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Abstract
The contact structure of a population plays an important role in transmission of
infection. Many ‘structured models’ capture aspects of the contact pattern through
an underlying network or a mixing matrix. An important observation in unstructured
models of a disease that confers immunity is that once a fraction 1 − 1/R0 has been
infected, the residual susceptible population can no longer sustain an epidemic. A
recent observation of some structured models is that this threshold can be crossed
with a smaller fraction of infected individuals, because the disease acts like a targeted
vaccine, preferentially immunising higher-risk individuals who play a greater role in
transmission. Therefore, a limited ‘first wave’ may leave behind a residual population
that cannot support a second wave once interventions are lifted. In this paper, we set
out to investigate this more systematically. While networks offer a flexible framework
to model contact patterns explicitly, they suffer from several shortcomings: (i) high-
fidelity networkmodels require a large amount of datawhich can be difficult to harvest,
and (ii) very few, if any, theoretical contact network models offer the flexibility to tune
different contact network properties within the same framework. Therefore, we opt to
systematically analyse a number of well-knownmean-field models. These are compu-
tationally efficient and provide good flexibility in varying contact network properties
such as heterogeneity in the number contacts, clustering and household structure or dif-
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ferentiating between local and global contacts. In particular, we consider the question
of herd immunity under several scenarios.Whenmodelling interventions as changes in
transmission rates, we confirm that in networks with significant degree heterogeneity,
thefirstwave of the epidemic confers herd immunitywith significantly fewer infections
than equivalent models with less or no degree heterogeneity. However, if modelling
the intervention as a change in the contact network, then this effect may become much
more subtle. Indeed, modifying the structure disproportionately can shield highly con-
nected nodes from becoming infected during the first wave and therefore make the
second wave more substantial. We strengthen this finding by using an age-structured
compartmental model parameterised with real data and comparing lockdown periods
implemented either as a global scaling of the mixing matrix or age-specific structural
changes. Overall, we find that results regarding (disease-induced) herd immunity lev-
els are strongly dependent on the model, the duration of the lockdown and how the
lockdown is implemented in the model.

1 Introduction

The recent emergence of SARS-CoV-2 and the associated disease COVID-19 has
had worldwide impact. Many cities have had large outbreaks and brought them under
control throughmajor interventions. Once those interventions are lifted, in the absence
of effective vaccination, a homogeneous model of infection spread would predict that
as long as less than 1 − 1/R0 of the population was infected, there is always a threat
of resurgence.

Despite large epidemics, cities such as New York remain well below the threshold
expected to be required to achieve herd immunity (Stadlbauer et al. 2020).

To avoid the significant economic and health costs associated with continued inter-
ventions, it is natural to consider the so-called herd immunity strategy. This strategy
allows infection to spread with restrictions in place so that the outbreak finishes and
interventions are lifted when the herd immunity threshold is reached. Typically in
an uncontrolled epidemic, the herd immunity threshold is reached at the peak of the
epidemic, and many additional infections occur as the outbreak slowly wanes. The
additional infections are sometimes referred to as the overshoot (Handel et al. Mar
2007). By calibrating the intervention so that there are no (or almost no) infections
when the herd immunity threshold is reached, interventions can be removed with
minimal overshoot (Di Lauro et al. 2021; Morris et al. 2021).

The severity of the epidemic in many places whose seroprevalence is still very
low has led many to suggest that the herd immunity strategy is not tenable. However,
recent papers (Britton et al. 2020; Gabriela et al. 2020) suggest that immunity acquired
through infectionmay be distributed through the population in such away as to achieve
herd immunity at a lower fraction affected than a homogeneous model would predict.
This is because the initial wave of infections preferentially affects those most at risk.
Thus, it acts like a targeted vaccination, removing the people who are most likely
to transmit infection from the susceptible pool. Generally, the time course of a real
epidemic involves the following stages: (i) short period of unconstrained transmission,
(ii) significant control or lockdown and (iii) relaxation of control measures. Typically,
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during lockdown some spread persists and one pertinent question is whether relaxing
the lockdown will lead to a second wave. In Britton et al. (2020), this question was
explored by looking at prevalence at the end of lockdown in scenarios where lifting
the lockdown did not lead to resurgence. For the purposes of this paper, we refer to
this fraction as the disease-induced herd immunity (DIHI). This means that if DIHI is
higher in one scenario compared to another, then in the former a higher prevalence is
required than in the latter to achieve herd immunity through the disease.

These papers make some simplifying assumptions about population structure that
may not hold. In particular, they do not consider the fact that existing interventions
tend to affect some contacts more than others. For example, the transmission rates
of household contacts are not significantly reduced (and in fact may increase) during
interventions focused on reducing movement. Moreover, many of the highest risk
positions in the disease network are in fact roles (health care workers, delivery drivers,
teachers, etc.) that would need to be maintained in most forms of a lockdown, meaning
that somecommunity linksmaybe increased even as others are limited, and the changes
are distributed heterogeneously through the population.

While using networks to explicitly model contact patterns is an attractive approach,
it entails several drawbacks. If one aims to accurately reproduce real contact networks,
then the amount of data needed may be considerable. Furthermore, data at enough
granularity or quality may simply not be available, or only partly accessible. Even
in the best case scenario, there may be aspects of the contact network (e.g. temporal
and weighted nature of the links, meso-scale structures) that would remain subject to
approximation, inference or parametrisation based on some empirical evidence. This
would open the door to further scrutiny regarding model validity and would make the
model and its conclusions situation-specific. On the other hand, it is equally challeng-
ing to design theoretical network models where several key network properties (e.g.
degree heterogeneity, assortativity, clustering, household structure) can be varied and
tuned as desired within the same model. Hence, we aim to achieve a compromise by
using mean-field models of epidemic transmission on networks which are computa-
tionally efficient (compared to simulating epidemics on explicit networks) and allow
us to analyse systematically how different network properties impact the DIHI thresh-
old. Such mean-field models include the pairwise, edge-based-compartmental (Miller
et al. 2012), percolation (Miller 2016;Moore andNewman 2000) andmessage-passing
(Bianconi et al. 2021) models. Most of these models focus on some average quantity,
such as expected number of nodes/edges of different types or the probability that a
typical node is still susceptible at a given time, followed by some form of closure that
curtails the dependence on higher moments.

A significant part of the mathematical analysis of epidemic models on networks
(from regular and Erdős–Rényi to scale-free networks such as the Barabási–Albert
preferential attachment model) involves the use of mean-field models (Kiss et al.
2017). In fact many elegant analytical/explicit results regarding the impact of network
properties (e.g. degree heterogeneity, assortativity and clustering) on the epidemic
threshold, final epidemic size or endemic equilibrium, optimal vaccination strategies
(Porter and Gleeson 2016; Pastor-Satorras et al. 2015; Chen and Sun 2014; Holme and
Litvak 2017) have been derived from the analysis of mean-field models. Even more
surprisingly, perhaps, certain mean-field SIR models are exact in the limit of large
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configuration model networks (Miller and Volz 2013; Miller and Kiss 2014). Many
such models are mathematically tractable and provide important intuition about how
an epidemic spreads and which properties of the contact network affect this spread.

In this paper, we use four different mean-field models (Kiss et al. 2017): (a) degree-
based heterogeneousmeanfield, (b) clustered and unclustered heterogeneous pairwise,
(c) a new edge-based-compartmental model that allows us to distinguish between
household/local contacts and community/global contacts and (d) an age-structured
compartmental model parameterised with realistic age structure and contact matrices.
The first can only account for degree heterogeneity, while the second and third add
an extra layer to account for local structure such as clustering and households. The
fourth model is based on realistic mixing matrices and implicitly accounts for various
degrees of heterogeneity in mixing.

The primary aim is to investigate how changes in properties of the contact network
impact DIHI. More importantly perhaps, we challenge the way lockdown has been
implemented in many models, namely by a simple reduction inR0 or the transmission
rate, while keeping the contact network or mixing matrix the same. We build a new
edge-based-compartmental model able to distinguish between household and commu-
nity transmissions and use this to implement lockdown by either intervening on both
types of connections or only on the community-based ones. In the same spirit, we use
an age-structured compartmental model in which we implement lockdown either as a
simple scaling of the entire mixing matrix or, more realistically, a set of age-specific
structural changes.

The paper is structured as follows. In Sect. 2, we describe all models including
the underlying network types and relevant model and epidemic parameters. Section 3
contains the results for the network models, while Sect. 3.4 provides the results for the
age-structured model. Finally, in Sect. 4 we discuss the implications of our findings.
Additional technical details are given in Appendix.

2 Methods

Weconsider a set ofmean-fieldmodels that capture different types of small-scale struc-
ture in the contact network. This helps reveal the mechanisms underlying qualitatively
different outcomes.

The first two models are able to account for heterogeneous degree distributions,
without and with clustering. This is followed by a new edge-based-compartmental
model with household structure, i.e. with the ability to distinguish between household
and community contacts. All of these will use the susceptible-infected-and-infectious-
recovered (SIR) epidemicmodel. Finally, we consider an age-structured SEIRDmodel
based on realistic age-structure and mixing matrices. One key input into mean-field
models is the choice of initial conditions. For example, by specifying the number of
susceptible nodes with degree k at time t = 0 we effectively specify the degree dis-
tribution of contacts. Since we wish to map out the impact of degree heterogeneity,
we choose a flexible degree distribution with good control of the mean and variance,
i.e. the negative binomial. We loosely order the models by their relative complexity,
corresponding to gradually incorporating more features of the underlying population
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Table 1 The three degree distributions considered. The delta-like distribution is shifted by 9, as its mean
would be 1 otherwise. The reason for this choice is the fact that in negative binomials the variance cannot
be lower than the mean. Normal-like and scale-free-like distributions instead are shifted by one, so that the
minimum degree is 1. The resulting degree distributions are shown in Fig. 1

Name n p 〈k〉 σ 2 τ

Delta-like 1 0.99 10 1 0.016

Normal-like 3.86 0.3 10 30 0.016

Scale-free-like 1.07 0.107 10 300 0.016

contact structure. While the last model is not explicitly network-based, it uses realistic
mixing matrices over an age-structured model based on the UK data. One can con-
sider this an extrapolation from (or an approximation of) an explicit network model
where individual-level interactions are averaged out over groups of interest from an
epidemiological viewpoint.

2.1 Contact Structure and Epidemic Model

We consider a SIR/SEIRD epidemic spreading in a closed population of size N =
6.65 ·106 (loosely the population size of the UK) with a well-defined contact structure.
For illustrative purposes, we assume that the probability of an individual having k
contacts follows a negative binomial distribution

Pn,p(k) =
(
k + n − 1

n − 1

)
pn(1 − p)k . (1)

The reason for this choice is that wewant tomap out how heterogeneities in the contact
structure impact on the value of the disease induce herd immunity. To illustrate this
point, we consider three different scenarios for the degree distribution of the popula-
tion. In all cases, we fix 〈k〉 = n(1− p)/p and we use the remaining free parameter to
tune the variance. To avoid individuals with degree 0, the degree distribution is shifted
by a constant m, thus making the effective average degree 〈k〉 = m+n(1− p)/p. For
normal-like and scale-free-like distributions, we take m = 1, and for the delta-like
distribution, we take m = 9 (see Table 1).

The parameters chosen are reported in Table 1 and represent degree distributions
of increasing variance, see Fig. 1, moving from almost no variance (delta-like degree
distribution) to a degree distribution with a longer tail, akin to a scale-free network.
These are going to serve as initial conditions in mean-field models which are con-
structed based on compartments such as the expected number of nodes of degree
k that can be either susceptible, infected or recovered. The infection is driven by a
per-link transmission rate τ and a recovery rate γ .
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Fig. 1 The three degree distributions described in Table 1

2.2 Degree-BasedMean-Field Model

In the degree-based mean-field model [also called heterogeneous mean field (Pastor-
Satorras et al. 2015)], we denote by [S]k(t) the expected number of susceptibles with
degree k at time t , similarly for [I ]k and [R]k . We define [S] = ∑∞

k=1[S]k , similarly
[I] and [R]. The closure is made at the level of individuals, meaning that the infection
pressure across a link is simply averaged across the entire spectrum of infected nodes.
The resulting ODEs are

˙[Sk] = −τk[Sk]πI ,

˙[Ik] = τk[Sk]πI − γ [Ik],
˙[Rk] = γ [Ik],
πI =

∑M
�=1 �[I�]∑M
�=1 �N�

, (2)

where N� = Pn,p(�)N is the number of nodes with degree �. This system keeps track
of degree and heterogeneity, but mixing between nodes of different degrees happens
at random but proportionally to degree (Pastor-Satorras et al. 2015; Kiss et al. 2017),
with clustering (the tendency of nodes to form connected triples) playing no role.

The degree-based mean-field model can be derived under the assumption that indi-
viduals with degree k re-select their partners very rapidly, so at every moment, the
status of a node is independent of the status of its current partners. Networks with
this property are also known as ‘annealed networks’, in which links evolve (while
maintaining the degree distribution) fast compared to the dynamics on the network. In
reality, many edges are long-lasting, and so correlations build up: a randomly selected
infected node is more likely to connect to another infected node than a randomly
selected susceptible node. More complex models are needed to correct this.
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2.3 Heterogeneous Pairwise without and with Clustering

An improvement in terms of retaining more of the contact network features is to
consider heterogeneous pairwise models. In this case, we keep track of pairs which
are responsible for driving the infection: for example, [Ak B�] is the expected number
of links connecting a node of degree k in state A to a node of degree � in state B (House
and Keeling 2011; Kiss et al. 2017), likewise for triples of the form [Ak B�Cm]. The
closure is done at the level of pairs (i.e. triples are approximated by singles and pairs),
and hence, an approximation for the triples is needed. These are given by

[Ak B�Cm] = � − 1

�

(
(1 − ϕ)

[Ak B�][B�Cm]
[Bj ] + ϕ

[Ak B�][B�Cm][Cm Ak]
[Ak][B�][Cm]

)
, (3)

where ϕ is the global clustering coefficient in the network. For the un-clustered case,
we simply set ϕ = 0. The resulting ODEs are,

˙[Sk] = −τ
∑

�

[Sk I�],

˙[Ik] = τ
∑

�

[Sk I�] − γ [Ik],

˙[Rk] = γ [Ik],
˙[Sk I�] = −γ [Sk I�] + τ

(∑
α

[Sk S� Iα] −
∑
α

[IαSk I�] − [Sk I�]
)

,

˙[Sk S�] = −τ ([Sk S� I ] + [I Sk S�]) ,

˙[Ik I�] = −2γ [Ik I�] + τ

(∑
α

[IαSk I�] +
∑
α

[Ik S� Iα] + [Sk I�] + [Ik S�]
)

, (4)

where triples are closed using Eq. (3). The system can be significantly simplified for
the ϕ = 0 case. When ϕ > 0, the closures become more complicated and present
further challenges when implemented numerically (see notes in Appendix 1).

The number of equations in the heterogeneous pairwise model grows very large if
the network has degrees of many different types (e.g. because there is an equation for

˙[Sk I�] for every k, � pair). Generalising this to more complex structures can become
unwieldy. Edge-based compartmental models provide an alternative and are discussed
next.

2.4 Edge-Based Compartmental Model with Household Structure and Community
Transmission

It is important to consider models which explicitly distinguish between links that hap-
pen within the households and those that happen elsewhere, as lockdowns act mostly
on inter-household contacts. To consider household structures, we take advantage of
the edge-based compartmental modelling (EBCM) framework (Miller 2011; Miller
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Fig. 2 Caricature of the network model with households of size four and community stubs due to be
connected up following the configuration model

et al. 2012), adapting the framework in Volz et al. (2011) to build a model that (i) has a
more realistic contact structurewith households and (ii) can distinguish betweenwithin
household and community transmission, see Fig. 2. This model keeps the number of
equations tractable.

We assume that individuals are divided into households of size 4. Within house-
holds, there is complete mixing. In addition, each individual has a number of contacts
outside the household, which allow for community transmission. The equations for
this model are given in Appendix 1.

2.5 Age-Structured Compartmental Model

We use a version of the SEIRD compartmental model by Enrique et al. (2015) adapted
to remove any built-in control measures (originally modelled as a Hill repression
function modulating the number of daily contacts in response to control measures)
and to include age-structured interactions in the population. The model is as follows:

Ṡi = −βSi

n∑
j=1

Ci j I j/N j ,

Ėi = +βSi

n∑
j=1

Ci j I j/N j − γE Ei ,

İi = γE Ei − γI Ii ,
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Ṙi = + (1 − mi ) γI Ii ,

Ḋi = +miγI Ii , (5)

where β, γE and γI are age-independent parameters denoting infectivity, rate at
which exposed individuals become infected (inverse of incubation period) and rate at
which infected individuals recover or die (inverse of disease duration), respectively.
(Note that γI in this model corresponds to γ in the above models.) The mi are age-
dependent mortality probabilities and control the fraction of those infected individuals
who die. Susceptible individuals become exposed proportionally to a force of infec-
tion defined as the product of the contagion matrix with the prevalence by age. The
contagion matrix is simply the product of the intrinsic infectivity of the epidemic and
the daily contacts of individuals in age group i with individuals from age group j ,Ci j .
Finally, n is the number of age groups considered and Ni is the count of individuals
in age group i.

2.6 Epidemic Parameters

Ling et al. (2020) reported that the median time from symptoms onset to first negative
RT-PCR in oropharyngeal swabs of convalescent patients was around 10 days, and
further evidenceWei et al. (Apr 2020) suggested that pre-symptomatic infection could
happen 1 − 3 days before the first symptoms appear. Accordingly, we set γ = 1/14
(i.e. an average of two weeks before recovery). Before setting τ , we summarise the
expression for R0 for the various models that we consider. For the heterogeneous
degree-based mean-field model (Kiss et al. 2017), we have

R0 = τ 〈k2〉
γ 〈k〉 . (6)

For the heterogeneous pairwise model, we use

R0 = τ

τ + γ

〈k2〉 − 〈k〉
〈k〉 . (7)

For the edge-based model, we set the in-household infection parameter βh to be 3− 5
times bigger than the inter-households infection parameter βc.

The basic reproduction number of the edge-based and the age-structured models
are given by the leading eigenvalues of the following two next-generation matrices
(Diekmann et al. June 2010). First, for the edge-based compartmental model, based
on Pellis et al. (2012), we have

A =

⎡
⎢⎢⎣

μ̃cμ0 1 0 0
μcμ1 0 1 0
μcμ2 0 0 1
μcμ3 0 0 0

⎤
⎥⎥⎦ , (8)
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where

μ̃c = βc

(βc + γ )
E[D̃], μc = βc

(βc + γ )
E[D], (9)

with D̃ and D the distribution of the excess degree [i.e. the distribution of the left-over
edges attached to a node reached by following one random edge, see (Newman 2018)]
and degree distribution of the network, respectively.μ0,μ1,μ2 andμ3 are the expected
number of infected in generation 0, 1, 2 and 3 in a household of size 4. These values
can be found in Britton et al. (2019) on page 222/223, with ϕI (βh) = γ /(βh + γ ).

Finally, the R0 for the age-structured compartmental model is given by the largest
eigenvalue of:

β

γ I

⎡
⎢⎢⎢⎢⎣

N1
N1
C11

N1
N2
C12 · · · N1

Nn
C1n

N2
N1
C21

N2
N2
C22 · · · N2

Nn
C2n

...
...

. . .
...

Nn
N1

Cn1
Nn
N2

Cn2 · · · Nn
Nn

Cnn

⎤
⎥⎥⎥⎥⎦ .

where β is the intrinsic infectivity, γ I is the rate at which infected individuals either
recover or die, Ni is the size of the population in age group i , and n = 18 is the
number of age groups in the model.C is the age-mixing matrix, and the normalisation
factor Ni

N j
comes from the fact that at t0, there are only susceptible individuals in the

population of each age group and therefore Si = Ni in the partial derivative with
respect to I of the r.h.s of the second equation in system (5).

3 Results

3.1 The Impact on DIHI

Most of our scenarios are concerned with determining the impact of model and demo-
graphic heterogeneities on the DIHI levels. In well-mixed homogeneous populations,
each individual contributes equally to spreading, and therefore, DIHI is a well-defined
quantity, independent of whom has been infected during the first wave. In models with
degree heterogeneities, nodes with higher degree contribute to the spreading of the
disease much more than nodes with fewer links. This means that depending on whom
has been infected, we can observe different levels of DIHI. This effect, however, does
not show in our results since the DIHI is based on the infections accumulated during
the first wave as determined by our equations.

It is well known that in the simple compartmental model herd immunity at time
t = 0 is achieved as long as at least 1 − 1/R0 of the susceptible individuals are
removed or immunised. In line with Britton et al. (2020), our general setup is that an
initial epidemic spreading freely for a short time is intervened upon by implementing
a lockdown period of fixed duration. Afterwards, all parameters immediately return to
their pre-lockdown values. In the most basic case, this is done by keeping the network
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or the mixing matrix the same and multiplying the transmission rate by a constant
0 < α < 1. Crucially, however, we also explore the implications of how the lockdown
is modelled; that is, we investigate the difference between reducing the transmission
rate while keeping the network the same and changing the contact network, the latter
being more in tune with what happens in reality. In the age-structured model, we
compare a reduction of all entries in the mixing matrix with a number of scenarios
involving school closure and work distancing.

For the edge-based compartmental model, we focus on final epidemic size but still
under the assumption of a lockdown period. This is because we want to compare how
the two different strategies affect the eventual outcome of the epidemic, rather than
how the optimal α varies between the two strategies, a comparison that would be
difficult to interpret.

There is an extremely strong relation between the speed or rate of spread of the
uncontrolled epidemic and the timing and length of the lockdown. In fact this can
be visualised in terms of the ‘flattening of the curve’ argument. A reduction of the
transmission rate during lockdown leads to a flattening of the epidemic curve with
a reduced peak and an extended duration which ideally should fit within the control
period. Thismeans that if the epidemic grows quickly and the lockdown period is short,
two outcomes are possible. First, a fast growing epidemicwith a short lockdown period
needs to bemet with a significant reduction in the transmission rate, i.e. small values of
α. This will lead to a reduced epidemicwhich does not have enough time to unfold, and
the lifting of lockdown is followed by a full-blown epidemic. Second, if the reduction
is not strong enough (i.e. larger values of α), then a significant epidemic will occur
during the lockdown itself with no further peak after lifting control Di Lauro et al.
(2021), see also Fig. 3.

3.2 Contact Heterogeneity and Clustering

Themain focus here is to investigate the impact of degree-heterogeneity and clustering
on herd immunity induced by a first wave of the epidemic. In populations with hetero-
geneous contact patterns, one can preferentially target high-risk individuals and this
will reduce the number needed to achieve DIHI. Such heterogeneity can be exploited
in many ways: for example, targeted immunisations (Albert et al. 2000) and acquain-
tance immunisation (Cohen et al. 2003). Equally, the epidemic itself typically finds
the high-risk groups first and thus ‘removes’ important individuals or risk groups. In
line with (Britton et al. 2020; Gabriela et al. 2020), we exploit this fact and consider
different levels of degree-heterogeneity and different mean-field models to explore
what happens in the wake of the lockdown period when some level of spreading is
possible.

In each scenario considered, we seeded nodes with degree k = 10 with [Ik](0) = 5
infected individuals, the rest of the population being fully susceptible. We let the
epidemic run until the cumulative number of infected people reached 0.5% of the
population. Then, a one-shot intervention lasting exactly T = 130 days kicked in.
During lockdown, control measures made τ → τ̃0 = ατ (by acting on τ ). Afterwards,
lockdown was lifted and τ immediately returned to its pre-lockdown value. For the
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Fig. 3 Optimal α (see legend) and DIHI (denoted as hd in figure legends and axis labels) in delta-like (first
row), normal-like (second row) and scale-free-like (third row) networks using the heterogeneous mean-field
(first column) and heterogeneous pairwise model with ϕ = 0 (second column). Continuous curves indicate
[I](t), while dashed curves indicate [R](t). The two vertical curves represent the beginning and the end of the
lockdown. Duration of lockdown is 130 days. Finally, the horizontal line and the corresponding percentage
reported are the cumulative prevalence at the end of lockdown for the best strategy that does not allow for
a second wave

edge-based-compartmental and age-structured models, lockdown also involved pref-
erential interventions on community or household links and modulation of the mixing
matrix, respectively.

Figure 3 shows results from the degree-based mean field model (left column) and
heterogeneous pairwise model without clustering (right column) for networks with
increasing levels of degree heterogeneity (from top to bottom). In each case, we find
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the optimal α (a simple down scaling of the transmission rate without change to the
network) and report the number of infections required to achieve DIHI (i.e. total of
infected and recovered nodes at the end of lockdown such that the epidemic after
lockdown is subcritical). Several observations can be made. First, a higher value of
DIHI also means a higher value of the cumulative incidence, but the two quantities are
different. Secondly, for both models, aggressive control (value of α) leads to a second
wave. Equally, if the control is too weak (high value of α), the epidemic will still run
its course during the first wave with some reduction in the final size. Hence, there is
an optimal value of α for which the final epidemic size is smallest and the epidemic
post-lockdown is subcritical.

Both models clearly show that the value of DIHI decreases with the variance of the
degree distribution. Despite displaying the same overall trends, the two models are
quantitatively different. In a like-for-like comparison, the degree-based heterogeneous
mean-field model leads to larger overall epidemics. This is to be expected since this
model does not keep track of the links explicitly and thus over estimates what would
happen in a true simulation on an explicit network (Kiss et al. 2017). The pairwise
model, however, accounts for links and correlations and leads to epidemics that are
typically less potent. Furthermore, the heterogeneous pairwise model leads to smaller
values ofDIHI showing that the accuracywithwhich thenetwork structure is accounted
for matters. This demonstrates that model choice is important as the precise levels of
DIHI matter in a real-world scenario.

The effect of clustering is illustrated in Fig. 4. Typically, clustering lengthens the
duration of the epidemic and lowers the peak when compared to the unclustered case
[see also (Volz et al. 2011)]. The final epidemic size is also smaller. This means that
there is a small amount of leeway for implementing control and that the control effort
can be smaller compared to the unclustered case. It is worth noting that the final
epidemic size is also smallest at the optimal α value [(see also (Britton et al. 2020)].

Finally, opting for the more accurate heterogeneous pairwise model, the level of
DIHI is plotted for increasing values of variance and for different clustering levels,
see Fig. 4. It is clear that higher variance can drive DIHI levels to as low as 30%.
Clustering in the heterogeneous pairwise model leads to even smaller values of the
DIHI, although increasing variance in the degree negates the effect of clustering and
the DIHI levels are very similar to those observed with ϕ = 0.25 and ϕ = 0.5. This
highlights the non-trivial interactions between network properties where clustering
has biggest impact in sparse networks and where high levels of degree heterogeneity
can negate the effect of clustering.

3.3 All Versus Community Control Only

Although the previousmodels do account for some important contact network features,
they are not ideal to capture structure such as households. Being able to capture
households explicitly and having the flexibility to differentiate between household and
community transmission are important because many of the interventions available to
us (e.g. closing schools and workplaces) affect community transmission differently
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Fig. 4 (left) Difference between control acting on un-clustered networks (continuous lines) and clustered
networks (dashed lines), with clustering coefficient ϕ = 0.5, corresponding to the second point on the
x-axis of the right panel. Vertical lines are at the beginning (continuous) and end (dashed) of control. Blue
curve is optimal control for ϕ = 0, red for ϕ = 0.5. (right) Impact of variance in degree distribution on
DIHI he , for different pairwise models with different values of ϕ. Average degree is 〈k〉 = 6, τ = 0.04 and
γ = 1/14. Control duration is 100 days from the moment I (t) + R(t) ≥ 0.025 (Color figure online)

Fig. 5 Control scenarios based on the EBCM model with intervention scaling factor of α = 0.6 starting
at T = 60 (dashed vertical line), and lasting for different durations (continuous vertical lines). (left)
Intervention on the whole network, (right) intervention on the community structure. Parameters of the
epidemic and community network are 〈k〉 = 4, σ 2 = 7.5, βh = 0.045, βc = 0.015

from household transmission. Thus, a distinctive feature of most lockdown measures
is a change in network structure, rather than a global reduction in transmission rate.

Although our model is not an exact reflection of true population structure, it allows
us to investigate whether an intervention that disproportionately affects between-
household transmission can be appropriately captured by a model that treats the
intervention as reducing all transmission rates.

For a given start time and intervention strength, if the duration of the intervention is
long enough, the number of infections becomes very small and the eventual rebound
has the same shape, regardless of duration. The optimal intervention strength leaves
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Fig. 6 Final epidemic sizes based on the EBCM as a function of the beginning of lockdown and its duration,
with two different strategies: intervention on thewhole network (left) or intervention on the community links
only (right). Each value is the minimum final epidemic size that can be obtained for varying α. Parameters
of the epidemic and community network are: 〈k〉 = 4, σ 2 = 7.5, βh = 0.045, βc = 0.015

the population sitting at the DIHI threshold when the epidemic dies out. When the
intervention is lifted, no rebound occurs. Thus, the outcomes of the optimal interven-
tion are the same if the duration is long enough. In Fig. 5 and at the top right in both
panels of Fig. 6, we notice that if the intervention is long enough, the optimal final size
becomes independent of duration. To see this for earlier start times requires longer
durations.

Our argument to explain why this happens is as follows: suppose that for a given α,
we find the smallest time such that DIHI is achieved. Prolonging the intervention for
longer than said time will result in the number of actively infectious people reducing
even further by end of lockdown but not change the downward trend of the epidemic,
which will eventually die out.

Comparison of the top right of both panels in Fig. 6 shows that the optimal com-
munity intervention allows more infections than the optimal global intervention.

The intuition behind this is based on the observation that epidemics typically exploit
‘heterogeneities’ in the population. For networks, this means that high-degree nodes
typically become infected early on in the epidemic. This is the main reason why a
first epidemic wave in a network with very heterogeneous degree infects the highly
connected nodes. In a scale-free-like network, the number of such nodes is small (e.g.
20% of the nodes responsible for 80% of infection). If the epidemic progresses with
strong interventions in place, it cannot spread far beyond these high-degree nodes.
Once it dies out, the residual network is highly fragmented and made up of much
lower degree nodes.

In this household model, community links drive degree heterogeneity. Household
links alone lead to a regular network. Hence, when we effectively cut most community
links, heterogeneity in degree is significantly reduced for the duration of control. This
means that many high-degree nodes that would normally be infected during the first
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wave will now not get infected. The infection is unable to target the highest degree
nodes. When control is lifted, the high-degree nodes reactivate their links, allowing
the epidemic to rebound.

However, when controlling both link types equally, degree heterogeneity is pre-
served and the infection again preferentially targets the high-degree nodes. A weaker
control targeted to all edges rather than just community edges may allow an initial
wave of similar size, but it will preferentially target the high-degree nodes. So this
type of control acts as a very effective way of finding highly connected nodes. This
then means that at the end of lockdown, it is more likely that the most ‘dangerous’
nodes be removed, and with that, a smaller chance of a second wave.

Consider two epidemicswith the same intervention start time, providing the optimal
strategy for either the global or the community case. We would expect that the average
community degree of those who have been infected in the global case would be higher
than in the community case. Thus, on average, the individuals immunised by infection
in the community case will be less important to disease transmission and thus more
of them must be immunised to achieve the DIHI threshold. This is important because
households may be able to sustain the epidemic for extended amounts of time and
therefore change the outcome in DIHI levels.

3.4 ScalingVersus Modulating theMixingMatrix Model

In this section, we further explore the notion that modulating the effective R0 of the
epidemic through modifying the structure of the mixing matrix (in this case, the age-
structure mixing matrix) can affect the system differently from achieving it through
simply scaling each element of the mixing matrix. To do so, we began by considering
three scenarios described by Prem et al. (2017), namely school closure, school closure
and social distancing, and work distancing. In a baseline, no-intervention case, the
matrix of daily contactsCwas set to be the sumof 4 components: school contacts,work
contacts, home contacts and other contacts. In what follows, we use the corresponding
matrices of age-banded daily contacts in the UK produced by the POLYMOD study
(Prem et al. 2017). Briefly, school closure is realised by zeroing the school component
of the mixing matrix; school closure and social distancing involved zeroing school
contacts as well as reducing by half the number contacts at other locations between
school-going individuals (first four age groups); and work distancing is implemented
by halving the contacts made at the workplace. For each of these interventions, we
compared the behaviour of the system when re-scaling the matrix of total contacts
so that its R0 during the intervention was the same as the R0 of the modified mixing
matrix during the intervention (namely 2.114, 2.106 and 2.179 for scenarios 1 to 3,
respectively).

Age-banded population counts (18 5-year bands) were taken from the Office for
National Statistics (licensed under the Open Government Licence), pooling all age
groups above 85. Mortality rates were taken from the modelling of Robert et al.
(2019), assuming that the rates in ten-year age bands are the same as across two five-
year age bands. These rates were calculated based on cases in China in the initial
outbreak and from the closed population on the Diamond Princess cruise ship. It is
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Fig. 7 Comparison of the effect of three different control measures in the age-structured compartmental
model. The three measures, school closure, school closure and social distancing,work distancing (coloured
continuous lines, from left to right), act on the structure of thematrix (see text). For reference, the dashed lines
result from an intervention reducing infectivity but yielding the same effective R0 during the intervention.
Epidemic values are (γE , γI ) = (1/7, 1/14). Vertical dashed lines indicate beginning and end of control

possible that these rates may prove to be overestimates compared to populations that
do not experience overwhelming levels of hospitalisation, but they are not likely to be
impacted by the interventions considered here.

To determine the evolution of the epidemic in this baseline case, we first scaled
the contact matrices so that the system’s R0 was 2.5 (to maintain consistency with
previous sections). In all cases, we used the same start date (T = 260) and duration
(150 days) for the intervention. These parameters were arbitrarily chosen among the
sets of possible parameters resulting in a sub-critical epidemic post-intervention.

Figure 7 confirms that all interventions (coloured lines) result in a reduction in the
number of infected individuals. However, whether this intervention is realised through
modulating the contact matrix (solid lines) or through uniform scaling (dashed lines)
results in substantially different outcomes (≈ 16% differences for scenarios 1 and 2,
≈ 3% in scenario 3), even though the scaling factors used in the control interventions
(dashed lines) are very similar from one scenario to the other. This is clear evidence
that the structure of the contacts modulates the effects of the intervention.

Figure 8 provides a visual intuition as to why thework distancing scenario is closest
to simply scaling the matrix. As pointed out by Mossong et al. (2008), assortative
mixing dominates in 3 of the components (home, school, other). Thus, school closure
primarily affects diagonal elements of the mixing matrix (and primarily for the first 4
age groups). Intervention 2 does involve halving (some of) the contacts in the other
component, and some of those terms diffuse away from the diagonal; however, these
contribute little to the overall mixing matrix. In contrast, the work component is the
only component to feature what Mossong et al. (2008) describe as a wide contact
plateau.Because this plateau accounts formore than half of the total number of contacts
within the corresponding 8 age bands, intervention 3 (social distancing) is most akin
to scaling the entire matrix.
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Fig. 8 The four components of the POLYMOD age mixing matrix (after subtraction of the diagonal)

Fig. 9 Impact of zeroing school (left), work (middle) and other (right) components when each age group
has the same number of individuals and each component contributes the same number of contacts. For
each, left panel shows the total prevalence of infected individuals in the population using the intervention
(red) and the control (scaling of the entire contact matrix to achieve the same effective R0, in black). The
right panel shows the prevalence of infected in three pooled age groups chosen to reflect the target of each
intervention

To further clarify how the structure of the contacts modulates the effects of the inter-
vention, we carried out simulations in which two confounding factors were removed,
namely heterogeneity in the number of individuals in the different age bands and in the
frequency of contacts by age. Whereas the former plays a key role in the calculation
of the effective R0 (see Sect. 2.6), the latter weights the impact of the intervention.
For example, zeroing school contacts which only account for 12% of the total number
of contacts will be negligible compared to zeroing other contacts that account for
40%. Therefore, in what follows, all age groups were set to have the same number of
individuals (1/18-th of the total population) and all contact components were scaled
to have the same sum of elements (arbitrarily, the sum of the original number of other
contacts). We then systematically analysed the effect of three different interventions
in which one component (school, work or other) was systematically scaled down by
a factor taking values between 1.0 (no intervention) and 0.0 in steps of 0.1.

Figure 9 shows the effect of the most severe form of intervention (the zeroing of
the relevant component) and clearly demonstrates that once confounding factors are
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removed, changes in the mixing matrix lead to different outcomes in terms of whether
such an intervention is more or less effective than simply scaling the matrix to achieve
the same effective R0. Here, zeroing the school component is less effective than scaling
the overall matrix (despite an overall scaling factor of 0.61). Instead, zeroing either
the work or other component is more effective than scaling the overall matrix (despite
larger scaling factors, 0.87 and 0.88, respectively). It should be noted thatwhile zeroing
the work and other components leads to similar results in terms of total prevalence,
there are differences in prevalence by age which could have significant implications
when age-structured mortality rates are considered.

4 Discussion

We explored the impact of different types of small-scale structures of contact networks
on disease-induced herd immunity. We did so by using well-established and widely
used mean-field models of epidemics on networks. This choice was motivated by the
following considerations. First, constructing high-fidelity contact networks requires
detailed and extensive data, which may not be available or only partially so. Even
if extensive data were available, models of high fidelity remain subject to further
improvements and would be scenario-specific with results that could be difficult to
generalise. Second, we do not know of any theoretical network models that are flex-
ible enough to independently tune degree-heterogeneity, assortativity, clustering and
household structure in a large population. It is worth noting that, in a more realistic
scenario in which simulations on explicit networks are considered, the precise defini-
tion of disease-induced herd immunity is problematic, as we would have to deal with
stochastic processes in which distinguishing between sub- or super-critical epidemics
is far from trivial. Finally, mean-field models are computationally efficient compared
to simulations and allow to investigate the impact of various network properties on
DIHI in a qualitative manner, even if the choice of mean-field model depends onwhich
contact network property we wish to study.

In order of increasing complexity, the models used in this paper are: the degree-
based heterogeneousmean-field, heterogeneous pairwise (without andwith clustering)
and an edge-based compartmentalmodelwhich explicitly includes household structure
and can distinguish between household and community transmission. While these
cannot be used as such to inform policy, they still provide important insights into
model selection and key features that need to be captured, or can be exploited, to
identify the best possible control measures. In addition, we also tested our findings
against a more realistic age-structured model with real mixing matrices. We stress
that we did not set out to identify the ‘best’ or most ‘accurate’ model but rather we
used well-established and computationally efficient models of epidemic on networks
to systematically investigate the impact of various small-scale structures in the contact
network on DIHI levels.

We have shown that increased degree heterogeneity (i.e. higher variance in the
degree distribution) leads to DIHI levels that are much smaller than the basic com-
partmental model, 1 − 1/R0. This is line with the findings of Britton et al. (2020),
Gabriela et al. (2020). Moreover, we quantified the extent to which the DIHI induced
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by the first wave depends on the variance in the degree distribution. We have shown
that herd immunity in clustered networks is even lower because epidemics on clus-
tered networks last longer and have lower peaks, allowing more flexibility regarding
the start and intensity of control.

Perhaps, the most important question that we addressed regards how lock-
down/control is implemented in different models. Many models assume that during
lockdown the contact network ormixingmatrix is not changing but rather the transmis-
sion rate is scaled (Britton et al. 2020; Di Lauro et al. 2021; Gabriela et al. 2020;Morris
et al. 2021). We do not believe that this is appropriate because during lockdown the
underlying contact structure changes. Our results with the edge-based compartmental
and age-structured models have shown that these two approaches differ in outcome.
Perhaps, the assumption of a non-changing contact structure during lockdown is more
likely to be made in mean-field models. In models at higher than mean-field resolution
(e.g. agent-based), it is much easier to explicitly modify the contact network.

Using simple models, we have therefore illustrated that small-scale structures, such
as households, have an impact on the value of the DIHI threshold. Models where
this is incorporated, and where it is possible to distinguish between local (within
household) and community links (between households), have shown that interventions
make the contact structure more homogeneous (e.g. when community links are cut or
transmission across these is reduced), and the immunity induced by the disease spread
will no longer effectively target the most active individuals. In an extreme case, it will
require more infections to achieve herd immunity than through random vaccination
(Ferrari et al. 2006). Indeed, when transmission across community links is reduced, the
first wave leaves behind clusters of either susceptibles (i.e. households who avoided
infection) or clusters of recovered individuals (i.e. households who became infected).
This unusual correlationmeans that the residual network of susceptible nodes hasmore
contacts, compared to the scenario where the same fraction of currently recovered
individuals were vaccinated randomly. This means that when control finishes, there
is still a significant amount of heterogeneity in contacts that can lead to a significant
second wave. The exact difference in DIHI levels between a model that accounts for
small-scale structure andone that does not,will dependon theprecise parameterisation.
However, we expect that one would get slightly more optimistic estimates for DIHI
levels (i.e. lower values, meaning fewer infected individuals needed in order to avoid a
super-critical epidemic at the end of the lockdown) when such features of the contact
networks are ignored.

Another important observation resulting from our work is that it is extremely dif-
ficult to make general statements by extrapolating from findings based on simple
models. Most models in fact ignore meso-scale structures (e.g. degree heterogeneity
does well for local or microstructure, while mixing matrices do well for macro-scale
mixing) and their absence may exacerbate the impact of an intervention (either posi-
tively or negatively) leading to erroneous conclusions. In the present paper, we saw that
when intervention could not act on the global network of contacts, DIHI levels varied
substantially, although heterogeneities still played a major role in reducing them.

Finally, it is worth noting that in all models we considered, when lockdown ended
(and if DIHI was not reached), epidemics went on to grow exponentially. However,
in many real-life scenarios, a prolonged phase of sub-critical spreading (i.e. slow
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decay) has been observed before the exponential growing phase returned. There is a
number of reasons why this behaviour is not observed in our models: (i) deterministic
models fail to capture fluctuations that dominate when the number of infected people
is small, which might have a major impact on resurgence; (ii) during lockdown, the
contact structure changes drastically and abruptly, but when lockdown is lifted, there
is a delay/inertia in going back to pre-lockdown status, such lag having important
implications on resurgence; and (iii) after lockdown, some social distancing measures
remain along with social awareness reducing exposure to the disease. Understanding
and modelling these effects are an interesting challenge to address in future work.

In complementing our study of network-based mean-field models, we used a model
with no explicit contact structure, where instead contact structure was alluded to via
age-related mixing patterns. In the present situation with COVID-19, such models are
appealing because they explain some of the structure of the population and provide a
rationale for establishing a lockdown. Moreover, with higher mortality rates among
older people, age-structured models are of interest in their own right. There is some
tension between which model is most apt for describing population experience of the
infection, the control measures effected and the outcomes for the population. The ideal
solution may lie between some of the options presented here.

However, age-structuredmodels cannot saymuch that is explicit about the structure
of contacts within the population. While we have discussed ways in which lockdowns
can be implemented in such models, the formulation is arguably less intuitive than
in the network case. How to bridge the gap is an interesting question. An age-related
networkmight be one labelledwith age classes,with analysis focusedonunderstanding
the positions in the network occupied by individuals of a given age. This could be
coupled to householdmodels of network formation, onewith variable sizes and smaller
households more likely to feature older individuals. Once the general structure of
such networks is known, adapting the models here would be simple enough. These
considerations are beyond the presentation here but would be a fruitful avenue for
future discussions, particular if additional lockdowns are required.
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5 Appendix

5.1 Pairwise Equations

We can account for clustering in the pairwise model, by introducing a clustering factor
ϕ. The equations are similar to (4), but when closures are implemented we have to
consider both open and closed triples.

In the case of open triples, the equations for the closures are the same as in (4),
scaled by (1 − ϕ) to account for clustering, i.e.

[A�Sk I ]o = (1 − ϕ) k−1
k

[A�Sk ][Sk I ][Sk ] ,

[I Sk A�]o = (1 − ϕ) k−1
k

[I Sk ][Sk A�][Sk ] ,

(10)

where the superscript o indicates open triples. For closed triples, we first study
[A�Sk Im]c. This quantity represents triples in which the first node is in state A, the
middle node is in state S with degree k, and the third node is in state I with degree m.
The triple is closed; therefore, the third node is connected to the first one. This intro-
duces correlations when we write the triple in terms of pairs for the closure, which we
indicate with CS� IM .

[AkS� Im] = ϕ[AkS�](� − 1)
[S� Im]
�[S�] CAk Im . (11)

The correlation can be written in terms of the ratio between realised pairs [Ak Im] and
possible pairs [Ak Im] in a well-mixed population:

CAk Im = [Ak Im]
k[Ak]m[Im ]

〈k〉N
. (12)

Hence, the closure is

[AkS� Im] = ϕ
(� − 1)

�

〈k〉N
km

[AkS�][S� Im][Ak Im]
[Ak][S�][Im] . (13)

In a similar manner, we can write the expression for [Im Sk A�]. The resulting system
is therefore

˙[Sk] = −τ [Sk I ]
˙[Ik] = τ [Sk I ] − γ [Ik]
˙[Rk] = γ [Ik]
˙[Sk I�] = −γ [Sk I�] + τ

[∑
m

([Sk S� Im] − [Im Sk I�]) − [Sk I�]
]
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˙[Sk S�] = −τ

[∑
m

(
[Sk S� Im] − [Im Sk I�]

)]
,

(14)

where

[AkS� Im] = ϕ[Ak S�]� − 1

�

[S� Im]2
〈k〉[S�]2 [Im ]

N

+ (1 − ϕ)
� − 1

�

[AkS�][S� Im]
[S�] .

Edge-Based Compartmental Model

Weconsider a networkwith 4N nodes partitioned into households of size 4.Apart from
the within household community, each node has a number of links to nodes outside
the household, according to the degree distribution Pn,p(k). The within household
per-contact-transmission is denoted by βh , while the community transmission by βc.
The resulting system is given below,

ϕ̇SSS(t) = −3A(t)ϕSSS(t), (15)
ϕ̇SSI (t) = 3A(t)ϕSSS(t) − γ ϕSSI (t) − 2(A(t) + βh)ϕSSI (t) − βhϕSSI (t), (16)
ϕ̇SSR(t) = γ ϕSSI (t) − 2A(t)ϕSSR(t), (17)
ϕ̇SI R(t) = 2A(t)ϕSSR(t) + 2γ ϕSI I (t) − γ ϕSI R(t) − βhϕSI R(t), (18)
ϕ̇SRR(t) = γ ϕSI R(t) − A(t)ϕSRR(t), (19)
ϕ̇I RR(t) = A(t)ϕSRR(t) + 2γ ϕI I R(t) − γ ϕI RR(t) − βhϕI RR(t), (20)
ϕ̇RRR(t) = γ ϕI RR(t), (21)
ϕ̇I I R(t) = −2γ ϕI I R(t) − 2βhϕI I R(t) + 3γ ϕI I I (t), (22)
ϕ̇I I I (t) = (A(t) + 2βh)ϕSI I (t) − 3γ ϕI I I (t) − 3βhϕI I I (t), (23)
ϕ̇SI I (t) = −(A(t) + 2βh)ϕSI I (t) − 2βhϕSI I (t) + 2(A(t) + βh)ϕSSI (t) − 2γ ϕSI I (t),

(24)

̇(t) = −(βhϕSSI (t) + 2βhϕSI I (t) + 3βhϕI I I (t) + βhϕSI R(t) + 2βhϕI I R(t) +

+βhϕI RR(t)), (25)
θ̇ (t) = −βcϕI (t), (26)

ϕI (t) = θ(t) − γ (1 − θ(t))/βc − (1 − ε)
ϕ′(θ(t))

〈k〉 
(t), (27)

A(t) = ψ ′(θ(t))

ψ(θ(t))
βcϕI (t), (28)

S(t) = (1 − ε)
(t)ψ(θ(t)), (29)
Ṙ(t) = γ I (t), (30)
I (t) = 1 − S(t) − R(t), (31)

with the following initial conditions:

ϕSSS(0) = (1 − ε)3, (32)

ϕSSI (0) = 3ε(1 − ε)2, (33)
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ϕSI I (0) = 3ε2(1 − ε), (34)

ϕI I I (0) = ε3, (35)

θ(0) = 1, (36)


(0) = 1, (37)

S(0) = 1 − ε, (38)

I (0) = ε, (39)

with all other variables set to zero at time t = 0.
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