused mea-

surement bias to decrease, considerable effort should be devoted

toward TS recruitment and scan-schedule preparation within a short

duration to obtain the TS dataset. Thus, determining the required

number of TSs will help minimize the use of resources. As observed,

although the highest number of subjects was required to compare

Procedures 1 and 3, that is, different MRI scanners and protocols, only

six TSs were required to compare Procedures 1 and 2, which involved

different MRI scanners but similar scan parameters predetermined for

a multisite investigation (Koizumi et al., 2016; Taschereau-Dumouchel

et al., 2018; Yamada et al., 2017; Yamashita et al., 2017, 2019). The

findings suggest that the required number of subjects varies

depending on the procedure, and the attempt to unify the parameters

highlights the importance of unifying imaging protocols when using

MRI data obtained from different vendors and MRI scanners in multi-

site studies. It is considered ideal to scan up to 20 TSs; however, the

operational costs increase with increasing site count, and it is difficult

for participants to travel to multiple sites. It is practical to change the

TS count depending on the differences between scanner configura-

tions. We believe that TS should be implementation for all scanner

vendors and MRI protocols to investigate the relation between the

minimal sample size and measurement bias. However, this is not real-

istic, because scanning traveling subjects incurs high cost. Therefore,

our study involved a minimal sample size and limited scenarios, that is,

two different scanners with similar imaging protocols (the SRPB pro-

tocol), different protocols on the same scanner (SRPB and CRHD

protocols), and different scanners and protocols. Our study provides

guidance on the minimum number of TSs for limited scenarios; in par-

ticular, it provides guidance for the scenario of different scanners with

similar protocols, which is similar to the scenario in a recent multi-site

imaging study. In addition, we do not have sufficient longitudinal data

to discuss whether the proposed harmonization methods are applica-

ble to longitudinal data; we would like to examine this possibility with

a new dataset in future work.

Van Erp et al. (2018) reported that, when compared with

healthy subjects, schizophrenic subjects had lower thickness in the

left and right cortices, with Cohen's d = �0.530 and �0.516, respec-

tively; bilateral fusiform, temporal (inferior, middle, and superior),

and left superior frontal gyri; right pars opercularis; and bilateral

insula. Therefore, it is necessary to reduce the measurement bias so

that it does not affect the size of the target disease. Our results

showed that the averaged Cohen's d (measurement bias) for whole

brain cortical thickness in all scenarios was 0.259 before harmoniza-

tion, which is approximately half the effect size for the above dis-

eases, and TS-GLM can reduce this value to 0.0710. We plan to

consider the number of TSs required for the assumed effect sizes

between different groups, such as disease and healthy control

groups.

Our study has some limitations. First, the datasets were used for

harmonization and validation. Ideally, independent TS validation

datasets should be utilized. Moreover, TS-based harmonization is a

method of estimating the measurement bias at the time of scanning,

and the TS-scanning intervals may affect the harmonization accuracy;

this tendency was not fully investigated in this study. In addition, we

verified ComBat harmonization for only 20 subjects, which may not

represent larger imaging studies, and the small sample size may have

prevented better ComBat estimations. A large-scale TS project is cur-

rently underway, and we hope to have more detailed validation and

analyses possible in future works.

Second, we only investigated the cortical thickness and volume

obtained from the FreeSurfer analysis. Although the initial TS-GLM

harmonization was confirmed using functional connectivity during a

resting state (Yamashita et al., 2019), it is possible that other

modalities—other MRI and positron-emission tomography imaging

sequences—exhibit different trends. Third, the dropout of the TSs

meant that there was an imbalance in number between the scanning

procedures. For example, the result that the optimal number of TSs

was 19 in the Section 3.3 was precisely the result of using 19 subjects

in Procedure 1 and 17 subjects in Procedure 3. This imbalance in the

TS count between procedures due to dropout has been identified and
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considered in similar extant studies. Lastly, we did not investigate

how much of the TS-scanning interval could be feasibly harmonized.

Next, our TS data have a wide range of scan durations, which

might have led to sampling bias caused by brain changes with nor-

mal aging. In this study, the minimum and maximum age of TSs were

20 and 40 years, respectively; brain changes due to aging are mini-

mal in this age group. Therefore, we believe that brain changes are

negligible, even if these scan durations were quite wide (maximum

of 448 days). Repeated measures ANOVA for cortical thickness and

subcortical/cortical volume did not show significant difference

between scan durations to intra-subject Cohen's d. In fact, intra-

subject Cohen's d was 0.01 at the maximum scan duration of

448 days.

Finally, there is risk that a harmonization method eliminates not

only measurement bias but also biological information; in other words,

it could cause a sampling bias. A harmonization method requires the

separation of sampling bias from measurement bias as well as verity.

However, in this study, sampling bias did not occur because the TSs

showed the same sampling bias across the sites. Therefore, we would

like to verify this risk using another dataset in future work.

In conclusion, our study showed that TS-based harmonization

methods, namely, TS GLM and TS-ComBat, outperform ComBat har-

monization. Furthermore, we demonstrated that at least six subjects

are required when the dataset is scanned using different scanners

with a similar scanning procedure. As a future endeavor, we intend to

undertake a large-scale TS project to explain and resolve such prob-

lems associated with TS harmonization as the TS-scanning interval

and validation of an independent test set.
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