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Abstract: Neural networks and deep learning have been successfully applied to tackle problems in
drug discovery with increasing accuracy over time. There are still many challenges and opportunities
to improve molecular property predictions with satisfactory accuracy even further. Here, we proposed
a deep-learning architecture model, namely Bidirectional long short-term memory with Channel and
Spatial Attention network (BCSA), of which the training process is fully data-driven and end to end.
It is based on data augmentation and SMILES tokenization technology without relying on auxiliary
knowledge, such as complex spatial structure. In addition, our model takes the advantages of the
long- and short-term memory network (LSTM) in sequence processing. The embedded channel and
spatial attention modules in turn specifically identify the prime factors in the SMILES sequence for
predicting properties. The model was further improved by Bayesian optimization. In this work, we
demonstrate that the trained BSCA model is capable of predicting aqueous solubility. Furthermore,
our proposed method shows noticeable superiorities and competitiveness in predicting oil–water
partition coefficient, when compared with state-of-the-art graphs models, including graph convoluted
network (GCN), message-passing neural network (MPNN), and AttentiveFP.

Keywords: aqueous solubility; oil–water partition coefficient; logS; logP; logD; deep learning;
SMILES enumeration

1. Introduction

Accurate prediction of molecular properties would offer reliable guidance in profiling
lead compounds in the drug-discovery process. The traditional drug design workflows,
often biased by the experiences of chemists, rely on time-consuming and expensive sim-
ulations and experiments to acquire the relevant molecular properties [1]. Launching a
novel drug into the market would take more than ten years on average, with a substan-
tial investment of billions of USD [2]. Meanwhile, deep learning shows great success in
other fields, such as natural-language processing [3–9] and pattern recognition [10–13],
as well as the improvement of computing power and dataset availability. Its potential
in promoting efficiency and success rate of drug development, in particular the predic-
tion of molecular properties, has been widely investigated for years [14–18]. The current
mainstream algorithms for molecular characterization can be simply divided into two
categories—a graph model based on molecular graphs, or a sequence model based on
SMILES (Simplified Molecular-Input Line-Entry System) [19] sequence input. A molecular
graph is a two-dimensional representation of a chemical molecule, and accounts for its
topo-structural features and atom connectivity (e.g., adjacency). Graph-based learning
methods have been widely developed in the field of drug development [17,20–25]. Various
graph neural network (GNN) [26] variants have also demonstrated their effectiveness in
capturing inter-node relationships through message-passing between graph nodes. For ex-
ample, Gilmer et al., summarized different variants and applications of a message-passing
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neural network (MPNN) in quantum chemistry calculations [20]. Schütt et al. [25] proposed
a Continuous-Filter Convolutional Neural Network modeling quantum interactions in
molecules, and AttentiveFP [21] proposed a new type of GNN with graph attention mecha-
nism suitable for molecular characterization. The latter has the best prediction expression
on a drug-discovery-related dataset. GNNs are therefore considered to be an attractive
modeling method for molecular property prediction.

The SMILES characterization is very popular among chemists and machine-learning
researchers. It has been widely used in learning-based analyses in drug discovery [14,27–29].
Segler et al. [27] demonstrated that recurrent neural network (RNN) trained on molecular
SMILES strings would be able to learn the grammar of language as well as the distribution
of chemical space. Analogous to a text stream, each symbol in SMILES can be regarded
as a word. Inspired by the word2vec [3] technology in natural-language processing, the
smiles2vec [14] technology similarly processes the SMILES sequences, in which specific
combinations of SMILES elements are transformed into alternative representations via a pre-
training method. The new representations are then mapped against a pre-defined dictionary
for downstream tasks. A neural network combined with smiles2vec shows superior
performance in predicting distinct chemical properties, including toxicity, activity, solubility
and solvation energy. Meanwhile, transformer [6] becomes another popular class of neural
network in natural-language processing. Notable examples include seq2seq [9] and the
Bidirectional Encoder Representations from Transformers (BERT) [7]. Due to the similarity
between chemical language and natural language, researchers in the field of molecular
characterization have also introduced transformer-based large models plus pre-trained
and fine-tuned models, and obtained good results in chemical reaction prediction [30] and
other fields.

In this study, we exploit the three advantages of SMILES strings over molecular graphs.
First, linear strings are generally more compact than graph formats, and comprise only the
crucial information for defining the chemistry of a molecule. Second, a single molecule may
have multiple possible SMILES strings. For example, CCO, OCC and C(O)C all specify
ethanol. The enumeration of characters in SMILES string can be achieved more easily,
when compared to the generation of isomorphous graphs. This characteristic is particularly
useful for data augmentation, when a dataset generally contains few samples. Finally,
SMILES strings carry characters that explicitly indicate substructures and other topological
information, such as branching, looping structures, and chirality [31]. Here, we selected
SMILES strings as molecular inputs for deep learning, and constructed a Bidirectional long
short-term memory with Channel and Spatial Attention network (BCSA). BCSA is based
on Bidirectional Long Short-Term Memory (BILSTM) [32], followed by channel attention
and spatial attention modules. Data augmentation of molecular structures was achieved by
SMILES enumeration [33], to acquire more tokens as inputs for our models. Generalization
error was reduced substantially by taking the average prediction of all enumerated SMILES
for a given molecule. Due to its importance among the physiochemical properties of a drug
molecule, aqueous solubility prediction has been a subject of intensive studies for many
years [15,34–42]. Hence, we applied our model and workflow first in predicting water
solubility and later extended into the prediction of oil–water partition coefficient. The
prediction performance was compared against three other state-of-the-art graphs models,
to evaluate its accuracy, generalizability and reliability.

2. Results
2.1. Training of BCSA Model

We aimed to develop a new deep-learning architecture using SMILES sequence auto-
encoder and explored the role of predicting molecular solubility and other properties. We
trained different datasets including training set (7955), validation set (996) and testing
set (995). Then, we performed training on the best hyperparameter (Table 1 using both
BILSTM model and our BCSA model. Figure 1A indicated the trend of R2 when we trained
on validation sets with 400 epochs. Figure 1B showed the trend of R2 when we trained
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on testing sets with 400 epochs. Moreover, the smoothing parameters of the curve is set
to approximately 0.8, to reduce the noise. Figure 1 clearly shows that our model has
stronger fitting effect and generalizability than the BILSTM model on both the validation
and testing set.

Table 1. Hyperparameters space and the best for model.

Parameter Possible Values The Best Found

batch_size (512,1024) 1024
vocab_size (120,150) 120

Smiles_max_len (150,200) 150
hidden_size (16,32,64) 64

number_layers 3–5 3
dropout 0–0.6 0.12215

mlp_hidden_size (32,64) 32
learning_rate 0.01–0.001 0.00966
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Figure 1. R2 curves of the BILSTM model (blue line) and BCSA model (red line) in (A) the validation
set, and (B) of the test set.

A general way to improve a deep-learning model is to increase the size of a dataset.
Dataset augmentation offers more training data and becomes a particularly effective tech-
nique in the field of images. The diversity of SMILES string would generate more new data
points. All SMILES strings used in this work were augmented using the SMILES enumera-
tion (SE) technique. Two models were trained with the dataset size up to 20× and 40× of
the original segmented dataset (each molecule has 20 and 40 different SMILES representa-
tions respectively). Since simple molecules may have less than 20 distinct SMILES string
variants, identical variants may be generated in the augmentation step and these duplicates
were removed to avoid potential duplicate bias. The numbers of data points between
training, validation and testing for the 20× and 40× datasets were 134,454:19,881:16,834
and 239,260:30,042:39,800, respectively. The model with the best performance of R2 in
the training process was taken forward to the validation sets. Table 2 shows the perfor-
mance results of test datasets by taking the average predicted value for each molecule
obtained from the enumerated SMILES. We found that both the stability and generaliza-
tion ability of the enumerated model were significantly improved. The best result was
achieved in the SMILES × 40 datasets, indicating that the enumerated model better paid
attention to the different sequence information of the molecules. In contrast, we achieve
significant performance improvement for the Cui datasets which had R2 = 0.72–0.79 with
RMSE = 0.988–1.151 [15], whereas the test performance of in this work is R2 = 0.83–0.88
with RMSE = 0.79–0.95. This model will be further trained to with more dataset to improve
the final accuracy.
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Table 2. Statistics of predicted values, values are for validation/Testing set, respectively.

Dataset
(Higher is Better) (Lower is Better)

R2 Spearman RMSE MAE

Source data
validation 0.8714 0.9294 0.8085 0.5671

Test 0.8365 0.9185 0.9513 0.6435

SMILES × 20
validation 0.8790 0.9352 0.8233 0.5512

Test 0.8779 0.9339 0.8181 0.5493

SMILES × 40
validation 0.8828 0.9375 0.8025 0.5207

Test 0.8813 0.9361 0.7997 0.5226

2.2. Compare with State-of-the-Art Models

To better demonstrate the competitiveness of our sequence-based model, its perfor-
mance in solubility prediction was compared with other state-of-the-art graph models,
including GCN [43], MPNN [20], AttentiveFP [21]. The framework was implemented
using python software package dgl-Lifesci [44] (the training hyperparameters detailed
in Supporting Information: Tables S1–S3). Figure 2 shows the predicted value against
the experimental value from the original test datasets. The predicted values of a better
model would populate more closely to the diagonal line (y = x). All four tested models
demonstrate excellent predictive abilities. Among them, our BCSA model with 40× data
augmentation achieves the best performance on molecular solubility prediction, reflected
by a better correlation and a smaller deviation from the experimental data.
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Figure 2. Scatter plots of the predicted log solubilities of four different model. (A) BCSA model with
SMILES enumeration, (B) GCN model on source canonical SMILES, (C) AttentiveFP model on source
canonical SMILES, and (D) MPNN model on source canonical SMILES. The diagonal line in each plot
denotes a perfect correlation (y = x).
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2.3. Predicting Other Related Physicochemical Properties

We extended the predictions of other relevant molecular properties, namely the oil–
water partition coefficients logP and logD (pH = 7.4), with our BCSA (SMILES × 40) model
(the training hyperparameters detailed in Supporting Information: Tables S4 and S5). The
logP dataset is still based on the Cui et al. [15] dataset. As shown in Figure 3A, our model
achieves an exciting result in the test dataset, with R2 of 0.99 and RMSE of 0.29. The scatter
plot demonstrates that the predicted data achieves excellent fitting throughout the whole
range of the experimental logP values. Meanwhile, the logD (pH = 7.4) training dataset
was taken from Wang et al. [45]. The dataset is randomly divided into 8:1:1. The training
data are obtained using SMILES enumeration [33] 40×. Eventually, the 40× dataset in
a 31,290:3858:4031(TRAIN: VAL: TEST) ratio was obtained. The average predicted logD
values of each molecule was chosen as the final prediction result. Our model shows a
R2 = 0.93 with RMSE = 0.36 in the testing set (Figure 3B), whereas support vector machine
(SVM) models by Wang et al., shows R2 = 0.89 with RMSE = 0.56 for the testing set.
Apparently, our model outperforms that by Wang et al. Moreover, our model also shows
better performance for oil–water-related predictions. The results indicated that our model
could give a reliable and robust prediction.
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In summary, introducing the two attention modules significantly improves the predic-
tion accuracy R2 by 5% in both the verification set and the test set, when compared with
pure BILSTM. Moreover, the BILSTM with attention model resulted in larger variances
between the predicted and the ground-truth values, a sign of possible overfitting often
caused by a small dataset. Therefore, the dataset in this study was enriched by enumeration
of SMILES for each molecule. Our result clearly shows that the accuracy, generalizability
and overfitting problem are improved with an increasing number of enumerated SMILES
strings. Furthermore, our model outperforms three classical graph neural network models
(GCN, MPNN, AttentiveFP) in the prediction of aqueous solubility. When trained to pre-
dict other relevant properties, logP and logD, our model also appears reliable and reaches
prediction accuracy of 0.99 and 0.93, respectively.

3. Discussion

For accurate prediction of aqueous solubility, we proposed an end-to-end deep-
learning framework, in short BCSA, which combines a BILSTM neural network and the
channel and spatial attention modules. By exploiting the advantages of molecular SMILES
strings as training inputs, our BCSA model would be able to capture directly the complex
spatial information of connected atoms, which has posed a great challenge in previous
attempts at the prediction. The overfitting problem arising from small dataset size is also
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circumvented by SMILES enumeration, which effectively enriches the sample size for
training. Successful data augmentation in our workflow would possibly be the reason
for its superior accuracy over three other commonly used graph-based neural networks.
These networks may be further improved via a similar data enrichment process, during
which sufficient isomorphous graphs of each molecule need to be generated for training.
It should also be noted that variations on the training dataset may have a strong impact
on prediction accuracy. Meanwhile, the channel and spatial attention modules facilitate
the identification of influential attributes between adjacent atoms in the SMILES, without
incurring greater overhead in computation. Encouragingly, our BCSA model does not
require additional auxiliary data for predicting logP and logD with even higher accuracy.
The prediction accuracy in terms of R2 is logP > logD > logS. Since most SMILES from the
chemical dataset do not offer explicit information of hydrogen (or specifically the ionization
and/or tautomerization states), the training input may possess sufficient information for
predicting logP, which only accounts for the neutral form of a molecule in both oil and aque-
ous media. However, the ionized and neutral forms of molecules are effectively different
chemical species that cannot be represented with one single SMILES and may have fairly
different solubilities. Hence, the prediction performance for logD and logS may further
be improved when possible tautomers are considered during the SMILES enumeration
step. Nevertheless, with this advanced new algorithm, other properties such as ADMET
or DMPK might be potentially predicted accurately as well if the SMILES datasets of the
molecule were given. More precisely, our BCSA model, possibly in combination with
alternative attention modules, also needs to be evaluated on other datasets in the future
for robustness.

4. Materials and Methods
4.1. Molecular Dataset and Processing

The dataset derived from the work of Cui et al., 2020 [15] contains the 9943 nonredun-
dant compounds. To predict the molecular property value of a compound, its chemical
information needs to be represented in a format compatible for machine learning. SMILES
format is a common choice for incorporating topological information based on chemical
bonding rules. For example, cyclohexane and dioxane may be written as C1CCCCC1
and O1CCOCC1, respectively. As a “chemical language” [19] that encodes the structural
information of a molecule into a compact text string under fixed rules and conventions, the
SMILES of a molecule comprises simple character(s) for atoms and bonds, among which
adjacent characters have high correlation in a chemical sense. Inspired by ref. [30], we
tokenized the SMILES strings of drug molecules using the following regular expression:

token_regex = “(\[[̂\]]+]Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\) |\.|=|

#|−|\+|\\\\\/|:|∼|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])”. (1)

By means of word2vec [46,47], an input SMILES sequence is split into n tokens, which
are then embedded into a vector of l dimensions according to the token position. Hence, the
tokenized characters are eventually embedded into a 2D feature matrix M ∈ Rn×l before
training. Word2Vec would encode tokens into dense vectors by learning the association
of the context of the SMILES string. Moreover, the dataset was expanded to SMILES
enumeration [33] and the SMILES strings which were padded with “padding” to a fixed
length of 150 tokens. The excess characters beyond this length were discarded directly.
Finally, the dataset was randomly split into a training (80%) set and validation (10%) set
and test (10%) set, respectively.

4.2. Model Building

Here we provide an overview of the proposed BCSA framework (Figure 4) and
introduce the core methods in our model. In addition, we specify the implementation
details and the evaluation criteria.
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ded the optimized Convolution Block Attention Module (CBAM) mechanism [49] into the 
current forward sequential neural network. It has two modules including a channel atten-
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Figure 4. The architecture of the BCSA model. We compress the smiles into vectors via data
preprocessing to feed into our trained model. The model consists of three main components: a
BILSTM, an improved Convolution Block Attention Module (CBAM) and a predicted MLP network
with two fully connected dense layers. The CBAM model contains two parts: channel attention and
spatial attention. Both attentions are used in parallel, then add to the outputs which are normalized
with sigmoid function to obtain an information-enriched attention map.

Our model architecture consists of three neural networks. The first one used in
this work was based on the Long Short-Term Memory (LSTM) architecture [48] which
managed the remote relationship in natural-language processing. Each molecular matrix
M is composed of n token vectors which are independent of each other. To obtain the
correlation between adjacent tokens, a BILSTM is introduced to process a molecule with two
hidden LSTM layers (forwards and backwards), which not only can encode information
from front to back, but also obtain information from back to front. The SMILES string can
be represented in a sequence of token embeddings as M = [x1, x2, x3, . . . , xn]. LSTM creates
a hidden state ht by forgetting the hidden state ht−1 and remembering new information

from molecular embedding xt. Adding
→
ht and

←
ht becomes a more informative vector to

acquire relationships between adjacent token embeddings in a SMILES string. The output
of hidden states in every step t can be defined as:

ht = We
←
(ht) + Wv

→
(ht)

=
→

LSTM
(

xt,
→

ht−1

)
+

←
LSTM

(
xt
←

, ht+1

) (2)

where We or Wv is the learned weights, all ht can be turned into a simple concatenation
C = {h1, h2, . . . , hn}. Generally, C is a simple representation of the last hidden state of the
BILSTM encoder.

The next goal is to locate key tokens or features corresponding to certain parts of
the molecule that contributes the most to property prediction. Concretely, this helps
uncovering the connections between tokens and predicted value. Chemists can then apply
such knowledge to design or improve drug compounds. Therefore, we introduced a
convolutional block module attention mechanism in BILSTM. In the second network, we
embedded the optimized Convolution Block Attention Module (CBAM) mechanism [49]
into the current forward sequential neural network. It has two modules including a channel
attention map (Mc) and a spatial attention map (Ms), which exploit the inter-channels and
inter-spatial relationship of features. In other words, from a spatial viewpoint, the channel
attention explores the globality of the molecular hidden state C,while the spatial attention
focus on local. Both attentions are used in parallel, then add to the outputs which are
normalized with sigmoid function to obtain an information-enriched attention map. The
overall attention process can be expressed as:

C′ = σ(Mc(C) + Ms(C))⊗ C (3)

where ⊗ denotes element-wise multiplication, σ denotes the sigmoid function, and C′ is
the output of the overall attention model, respectively. The following introduces the details
of each attention module.
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Channel attention module: This module focuses on ‘what’ is meaningful given as
SMILES tokens. To extract channel attention more efficiently, the dimension of the input
hidden layers feature vector C requires further reduction. Woo et al. [49] proposed using
both average-pooled and max-pooled features, which greatly improves performance of
the model. The training vectors of BILSTM were first aggregated using average-pooling
and max-pooling. Two different descriptions were then generated: Cavg and Cmax, which
represent the average-pooled and max-pooled the training features vectors, respectively.
Next, these descriptions were taken forward to a two-layers shared MLP and merging
the output of average-pooled vectors (Mavg(C)) and max-pooled vectors (Mmax(C)), using
element-wise summation.

Mc(C) = MLP(AvgPool1d(C)) + MLP(MaxPool1d(C))
= W1

(
σ
(
W0

(
Cavg

))
+ W1(σ(W0(Cmax))

)
= Mavg(C) + Mmax(C)

(4)

where σ denotes the ReLU function [50] which reduces the overhead of the network, and
W0, W1 are the related MLP weights.

Spatial attention module: This module focuses on the informative part of the SMILES
word vector. Here it comprised a two-layers and 1-dimensional Convolutional Neural
Networks. The Spatial attention component is computed as

Ms(C) = Conv1d7,1
(

σ
(

Conv1d7,16(C)
))

(5)

where σ denotes the ReLU function, and Conv1d7,x is a 1-D convolution layer with x filters
and seven kernels in total. Finally, the attention values were broadcasted accordingly
during element-wise multiplication operation, using the following formula:

O = AvgPool1d(σ(Mc(C) + Ms(C))⊗ C)= AvgPool1d(C′) (6)

where O denotes the aggregated output of the overall attention model by a 1-D average-
pooling operation.

In the third network, the abovementioned output vectors O were fed into two fully
connected dense layers to predict the molecular property values. ReLU was used as the
activation function, which has been widely adopted in deep-learning research. In addition,
the dropout layers were also added to avoid the overfitting. The model was trained by
minimizing the mean square error (MSE) in a loss function defined as:

MSE =
1
N

N

∑
i=1

(ŷi − yi)
2 (7)

where ŷi is the predicted value, and yi is the ground-truth solubility values of N molecules.

4.3. Hyperparameter Search

Several components, known as hyperparameters, were used to control the behavior
of the learning algorithm in our model. The performance of the model can fluctuate
significantly with different parameters. Here we can use Bayesian optimization [51] to select
efficiently the best parameters. During optimization, the target function for minimization
was defined as

− R2 = −(1− (
N

∑
i=1

(ŷi − yi)
2/

N

∑
i=1

(yi − y)2) (8)

where ŷi is the predicted value, yi is the ground-truth value and y is the mean value of N
molecules. We performed a TPE (Tree-structured Parzen Estimator Approach) search [52]
on hyperparameter space as shown in Table 1. In short, 100 models were trained for
60 epochs and an early stop strategy (patience = 20) was set, in order to accelerate training
speed. The best hyperparameter space was determined when the model yields R2 value
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closest to 1 using in the training set (Table 1). The hyperparameters were later used in
the validation step. If needed, the accuracy of this model could further be improved by
selecting the best hyperparameter set from 30 additionally trained epochs.

The framework was performed using Pytorch and all trainings were finished in a
Linux server (openSUSE 15.2): Intel(R) Xeon(R) Platinum 8173M CPU @ 2.00 GHz and
Nvidia GeForce RTX 2080 Ti graphics card with 11G. This machine is located internally in
the Shenzhen Institute of Advanced Technology, CAS (Shenzhen, China).

4.4. Evaluation Metrics

Four performance indicators commonly used in the regression task were chosen to
assess our model, including: R− Squared(R2), spearman, RMSE, MAE. R2, spearman can
monitor the good-fit capacity of our model to the dataset. Better fitting is expected when
these indicators approach 1. RMSE, MAE keep track of the deviations between predicted
values and experimental values. Good concordance is achieved where these indicators
approach 0.

Supplementary Materials: The following supporting information can be downloaded online: Table S1:
The training hyperparameters of the GCN model; Table S2: The training hyperparameters of the
AttentiveFP model; Table S3: The training hyperparameters of the MPNN model; Table S4: The
training hyperparameters of logP with the BCSA model; Table S5: The training hyperparameters of
logD with BCSA model.
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