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The aim of the present study is to apply simple ODEmodels in the area of modeling the spread of emerging infectious diseases and
show the importance of model selection in estimating parameters, the basic reproduction number, turning point, and final size. To
quantify the plausibility of each model, given the data and the set of four models including Logistic, Gompertz, Rosenzweg, and
Richards models, the Bayes factors are calculated and the precise estimates of the best fitted model parameters and key epidemic
characteristics have been obtained. In particular, for Ebola the basic reproduction numbers are 1.3522 (95% CI (1.3506, 1.3537)),
1.2101 (95% CI (1.2084, 1.2119)), 3.0234 (95% CI (2.6063, 3.4881)), and 1.9018 (95% CI (1.8565, 1.9478)), the turning points are
November 7,November 17, October 2, and November 3, 2014, and the final sizes until December 2015 are 25794 (95% CI (25630,
25958)), 3916 (95%CI (3865, 3967)), 9886 (95%CI (9740, 10031)), and 12633 (95%CI (12515, 12750)) forWest Africa, Guinea, Liberia,
and Sierra Leone, respectively. The main results confirm that model selection is crucial in evaluating and predicting the important
quantities describing the emerging infectious diseases, and arbitrarily picking a model without any consideration of alternatives is
problematic.

1. Introduction

Emerging and reemerging infectious diseases such as severe
acute respiratory syndrome (SARS) in 2003 [1, 2], novel
influenza (A/H1N1) pandemic in 2009 [3], and Ebola out-
break inWest Africa in 2014 significantly affect public health,
economic activity, and population movements. In particular,
the 2014 Ebola outbreak in West Africa represents the largest
outbreak of Ebola virus to date. Public health interventions
have been introduced in all affected countries and show
the great effects on the infection. However, the numbers of
infected cases from Ebola show a trend of bouncing back
after declining in February 2015. Those indicate that the
outbreak patterns of Ebola in West Africa become more and
more complex, and hence it is important to determine the
best model by employing mathematical models and model
selectionmethods, which can be used to estimate and predict
the characteristics of emerging infectious diseases.

Although susceptible-infective-removal (SIR) compart-
mental model is commonly used to describe the transmission

dynamics of an infectious disease, it cannot be used when
we consider only the cumulative infected population and
capture the temporal variations of an outbreak, such as the
turning point that is the point in time at which the rate of
accumulation changes from increasing to decreasing. Several
models have been proposed to estimate basic reproduction
number, turning point, and final size by cumulated cases;
some of them are based on purely empirical relationship,
while others have a theoretical basis and are realized by
differential equations. The simplest and commonly applied
model among all the infectious diseasemodels is the Richards
model [3–5]. By employing Richards model, Hsieh et al.
investigated the characteristics including basic reproduction
number, turning point, and final size for influenza such as
H1N1 [3], SARS [4], andDengue [5] by fitting Richardsmodel
to the reported cumulative cases.

The most common approach in infective disease data
analyses with simply ODEmodel is to select one model, usu-
ally Richards model, based on the shape of the desired curve
and on biological assumptions. A single wave of infections
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consisting of a single peak of high incidence, an S-shaped
cumulative epidemic curve, and a single turning point of an
outbreak can be the best fitting to data using the selected
model. Inference and estimation of parameters and their
precision are based on the fitted model. Therefore, the inter-
esting questions would be as follows: Can Richards model
effectively predict the growth of the cumulative infected
population? How to select the best model for fitting the
emerging infectious diseases data? Is it possible to predict
the turning point and final size and effectively estimate the
basic reproduction number which are quite important in the
disease control and management?

The traditional approaches of hypotheses testing, when
applied to model selection, have been often found to be
mediocre [6, 7].The adjusted coefficient of multiple determi-
nation that is often used in model selection was found to be a
very poor approach [8]. Posada and Buckley [9] pointed out
that the Bayesian and Akaikes information criterion (AIC)
approaches present several important advantages over other
model selection methods. Therefore, in the present work we
employ the Bayes factors to select one model from a set of
competing models which can capture the underlying disease
outbreak best, and further it can be confirmed by calculating
AIC values. The basis of the Bayes factor approach to model
selection is quantifying the plausibility of each model when
the data and the set of candidate models are given.The Bayes
factor is a measure of the change from prior model odds to
posterior model odds, brought about by the observed data.
In this study, we calculate the Bayes factor with the ratio of
the selected number of different models and sample from the
joint space of product ofmodel and parameters in eachmodel
and then estimate the posterior probability of each model
using Metropolis-Hastings (MH) algorithms.

In Section 2 we initially present the data sources and
the important quantities describing the emerging infectious
diseases for this study and then briefly provide the approaches
of Bayesian model selection and realization algorithms. In
Section 3 we verify the validity of the model selection algo-
rithm introduced in Section 2. In Section 4 based on the real
data sets for 2009 A/H1N1 in Shaanxi Province of mainland
China and the data sets for current Ebola infection in West
Africa, we select the optimal model and examine the specifics
of the corresponding diseases. In particular, we focus on
estimating basic reproduction number, turning point, and
final size of A/H1N1 and Ebola and then explain some impor-
tant issues related to the emerging infection disease control.
Finally, we conclude by summarizing important conclusions
and emphasizing the importance of model selection.

2. Data and Methods

2.1. Data Sources, Basic Reproduction Number, Turning Point,
and Final Size. We employ the data on laboratory-confirmed
cases of pandemic A/H1N1 influenza admitted to the 8th
Hospital of Xi’an, the Province’s Public Health Information
System [11, 13], in 2009. The data included information on
the daily number of hospital notifications and the number
of newly reported hospital notifications (local/imported cases
in mainland China or community/sporadic cases in Shaanxi

Province). For the Ebola data sets, we use the data from the
WHOwebsite for the most serious regions including Guinea,
Liberia, and Sierra Leone from March 25, 2014, to May 3,
2015. Note that the data for Ebola are the sum of confirmed,
probable, and suspected cases.

As mentioned in Section 1, the main purpose is to
choose the best model from the several single species growth
models, which will help us to evaluate the characteristics of
emerging infectious diseases including A/H1N1 and Ebola.
In particular, the basic reproduction number, turning point,
and final size are the most important quantities describing
the emerging infectious diseases. Thus, we first estimate the
parameter values for each model candidate based on the data
sets and then determine the best fitted model to calculate
the basic reproduction number 𝑅

0
for A/H1N1 in China

and Ebola in different regions of West Africa. The basic
reproduction number 𝑅

0
can be obtained from the formula

𝑅
0
= exp(𝑟𝑇) [3, 4], where 𝑟 denotes the intrinsic growth rate

and 𝑇 is the generation time of disease transmission.
Secondly, the turning point (or the inflection point of the

cumulative case curve), defined as the time when the rate of
case accumulation changes from increasing to decreasing (or
vice versa), will be estimated for A/H1N1 in China and Ebola
in different regions ofWest Africa.The turning point plays an
important role in determining the rate of change transitions
from positive to negative, that is, the moment at which the
cases begin to decline. Precisely estimating this point can
allow us to determine either the beginning of a new epidemic
phase or the peak of the current epidemic phase, representing
the point at which disease control activities take effect or the
point at which an epidemic begins to wane naturally, defined
by Hsieh et al. [14].

The final size of an emerging infectious disease is another
important quantity for public health, which is the likely
magnitude of the outbreak, and it is often called the expected
final size of the epidemic [14, 15].

2.2. Metropolis-Hastings Algorithm and Bayesian Model Selec-
tion. The principle of MCMC methods can be briefly
described as follows: build a transition kernel 𝑘 with sta-
tionary distribution 𝑓(𝑥) (which is a target density) and
then generate a Markov chain 𝑋

(𝑡) using this kernel such
that the limiting distribution of 𝑋(𝑡) is 𝑓(𝑥). The integral
∫
𝐻
ℎ(𝑥)𝑓(𝑥)𝑑𝑥 can be approximated with the standard aver-

age (1/𝑇)∑
𝑇

0
ℎ(𝑋
(𝑡)
). The Metropolis-Hastings (MH) algo-

rithm is one of the methods to realize MCMC algorithm,
which can produce a Markov chain 𝑋

(𝑡) with the objective
density 𝜋(𝑥) and the transition probability 𝑞(⋅, ⋅). The algo-
rithm is as follows.

Given 𝑥(𝑡),

(1) move the chain to a new value 𝑦 generated from the
density 𝑞(𝑥(𝑡), ⋅).

(2) Take

𝑥
(𝑡+1)

=
{

{

{

𝑦, with probability 𝛼 (𝑥
(𝑡)
, 𝑦) ,

𝑥
(𝑡)
, with probability 1 − 𝛼 (𝑥

(𝑡)
, 𝑦) ,

(1)
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where

𝛼 (𝑥
(𝑡)
, 𝑦) = min{1,

𝜋 (𝑦)

𝜋 (𝑥(𝑡))

𝑞 (𝑦, 𝑥
(𝑡)
)

𝑞 (𝑥(𝑡), 𝑦)
} (2)

with

𝑃 (𝑥
(𝑡)
, 𝑦)

=

{{

{{

{

𝑞 (𝑥
(𝑡)
, 𝑦) , 𝜋 (𝑦) 𝑞 (𝑦, 𝑥

(𝑡)
) ≥ 𝜋 (𝑥

(𝑡)
) 𝑞 (𝑥

(𝑡)
, 𝑦) ,

𝑞 (𝑦, 𝑥
(𝑡)
)

𝜋 (𝑦)

𝜋 (𝑥(𝑡))
, 𝜋 (𝑦) 𝑞 (𝑦, 𝑥

(𝑡)
) < 𝜋 (𝑥) 𝑞 (𝑥

(𝑡)
, 𝑦) .

(3)

The distribution 𝑞 is called the instrumental (or proposal
or candidate) distribution and probability 𝛼(𝑥

(𝑡)
, 𝑦) is the

Metropolis-Hastings acceptance probability [16].
Suppose that the observed data 𝑌 is generated by a model

𝑔
𝑗
∈ M, where M is the finite set of competing models.

Corresponding to model 𝑔
𝑗
, there is a distinct unknown

parameter vector 𝜃
𝑗
of dimension 𝑛

𝑗
and a prior model

probability 𝜋
𝑗
≡ 𝑃(𝑀 = 𝑔

𝑗
) with ∑

𝑔𝑗∈M
𝜋
𝑗
= 1. Let Θ

𝑗
be

set of all possible values for 𝜃
𝑗
; then 𝜃

𝑗
∈ Θ
𝑗
⊆ R𝑛𝑗 ; and let

𝜃 be the collection of all model-specific 𝜃
𝑗
’s. Now our interest

lies in obtaining the posterior probabilities for the various
models, 𝑃(𝑀 = 𝑔

𝑗
| 𝑌) and then in determining the best

model.
A slightly more direct (and more common) approach to

estimating posterior model probabilities using MCMC has
been included in themodel indicator𝑀 as a parameter in the
sampling order. As a result, most model settings require that
the MCMC searches over the models and parameter space
jointly. That is, the joint sampling space is

M × ∏

(𝑔𝑗∈M)

Θ
𝑗
⊂ M × ∏

(𝑔𝑗∈M)

R
𝑛𝑗 . (4)

Besides the marginal posterior model probabilities
𝑃(𝑀 = 𝑔

𝑗
| 𝑌), this joint search also permits posterior esti-

mation of the parameters under each model, 𝑃(𝜃
𝑗

|

𝑀 = 𝑔
𝑗
, 𝑌). Assume that, corresponding to model 𝑔

𝑗
, the

likelihood function is𝑃(𝑌 | 𝜃
𝑗
,𝑀 = 𝑔

𝑗
), the prior probability

is 𝑃(𝜃
𝑗
| 𝑀 = 𝑔

𝑗
), 𝑀 is merely an indicator of which 𝜃

𝑗
is

relevant to 𝑌, and 𝑌 is independent of 𝜃
𝑗

̸=𝑗
given the model

indicator𝑀 [17]. The following four models are employed in
the present work.

Logistic model is as follows:

𝑥

(𝑡) = 𝑟𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾
) . (5)

Gompertz model is as follows:

𝑥

(𝑡) = 𝑟𝑥 (𝑡) ln( 𝐾

𝑥 (𝑡)
) . (6)

Rosenzweig model is as follows:

𝑥

(𝑡) = 𝑟𝑥 (𝑡) [(

𝐾

𝑥 (𝑡)
)

𝑞

− 1] , 0 < 𝑞 ≤ 1. (7)

Richards Model (the reverse Rosenzweig model) is as
follows:

𝑥

(𝑡) = 𝑟𝑥 (𝑡) [1 − (

𝑥 (𝑡)

𝐾
)

𝑞

] , 0 < 𝑞 ≤ 1. (8)

For convenience, we denote, respectively, the above four
models as 𝑔

1
, 𝑔
2
, 𝑔
3
, and 𝑔

4
, so M = {𝑔

1
, 𝑔
2
, 𝑔
3
, 𝑔
4
}.

Here the positive parameter 𝑟 denotes the intrinsic growth
rate, 𝐾 represents carry capacity, and 𝑞 is the exponent of
deviation. The above four models are widely used single
species models which can be solved analytically and thus can
be easily employed to fit the data and estimate the unknown
parameters.

Let 𝑁 be the unknown true cumulative number of
cases with 𝑁 = (𝑁

1
, . . . , 𝑁

𝑛
)
 and 𝑌 denote the reported

cumulative cases of the emerging infectious disease with
𝑌 = (𝑌

1
, . . . , 𝑌

𝑛
)
. Because the reported cases having certain

statistical errors are inaccurate, we assume that the reported
cases follow a Poisson process. Thus, if the real cumulative
number of cases at a given time 𝑡 is 𝑛

𝑡
, the probability of the

number of cases reported is

𝑃 (𝑌
𝑡
= 𝑦
𝑡
| 𝑁
𝑡
= 𝑛
𝑡
) =

𝑛
𝑡

𝑦𝑡

𝑦
𝑡
!
𝑒
−𝑛𝑡 . (9)

Further, we assume that the set of parameter vectors is
𝜃
𝑗
= {𝑟
𝑗
, 𝐾
𝑗
, 𝑞
𝑗
} (𝑗 = 1, 2, 3, 4), in which the parameters

are independent of each other. In particular, 𝑞
𝑗

= 1 for
models 𝑔

1
and 𝑔

2
. For simplicity, we select noninformation

prior distribution; that is, 𝜃
𝑗
∝ constant; thus the posterior

distribution probability reads

𝑃 (𝜃
𝑗
| 𝑌,𝑀 = 𝑔

𝑗
)

∝ 𝑓 (𝑌 | 𝜃
𝑗
,𝑀 = 𝑔

𝑗
) 𝑃 (𝜃

𝑗
| 𝑀 = 𝑔

𝑗
)

∝

𝑛

∏

𝑖=1

(𝑛
𝑗

𝑡
)
𝑦𝑡

𝑦
𝑡
!
𝑒
−𝑛
𝑗

𝑡 .

(10)

The step of model selection with theMetropolis-Hastings
algorithm is based on a proposal for a move from model 𝑔

𝑗

to 𝑔
𝑗
 , followed by acceptance or rejection of this proposal.

Assume that the selection probability of model 𝑔
𝑗
is 𝜋
𝑗
. The

procedure given by Han and Carlin [17] is as follows:

(1) Let the initial value be𝑀(= 𝑔
𝑗
), 𝜃
𝑗
, 𝜃
𝑗

̸=𝑗
.

(2) Propose a new model 𝑔
𝑗
 with probability 𝑞(𝑔

𝑗
, ⋅).

(3) Accept the proposed move (from 𝑔
𝑗
to 𝑔
𝑗
) with

probability

𝛼 (𝑔
𝑗
, 𝑔
𝑗
) = min{1,

𝑓 (𝑌 | 𝜃
𝑗
 ,𝑀 = 𝑔

𝑗
) 𝑃 (𝜃

𝑗
 | 𝑀 = 𝑔

𝑗
) 𝜋
𝑗
𝑞 (𝑔
𝑗
 , 𝑔
𝑗
)

𝑓 (𝑌 | 𝜃
𝑗
,𝑀 = 𝑔

𝑗
) 𝑃 (𝜃

𝑗
| 𝑀 = 𝑔

𝑗
) 𝜋
𝑗
𝑞 (𝑔
𝑗
, 𝑔
𝑗
)

} .

(11)

Under the usual regularity conditions, thisMH algorithm
will produce samples. Provided that the sampling chain for
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Table 1: Evidence categories for the Bayes factor (Jeffreys, 1961 [10]).

Bayes factor Interpretation
𝐵
𝑗

𝑗
< 1/100 Decisive evidence for model 𝑗

1/100 < 𝐵
𝑗

𝑗
< 1/30 Very strong evidence for model 𝑗

1/30 < 𝐵
𝑗

𝑗
< 1/10 Strong evidence for model 𝑗

1/10 < 𝐵
𝑗

𝑗
< 1/3 Substantial evidence for model 𝑗

1/3 < 𝐵
𝑗

𝑗
< 1 Anecdotal evidence for model 𝑗

𝐵
𝑗

𝑗
= 1 No evidence

1 < 𝐵
𝑗

𝑗
< 3 Anecdotal evidence for model 𝑗

3 < 𝐵
𝑗

𝑗
< 10 Substantial evidence for model 𝑗

10 < 𝐵
𝑗

𝑗
< 30 Strong evidence for model 𝑗

30 < 𝐵
𝑗

𝑗
< 100 Very strong evidence for model 𝑗

𝐵
𝑗

𝑗
> 100 Decisive evidence for model 𝑗

the model indicator mixes sufficiently well, the posterior
probability of model 𝑔

𝑗
can be estimated by

�̂� (𝑀 = 𝑔
𝑗
| 𝑌) =

1

𝑁

𝑁

∑

𝑛=1

𝐼 (𝑀
(𝑛)

= 𝑔
𝑗
) , (12)

which can in turn be used to estimate a Bayes factor as

𝐵
𝑗

𝑗
=

�̂� (𝑀 = 𝑔
𝑗
 | 𝑌) /�̂� (𝑀 = 𝑔

𝑗
| 𝑌)

𝑃 (𝑀 = 𝑔
𝑗
) /𝑃 (𝑀 = 𝑔

𝑗
)

. (13)

The criterion of model selection based on the Bayes factor is
shown in Table 1.

Based on above procedures, we realize our model selec-
tion as follows. Firstly, we obtain the Markov chains hav-
ing 500000 samplers for each parameter of each model,
respectively, carrying out the MCMC procedure by using an
adaptive MH algorithm.Then the best model can be selected
dynamically with the Markov chains of all parameters as
follows.

(1) Let the initial value be 𝑀0 = 𝑔
𝑗
, 𝜃
0

𝑗
, where 𝜃0

𝑗
is of

dimension 𝑛
𝑗
(𝑔
𝑗
∈ M = {𝑔

1
, 𝑔
2
, 𝑔
3
, 𝑔
4
}).

(2) Generate a new model 𝑔
𝑗
 from the discrete uniform

distribution 𝑞(𝑔
𝑗
, ⋅), and 𝜋

𝑗
= (1/4) (𝑗 = 1, 2, 3, 4),

𝑔
𝑗
 ∈ M. Let 𝑤

𝑖
= ∑
𝑖

𝑗=1
𝜋
𝑗
, (𝑖 = 1, 2, 3, 4) and 𝑤

0
= 0,

𝜇 ∼ 𝑈(0, 1); when 𝑤
𝑖−1

< 𝜇 < 𝑤
𝑖
, let 𝑗 = 𝑖.

(3) Repeat for 𝑡 = 1, 2 . . . , 𝑁.
(4) Evaluate the acceptance probability of themove (from

𝑔
𝑗
to 𝑔
𝑗
) by

𝛼 (𝑔
𝑗
, 𝑔
𝑗
) = min

{

{

{

1,

𝑓 (𝑌 | 𝜃
(𝑡−1)

𝑗
 ,𝑀 = 𝑔

𝑗
)𝑃 (𝜃

(𝑡−1)

𝑗
 | 𝑀 = 𝑔

𝑗
) 𝜋
𝑗
𝑞 (𝑔
𝑗
 , 𝑔
𝑗
)

𝑓 (𝑌 | 𝜃
(𝑡−1)

𝑗
,𝑀 = 𝑔

𝑗
) 𝑃 (𝜃

(𝑡−1)

𝑗
| 𝑀 = 𝑔

𝑗
) 𝜋
𝑗
𝑞 (𝑔
𝑗
, 𝑔
𝑗
)

}

}

}

(14)

with 𝑞(𝑔
𝑗
, 𝑔
𝑗
) = 𝑞(𝑔

𝑗
 , 𝑔
𝑗
).

(5) Let 𝜇 ∼ 𝑈(0, 1), and then we have

𝑀
(𝑡)

=
{

{

{

𝑔
𝑗
 , 𝜇 ≤ 𝛼 (𝑔

𝑗
, 𝑔
𝑗
) ,

𝑔
𝑗
, 𝜇 > 𝛼 (𝑔

𝑗
, 𝑔
𝑗
) .

(15)

(6) Return the values {𝑀
(1)
,𝑀
(2)
, . . . ,𝑀

(𝑁)
}; then we

have

�̂� (𝑀 = 𝑔
𝑗
| 𝑌) =

1

𝑁

𝑁

∑

𝑡=1

𝐼 (𝑀
(𝑡)
= 𝑔
𝑗
) (𝑔

𝑗
∈ M) . (16)

The estimation of the corresponding Bayes factor is

𝐵
𝑗𝑗
 =

�̂� (𝑀 = 𝑔
𝑗
 | 𝑌) /�̂� (𝑀 = 𝑔

𝑗
| 𝑌)

𝑃 (𝑀 = 𝑔
𝑗
) /𝑃 (𝑀 = 𝑔

𝑗
)

. (17)

3. Validation of Model Selection Algorithm

In order to validate the proposed model selection algorithm,
we generate the time series from a given model with known
parameter values. To do this, we fix all parameter values of
Richards model as 𝜃 = (𝑟, 𝐾, 𝑞) = (0.3, 100, 0.4) and of
Gompertz model as 𝜃 = (𝑟, 𝐾) = (0.15, 100) and the initial
value 𝑥

0
= 5. Solving, respectively, the twomodels from 𝑡 = 1

to 𝑡 = 40, we get forty time points of each model, denoted by
𝑌 = (𝑦

1
, . . . , 𝑦

40
) and 𝑍 = (𝑧

1
, . . . , 𝑧

40
) respectively.

Using the simulated data set 𝑌 = (𝑦
1
, . . . , 𝑦

40
), we realize

the model selection based on the algorithm introduced in the
previous section, as shown in the first line of Table 2. Here we
can calculate 𝐵

41
= �̂�(𝑀 = 4 | 𝑦)/�̂�(𝑀 = 1 | 𝑦) = 8866.4 >

100, 𝐵
42
being infinite >100 and 𝐵

43
= 144.8 > 100. Thus, the

evidence of selecting model 𝑔
4
(Richards model) is decisive

based on the criterion shown in Table 1. To further confirm
the validation of the proposed method, we calculate the AIC
value of each model; that is, they are 260, 241, 245, and 231
for models 𝑔

1
, 𝑔
2
, 𝑔
3
, and 𝑔

4
, respectively. The AIC value for

model 𝑔
4
, Richards model, is the smallest, so the best model

is Richards model, which is consistent with the result using
Bayes factor.The estimation of parameter values for Richards
model is as follows: 𝜃 = (𝑟, 𝐾, 𝑞) = (0.3095, 100.26, 0.3914)

being very close to the real values, shown in the third line of
Table 2.

A repeat of the above procedure by using the simulated
data 𝑍 = (𝑧

1
, . . . , 𝑧

40
) gives that model 𝑔

2
(Gompertz model)

is decisive and is then the “best” model. The estimation of
parameter values for Gompertz model is 𝜃 = (𝑟, 𝐾) =

(0.15041, 100) which are very close to the real values, shown
in the last line of Table 2.

The above results show that the proposedmodel selection
methods based on Bayes factor and MCMC method can
help us to choose the optimal model. In Figure 1, we plot
the fitting results for four models based on the simulated
time series generated from Richards model and Gompertz
model. Although the other three models can also fit the
simulated data well, it is obvious that the fitting of the
Richardsmodel and data time points is the best for time series
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Table 2: The corresponding Bayes factor 𝐵
𝑗

𝑗
= �̂�(𝑚 = 𝑗


| 𝑦)/�̂�(𝑀 = 𝑗 | 𝑦) and AIC about four models based on generated data from

Richards model and Gompertz model.

(a)

Data source 𝑗
 𝑗

Logistic Gompertz Rosenzweig Richards

Richards model

Logistic 1 — — —
Gompertz Inf 1 Inf —
Rosenzweig Inf — 1 —
Richards model 8866.4 Inf 144.8 1
AIC 260 241 245 231

Gompertz model

Logistic 1 — — —
Gompertz Inf 1 19.8855 13.0241
Rosenzweig Inf — 1 —
Richards model Inf — Inf 1
AIC 618 440 601 556

(b)

Data source Parameter Mean Std. MC err Tau Geweke

Richards model
𝑟 0.3095 0.0335 3.9372e − 04 95.36 0.9923
𝐾 100.26 2.8313 0.0255 85.563 0.9991
𝑞 0.3914 0.0579 6.7027e − 04 95.533 0.9919

Gompertz model 𝑟 0.1504 0.0062 9.2746e − 05 60.727 0.9983
𝐾 100 1.8169 0.0249 62.058 0.9991

— means a very small number.
Inf indicates a sufficiently big number.

𝑌 = (𝑦
1
, . . . , 𝑦

40
), as shown in Figures 1(a) and 1(b), and the

fitting of the Gompertzmodel and data time points is the best
for time series 𝑍 = (𝑧

1
, . . . , 𝑧

40
), as shown in Figures 1(c) and

1(d).

4. Real Data Driven Model
Selection and Results

4.1. A/H1N1 Data and Results. The 2009 influenza A/H1N1
pandemic outbreaks in Shaanxi Province of mainland China
started from the 3rd of September. The majority of reported
A/H1N1 cases were initially diagnosed in colleges and univer-
sities in early September 2009 when the universities began
their fall semester and then spread to the communities in
the middle of October 2009. The epidemic curve in Shaanxi
Province exhibited the bimodality, where the first and small
wave started around 3 September till 21 September and the
second and large wave followed [11, 13]. In order to evaluate
the effectiveness of control measures on A/H1N1, Tang et
al. [11, 13] proposed the compartment epidemic models and
then employed theA/H1N1 data sets to estimate the unknown
parameters.

In this subsection, we plan to realize the model selection
procedures using the published accumulative cases number
of A/H1N1 from the 8th Hospital of Xi’an, where the majority
of the confirmed cases in the province of Shaanxi in early
September 2009 were isolated. The selection results are
given in the first line of Table 3 and Figure 2(a). It follows
from Table 3 that Bayes factors 𝐵

12
, 𝐵
13

are infinite (>100

naturally), which confirm that there exists decisive evidence
for model 𝑔

1
(i.e., Logistic model) compared with models 𝑔

2

and 𝑔
3
. Moreover, both 1 < 𝐵

14
= 1.34 < 3 and 1/3 <

𝐵
41

= 0.75 < 1 mean that the selection of Logistic model
and Richards model is uniform and alternating. To confirm
the model selection results on A/H1N1 data set, we further
calculate the AIC values which are given to be 249, 362, 592,
and 254 for models 𝑔

1
, 𝑔
2
, 𝑔
3
, and 𝑔

4
, respectively. The AIC

values for both Logistic model and Richards model support
us to choose these two models, which are the best models for
us to fit the A/H1N1 data.

To show the results of model selection intuitively,
Figure 2(a) gives the selection results for the last 2000 groups
of all estimated parameters from the Markov chains. In
Figure 2(a), the number of four models which have been
selected in the last 2000 runs is 1102, 0, 0, and 898 for
models 𝑔

1
, 𝑔
2
, 𝑔
3
, and 𝑔

4
, respectively. It is easy to notice

that the probabilities for Logistic model and Richards model
are almost the same, which further confirm that Logistic
model and Richardsmodel are the best model for the A/H1N1
data set. Fitting, respectively, four models to the cumulate
A/H1N1 case number data, we obtained model fit for the
initial outbreak from September 3 to September 21, shown in
Figure 2(b). It is easy to notice that the best fitted theoretical
models are Logistic model and Richards model and the
solution curves of Logistic model and Richards model are
coincident.

The estimations of basic reproduction number 𝑅
0
and

turning point 𝑡
𝑖
are shown in the first line of Table 5 and
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Figure 1: Model fitting of simulated data generated from Richards model and Gompertz model using four candidate models. The data in (a)
and (b) are produced from Richards model; the data in (c) and (d) are produced fromGompertz model.The simulated data points are shown
as black dot points. The curves represent the fitting to the data points for four models, respectively. The grey areas are the 95% confidence
intervals of each lines.

parameters for Logistic model are shown in the first line of
Table 4. For the purpose of computing 𝑅

0
, we employ the

mean estimated generation interval of 𝑇 = 4 days given
by Tang et al. [13], which results in the estimation of 𝑅

0

based on Logistic model (i.e., 𝑅
0
= 1.9005 (95% CI (1.8869,

1.9142))). The likelihood-based and compartment model-
based estimations of 𝑅

0
are 1.663 (95% CI (1.273, 2.053))

[13] and 1.682 (95% CI (1.446, 1.918)) [11] for the period

from 3 September to 21 September with a generation time
of four days. All those show that in order to evaluate the
emerging infectious disease we could employ the simplest
model, because it allows us to identify the model parameter
valuesmore quickly and it is actually based on a small number
of data points, and this is quite important for public health.
The result of 𝑡

𝑖
= 23 for Xi’an indicates that the turning point

had occurred during 25–27 September, 2009. The estimation
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Table 3: The corresponding Bayes factor 𝐵
𝑗

𝑗
= �̂�(𝑚 = 𝑗


| 𝑦)/�̂�(𝑀 = 𝑗 | 𝑦) and AIC about four models based on A/H1N1 and Ebola data.

Data source 𝑗
 𝑗

Logistic Gompertz Rosenzweig Richards

H1N1

Logistic 1 Inf Inf 1.34
Gompertz0 0 1 / —
Rosenzweig0 0 / 1 —
Richards model 0.75 Inf Inf 1
AIC 249 362 592 254

West Africa

Logistic 1 Inf Inf 2.1528
Gompertz0 0 1 / —
Rosenzweig0 0 / 1 —
Richards model 0.4645 Inf Inf 1
AIC 5200 49500 1872800 5400

Guinea

Logistic 1 Inf Inf 1.25
Gompertz0 0 1 / —
Rosenzweig0 0 / 1 —
Richards model 0.8 Inf Inf 1
AIC 1991 3427 18476 1998

Liberia

Logistic 1 Inf Inf —
Gompertz0 0 1 / —
Rosenzweig0 0 / 1 —
Richards model 5 ∗ 10

5 Inf Inf 1
AIC 6308 6547 7980 2559

Sierra Leona

Logistic 1 — — —
Gompertz 102310 1 2.96 0.28
Rosenzweig 34750 0.34 1 0.095
Richards model 362940 3.55 10.48 1
AIC 15432 6251 7038 5400

—means a very small number.
Inf means a sufficiently big number.
0 means the probability of being chosen for model is zero.
/ means a no number (i.e., 0/0).
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Figure 2: (a) Model selection based on the accumulate cases data from the 8th Hospital of Xi’an from 3 September to 21 September with the
last 2000-group parameters of Markov chain; (b) model fitting of A/H1N1 data in Xi’an, 2009. The curves represent the fitting to the data for
four models, respectively. The grey areas are the 95% confidence intervals of each curve. Here, cyan curve represents Logistic model; blue
curve represents Gompertz model; red curve represents Rosenzweig model; black curve represents Richards model. Note that the cyan curve
and black curve almost coincide.



8 Computational and Mathematical Methods in Medicine

Table 4: The estimations of all parameters with respect to the best model.

Data source Parameter Mean Std. MC err Tau Geweke

H1N1 𝑟 0.1605 9.1570e − 04 3.3003e − 06 6.6007 0.9999
𝐾 1013 8.6356 0.0341 6.6724 0.9997

West Africa 𝑟 0.0251 4.8634e − 05 1.5757e − 07 6.6144 0.9999
𝐾 25794 83.712 0.2631 6.6658 0.9999

Guinea 𝑟 0.0159 6.1289e − 05 2.1429e − 07 6.7164 0.9999
𝐾 3916 26.131 0.1143 6.6456 0.9999

Liberia
𝑟 0.0919 6.19e − 03 6.1022e − 05 44.625 0.9973
𝐾 9886 74.03 0.5253 29.833 0.9999
𝑞 0.2333 0.0225 2.0514e − 04 39.52 0.9963

Sierra Leona
𝑟 0.0536 1.0186e − 03 4.0645e − 06 12.058 0.9999
𝐾 12633 59.697 0.2866 11.61 0.9999
𝑞 0.3985 0.0149 6.4121e − 05 12.063 0.9997

Table 5: The estimations of 𝑅
0
, turning point 𝑡

𝑖
, and final size for the best model.

Data source 𝑅
0

95% CI 𝑡
𝑖

95% CI Final size 95% CI
H1N1 1.9005 (1.8869, 1.9142) 23

1 (22, 24) 1013
∗ (996, 1030)

West Africa 1.3522 (1.3506, 1.3537) 227
2 (226, 228) 25794

3 (25630, 25958)
Guinea 1.2101 (1.2084, 1.2119) 239

4 (237, 241) 3916
5 (3865, 3967)

Liberia 3.0234 (2.6063, 3.4881) 130
6 (121, 149) 9886

7 (9740, 10031)
Sierra Leona 1.9018 (1.8565, 1.9478) 165

8 (157, 174) 12633
9 (12515, 12750)

1Denoting turning point during Sep. 25–Sep. 27, 2009.
2Denoting turning point during Nov. 6–Nov. 8, 2014.
3Denoting the final time during Sep. 13–Sep. 17, 2015.
4Denoting turning point during Nov. 15–Nov. 19, 2014.
5Denoting the final time during Dec. 24–Dec. 31, 2015.
6Denoting turning point during Sep. 23–Oct. 21, 2014.
7Denoting the final time during Sep. 19–Sep. 26, 2015.
8Denoting turning point during Oct. 27–Nov. 12, 2014.
9Denoting the final time during Dec. 15–Dec. 22, 2015.
∗the first stage cannot reach final size because of the beginning of the second stage.
𝑅0 was computed using the mean generation interval of 𝑇 = 4 days [11] about A/H1N1 and 𝑇 = 12 days [12] about Ebola.

of final size is 1013 (95% CI (996, 1030)) of the first wave, but
it cannot be reached because of the beginning of the second
wave.

4.2. Ebola Data and Results. On June 18, 2014, an Ebola
outbreak emerged in Africa. The outbreak, first reported
in Guinea in December, 2013, has spread to neighboring
Sierra Leone and Liberia. Ebola, characterized by fever, severe
diarrhea, and vomiting, has a high fatality rate, which has
mooted by the World Health Organization (WHO) criteria
for a serious disease. Therefore, the main propose of this
subsection is to use the report data sets from theWHO about
themost serious regions includingGuinea, Liberia, and Sierra
Leone from March 25, 2014, to May 3, 2015, in order to carry
out model selections and parameters estimations and then
to get the estimates of 𝑅

0
, turning point 𝑡

𝑖
, and final size for

Guinea, Liberia, Sierra Leone, and West Africa, respectively.
Note that the sum of data from those three countries has been
used for West Africa.

The selection results are shown in Table 3 and Figure 3.
In Table 3, we compute the relevant Bayes factors and AICs
for four candidate models. Figure 3 gives the selection result

for last 2000 groups of all estimated parameters from the
Markov chains based on the Ebola cases of West Africa,
Guinea, Liberia, and Sierra Leone. The estimations of model
parameters and𝑅

0
, 𝑡
𝑖
, and final size are shown in Tables 4 and

5, respectively. In Table 6, we compared the reported cases
and model predicted cases of Ebola based on Richards model
on June 14, 2015. In Figure 4, the model fitting results for four
models and data sets are also provided. Note that the data
points from March 25, 2014, to May 3, 2015, for West Africa
and Guinea and the data points fromMay 27, 2014, to May 3,
2015, for Liberia and Sierra Leone have been used to fit the
models. In Figure 5, we show the different 𝑅

0
and relevant

95% confidence interval when the generation time changes
from 10 days to 18 days.

In particular, for West Africa, the selection results are
given in the second line of Table 3 and Figure 3(a). It follows
from Table 3 that Bayes factors 𝐵

12
, 𝐵
13

are infinite (>100
naturally), which indicates that there exists decisive evidence
for model 𝑔

1
(i.e., Logistic model) compared with models

𝑔
2
and 𝑔

3
. Moreover, both 1 < 𝐵

14
= 2.1528 < 3 and

1/3 < 𝐵
41

= 0.4645 < 1 mean that the selection of Logistic
model and Richards model is uniform and alternating (i.e.,
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Figure 3: Model selection based on the accumulate Ebola cases for (a) West Africa, (b) Guinea, (c) Liberia, and (d) Sierra Leone with the last
2000-group parameters of Markov chain. The Logistic model and Richards model are selected in (a) and (b), and Richards model is selected
in (c) and (d).

Table 6: Comparison of the reported and model predicted cases of
Ebola based in Richards model on June 14, 2015.

Source of
data

Reported cases
(number)†

Predicted
cases

(number)

The rate of
underestimated or
overestimated

model
West Africa 27305 25693 −5.9%
Guinea 3674 3778 +2.8%
Liberia 10666 9842 −7.7%
Sierra Leone 12965 12515 −3.5%
†Source:WorldHealthOrganization (http://apps.who.int/ebola/current-situ-
ation/ebola-situation-report-17-june-2015).

𝑞 = 1 here). To further confirm the model selection results
for West Africa, the AIC values are calculated and given by
5200, 49500, 1872800, and 5400 for models 𝑔

1
, 𝑔
2
, 𝑔
3
, and

𝑔
4
, respectively. The AIC values for both Logistic model and

Richards model further indicate that these two models are
the best. In Figure 3(a), the numbers of four models which
have been selected in the last 2000 runs are 1168, 0, 0, and 832
for models 𝑔

1
, 𝑔
2
, 𝑔
3
, and 𝑔

4
, respectively. It is interesting to

notice that the probability for Logistic model is the biggest
one and Richards model is the second one, which further
confirms that Logisticmodel is the bestmodel forWestAfrica
data set. In Figure 4(a), it is easy to notice that the best fitted
theoretical models are Logistic model and Richards model
and the solution curves of Logisticmodel andRichardsmodel
are almost coincident.

The estimations of the parameters for Logistic model are
shown in the second line of Table 4 and basic reproduction
number 𝑅

0
and turning point 𝑡

𝑖
based on West Africa data

are shown in the second line of Table 5. The mean estimated
generation interval 𝑇 = 12 days given by Chowell and
Nishiura [12] is used to calculate the basic reproduction
number 𝑅

0
. Based on Logistic model 𝑅

0
is estimated to be

1.3522 (95% CI (1.3506, 1.3537)) and the variation in 𝑅
0
with

different generation intervals 𝑇 is shown in Figure 5. The
turning point is 𝑡

𝑖
= 227 (95% CI (226, 228)) which indicates

that the turning point had occurred during 6–8 November,
2014, for West Africa. The estimation of final size is 25794
(95% CI (25630, 25958)) which could have occurred during
13–17 September, 2015. On June 14, 2015, the reported cases
are 26742 and the model predicted cases are 25693 and the
rate of underestimated rate of model is −5.9%.

For Guinea, the selection results are given in the third
line of Table 3 and Figure 3(b). From Table 3, Bayes factors
𝐵
12
, 𝐵
13

are infinite (>100 naturally), which confirm that
there exists decisive evidence for model 𝑔

1
(i.e., Logistic

model) compared with models 𝑔
2
and 𝑔

3
. Moreover, both

1 < 𝐵
14

= 1.25 < 3 and 1/3 < 𝐵
41

= 0.8 < 1 mean that
the selection of the Logistic model and the Richards model
is uniform and alternating. The AIC values are 1991, 3427,
18476, and 1998 for models 𝑔

1
, 𝑔
2
, 𝑔
3
, and 𝑔

4
, respectively.

The AIC values for both Logistic model and Richards model
further indicate that these two models are the best for us to
fit Guinea data. In Figure 3(b), the numbers of selected about
fourmodelswhich have been selected in the last 2000 runs are
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Figure 4: Model fitting of 2014-2015 Ebola outbreaks in (a) West
Africa, (b) Guinea, (c) Liberia, and (d) Sierra Leone. Data of
the cumulative numbers of infected cases are shown as black
dots. The curves represent the fitting to the data for four models,
respectively. The grey areas are the 95% confidence interval of each
curves. Cyan curve represents Logistic model; blue curve represents
Gompertz model; red curve represents Rosenzweig model; black
curve represents Richards model.

1028, 0, 0, and 972 for models 𝑔
1
, 𝑔
2
, 𝑔
3
, and 𝑔

4
, respectively,

which further shows that the Logisticmodel and the Richards
model are the best model for Guinea data set, as shown In
Figure 4(b). Compared with the selection results for West
Africa we conclude that the outbreak pattern of West Africa
follows Guinea.

The estimations of the parameters for Logistic model are
shown in the third line of Table 4 and basic reproduction
number 𝑅

0
and turning point 𝑡

𝑖
based on Guinea data are

shown in the third line of Table 5.The estimation of 𝑅
0
based

on Logistic model is 1.2101 (95% CI (1.2084, 1.2119)) with
generation interval 𝑇 = 12 days and the different estimations
with different 𝑇 are shown in Figure 5. The result of 𝑡

𝑖
=

239 (95% CI (237, 241)) indicates that the turning point had
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Figure 5: The effects of different generation time in West Africa,
Sierra Leone, Liberia, andGuinea on the basic reproduction number
of Ebola. Dotted lines represent the 95% confidence interval of 𝑅

0

generated by the 95% confidence interval of 𝑟.

occurred during 15–19 November, 2014. The estimation of
final size is 3916 (95% CI (3865, 3967)) which could have
occurred during 24–31 December, 2015. On June 14, 2015, the
reported cases are 3674 and the model predicted cases are
3778 and the rate of overestimated model is +2.8%.

For Liberia, the selection results are given in the fourth
line of Table 3 and Figure 3(c). It follows from Table 3 that
Bayes factors 𝐵

42
, 𝐵
43

are infinite (>100 naturally), which
suggests that there exists decisive evidence for model 𝑔

4
(i.e.,

Richardsmodel) comparedwithmodels𝑔
2
and𝑔
3
. Moreover,

𝐵
14

< 1/100 and 𝐵
41

= 500000 > 100 indicate that
the evidence for the selection of Richards model is decisive.
Meanwhile, we calculate the AIC values which are given by
6308, 6547, 7980, and 2559 for models 𝑔

1
, 𝑔
2
, 𝑔
3
, and 𝑔

4
,

respectively. It supports us to choose Richards model, which
is the best model for us to fit Liberia data. In Figure 3(c), the
numbers of four models which have been selected in the last
2000 runs are 1, 0, 0, and 1999 for models 𝑔

1
, 𝑔
2
, 𝑔
3
, and 𝑔

4
,

respectively, which further confirms that Richards model is
the best model for Liberia data set, as shown in Figure 4(c).

The estimation of 𝑅
0
based on Logistic model is 3.0234

(95% CI (2.6063, 3.4881)), shown in Table 5 with 𝑇 = 12

days, and variation in 𝑅
0
with different values of 𝑇 is shown

in Figure 5.The result of 𝑡
𝑖
= 130 (95%CI (121, 149)) indicates

that the turning point occurred during 23 September–21
October, 2014. The estimation of final size is 3916 (95% CI
(3865, 3967)) which occurred during 24–31 December, 2015.
On June 14, 2015, the reported cases are 10666 and the model
predicted cases are 9843 and the rate of underestimated
model is −7.7%.

For Sierra Leone, it follows fromTable 3 that Bayes factors
𝐵
21

= 102310 > 100, 𝐵
31

= 34750 > 100, and 𝐵
41

=

362940 > 100, which implies that there exists decisive
evidence for models 𝑔

2
, 𝑔
3
, and 𝑔

4
compared with model 𝑔

1

(i.e., Logistic model). Moreover, both 3 < 𝐵
42

= 3.55 < 10

and 10 < 𝐵
43

= 10.48 < 30 mean that the evidence for
the selection of Richards model is stronger than model 𝑔

3
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and more substantial than model 𝑔
2
. To further confirm the

model selection results, we calculate the AIC values to be
15432, 6251, 7038, and 5400 for models 𝑔

1
, 𝑔
2
, 𝑔
3
, and 𝑔

4
,

respectively. The AIC value for Richards model supports us
to choose Richards model, which is the best model for us
to fit Sierra Leone data. In Figure 3(d), the numbers of four
models which have been selected in the last 2000 runs are 2,
408, 205, and 1385 for models 𝑔

1
, 𝑔
2
, 𝑔
3
, and 𝑔

4
, respectively,

which further confirm that Richards model is the best model
for Sierra Leone data set, as shown in Figure 4(d).

The estimation of 𝑅
0
based on Richards model is 1.9018

(95% CI (1.8565, 1.9478)) with generation interval 𝑇 = 12

days and variation in𝑅
0
with different values of𝑇 is shown in

Figure 5. The result of 𝑡
𝑖
= 165 (95% CI (157, 174)) indicates

that the turning point had occurred during 27 October–12
November, 2014. The estimation of final size is 12633 (95%
CI (12515, 12750)) which could have occurred during 15–22
December, 2015. On June 14, 2015, the reported cases are
12965 and the model predicted cases are 12515 and the rate
of underestimated model is −3.5%.

Comparing the actual reported cases and the model
predicted cases, on 14 June, 2015, the rates of underestimated
or overestimated model are, respectively, −5.9%, +2.8%,
−7.7%, and −3.5% forWest Africa, Guinea, Liberia, and Sierra
Leone, as shown in Table 6. In Liberia, the underestimated
rate is bigger than others because the data had changed due
to ongoing reclassification, retrospective investigation, and
availability of laboratory results, and the data of Liberia had
significant adjustments. This also is why 𝑅

0
for Liberia is the

biggest. Note that the reported accumulated cases including
confirmed, probable, and suspected cases in Liberia have
been revised largely; for example, there are 4665, 6535, and
6525 cases on October 23, October 27, and November 2,
2014, respectively. Similarly, the reported accumulated cases
in Sierra Leone are 3896, 5235, and 4759 on October 23,
October 27, and November 2, 2014, respectively. Those big
differences could result in the big variances in estimating and
predicting the outbreaks of Ebola in West Africa. Therefore,
the more precise data sets are, the more accurate estimation
and predication are.

5. Discussion and Conclusions

On the basis of four simplest single speciesmodels, themodel
selection, and MCMC method we choose the best model
to fit the A/H1N1 data set in China and Ebola data sets in
West Africa.This allows us to estimate the basic reproduction
number, the turning point, and final size more quickly and
accurately for the emerging infectious disease compared with
some complex compartment models.

Our estimate of 𝑅
0

= 1.9005 with (95% CI (1.8869,
1.9142)) on A/H1N1 is quite similar to that from the data
for Shaanxi Province obtained by Tang et al. [11, 13] but
with little differences that could well be associated with
differences in methodology. Further, many factors such as
differences in population densities, realization of control
measure, and mobility of the population among regions led
to a wide range of reproduction number. Our estimated
reproduction numbers from the hospital notifications are in

broad agreement with those obtained in studies on data from
Mexico (95% CI (1.2, 1.6)) [18], the United States of America
(95% CI (1.7, 1.8)) [19], and New Zealand (95% CI (1.80,
2.15)) [20].Thus, we believe that the best model (i.e., Richards
model) can be used for rapid epidemic modeling in the face
of public health crisis.

When we fit the data sets for Ebola cases in West Africa,
the selection of the most appropriate model is Logistic model
or Richards model. Reproductive numbers 𝑅

0
are 1.3522

(95% CI (1.3506, 1.3537)) for West Africa, 3.0234 (95% CI
(2.6063, 3.4881)) for Liberia, 1.2101 (95% CI (1.2084, 1.2119))
for Guinea, and 1.9018 (95% CI (1.8565, 1.9478)) for Sierra
Leone. Using early phase of Ebola outbreaks in West Africa
2014, Chowell and Nishiura [12] estimated 𝑅

0
for those three

countries, which were given by 1.96 (95% CI (1.92, 2.01))
for Liberia and 3.07 (95% CI (2.85, 3.32)) for Sierra Leone.
Althaus [21] formulated a susceptible-exposed-infectious-
removal (SEIR) model and employed the data from March
22, 2014, to August 20, 2014, to get the maximum likelihood
estimates of 𝑅

0
, where 𝑅

0
= 1.51 (95% CI (1.50, 1.52)) for

Guinea, 2.53 (95% CI (2.41, 2.67)) for Sierra Leone, and 1.59
(95% CI (1.57, 1.60)) for Liberia. WHO Ebola Response Team
[22] employed the data by September 14, 2014, and got 𝑅

0
=

1.51 (95%CI (1.41, 1.60)) for Liberia, 1.81 (95%CI (1.60, 2.03))
for Guinea, and 1.38 (95% CI (1.27, 1.51)) for Sierra Leone. It is
worth noticing that the estimations of𝑅

0
by using data points

in different periods are quite different, and any differences
could well be associated with variations in methodology and
differences at times or at stages.

For the previous Ebola outbreaks in Central Africa,
Chowell et al. [23] developed a homogenous mixing SEIR
model and got 𝑅

0
= 1.83 for Congo in 1995 and 1.34

for Uganda in 2000. However, the estimations of 𝑅
0
in

the present paper show that 𝑅
0
for Liberia is the biggest,

followed for Sierra Leone, and the smallest is for Guinea.
As mentioned before, the main reason why 𝑅

0
for Liberia is

bigger than others is that the ongoing reclassification, retro-
spective investigation, and availability of laboratory results
make the data of Liberia having significant adjustment.
Moreover, the suspected cases were increased significantly,
while the confirmed cases were increased slowly related to the
suspected cases.

The turning point and final size have been also estimated
and calculated. For example, the turning point forWestAfrica
was 227 days which corresponds to 5 November, 2014, and
the turning points for Guinea, Liberia, and Sierra Leone
were about October or November, 2014. Further, the final
breakout time will be September or December, 2015, with
final size of 3916 (95% CI (3865, 3967)) for Guinea, 9886
(95% CI (9740, 10031)) for Liberia, 12633 (95% CI (12515,
12750)) for Sierra Leone, and 25794 (95% CI (25630, 25958))
for West Africa, respectively, as shown in Table 3. Note that
the Ebola outbreak in Liberia was declared over on 9 May,
after 42 complete days that elapsed since the burial of the last
confirmed case, but the estimation of final time of Liberia
was September 23, 2015, because of the accumulative reported
numbers of suspected cases being increasing. That is the
reason of the country having entered a 3-month period
of heightened vigilance from May 9, 2015, and WHO will
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Figure 6: The estimation of 𝑅
0
and turning point 𝑡

𝑖
. Here the 95% CI and the deviation between estimated values and correct values of

Logistic model, Richards model, and Gompertz model for Sierra Leone and Liberia dataset have been given.

Table 7: The selection of model about different data.

Data Xi’an West Africa Guinea Liberia Sierra Leone
(H1N1) (Ebola) (Ebola) (Ebola) (Ebola)

Model L (R) L (R) L (R) R R
L denotes Logistic model.
R represents Richards model.
L (R) means both Logistic model and Richards model.

maintain an enhanced presence in the country until the end
of 2015, with a particular focus on areas that border Guinea
and Sierra Leone (http://apps.who.int/ebola/en/current-situ-
ation/ebola-situation-report-13-may-2015).

For the results of model selection, the most appropriate
model is Logistic model or Richards model which requires
only cumulative case data from an epidemic curve (Table 7).
Note that for the earlier stages of an epidemic such as Ebola
in Guinea the Logistic model cannot fit the data well [12].
However, ourmain results show that the Logisticmodel could
be a candidate to fit the data with more time points. All those
indicate that the model selection depends on the length of
the time series. Moreover, Logistic model is a special case of
Richards model with the exponent of deviation parameter
1. Therefore, we conclude that Richards model could be

chosen firstly when estimating𝑅
0
that requiremore extensive

and detailed data [24, 25]. E. Tjørve and K. M. C. Tjørve
[26] indicated that Gompertz model is also a special case
of Richards model, but our results indicate that Gompertz
model may not be a suitable candidate for describing the data
of emerging infectious diseases.

In Figure 4, we fit the data sets for Guinea, Liberia, Sierra
Leone, andWest Africa based on four candidate models, and
our results show that the bestmodels are different for different
data sets. In particular, the “best”model is Richardsmodel for
Liberia and Sierra Leone, and 𝑅

0
could be underestimated if

we choose the Logistic model for Liberia and Sierra Leone,
while turning point 𝑡

𝑖
could be underestimated if we choose

Gompertz model for Liberia and Sierra Leone, as shown in
Table 8 and Figure 6. The error is too big when fitting data
of Liberia and Sierra Leone with Rosenzweig model, so we
only compare the estimation of 𝑅

0
and 𝑡

𝑖
about Logistic,

Gompertz, and Richards model.
By the analysis of Ebola data, we get that model selection

uncertainty caused a magnification of the standard error of
the estimation of 𝑅

0
and 𝑡
𝑖
, so model selection is necessary

when fitting specific data with model. That is to say adopting
the bad model would probably cause overestimation or
underestimation of parameters, basic reproduction number,
and final size. Thus, it has to be emphasized that the model
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Table 8:The estimation of 𝑅
0
and turning point 𝑡

𝑖
, 95% conditional

confidence (95% CI) for each dataset and candidate model.

Model 𝑅
0

95% CI 𝑡
𝑖

95% CI
Liberia (Ebola)
𝑔
4
Richards model 3.0223 (2.6026, 3.4855) 130 (111, 159)

𝑔
1
Logistic model 1.784 (1.7661, 1.802) 137 (135, 140)

𝑔
2
Gompertz model 1.197 (1.1935, 1.2005) 128 (126, 130)

Sierra Leone (Ebola)
𝑔
4
Richards model 1.9016 (1.8563, 1.9475) 165 (157, 174)

𝑔
2
Gompertz model 1.1507 (1.1478, 1.1536) 164 (162, 168)

𝑔
1
Logistic model 1.5894 (1.582, 1.5967) 171 (169, 173)

The models are sorted from the best to the worst.

selection is essential for investigating dynamic of the emerg-
ing infectious disease based on the available data set and
arbitrarily picking a model without any consideration of
alternatives is inadvisable.
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