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Abstract: Muscle contraction results from cyclic interactions between myosin II motors and actin
with two sets of proteins organized in overlapping thick and thin filaments, respectively, in a nearly
crystalline lattice in a muscle sarcomere. However, a sarcomere contains a huge number of other
proteins, some with important roles in muscle contraction. In particular, these include thin filament
proteins, troponin and tropomyosin; thick filament proteins, myosin binding protein C; and the elastic
protein, titin, that connects the thin and thick filaments. Furthermore, the order and 3D organization
of the myofilament lattice may be important per se for contractile function. It is possible to model
muscle contraction based on actin and myosin alone with properties derived in studies using single
molecules and biochemical solution kinetics. It is also possible to reproduce several features of muscle
contraction in experiments using only isolated actin and myosin, arguing against the importance
of order and accessory proteins. Therefore, in this paper, it is hypothesized that “single molecule
actomyosin properties account for the contractile properties of a half sarcomere during shortening
and isometric contraction at almost saturating Ca concentrations”. In this paper, existing evidence
for and against this hypothesis is reviewed and new modeling results to support the arguments
are presented. Finally, further experimental tests are proposed, which if they corroborate, at least
approximately, the hypothesis, should significantly benefit future effective analysis of a range of
experimental studies, as well as drug discovery efforts.
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1. Introduction

Contraction of striated muscle (heart and skeletal muscle) is the result of ATP driven interactions
between the contractile proteins actin and myosin II (Figure 1) [1,2]. These proteins are incorporated
into thin and thick filaments, respectively, in a highly ordered arrangement in muscle sarcomeres [3,4].
The ~2 µm long sarcomeres connect repetitively in series to form ~1 µm wide myofibrils (Figure 1A) that
run the length of a muscle. A muscle cell (muscle fiber) is packed with such myofibrils, connected in
parallel with the sarcomere pattern roughly in register between neighboring myofibrils. This structural
arrangement is evolutionarily optimized for its purpose, as evidenced by convergent evolution
with a similar structure evolving independently in bilaterians (e.g., vertebrates) and non-bilaterian
eumetazoans (e.g., jellyfish) [5]. Despite the high degree of order, the structure and function of a
sarcomere are actually quite complex with a plethora of proteins, accessory to actin and myosin,
with functions in the sarcomere assembly during development, structural integrity, signaling, and with
modulatory/regulatory roles in muscle contraction [3,4,6]. Some of the accessory proteins are likely
to have prominent roles in the latter regard, for example, as suggested by the prevalence of diseases
associated with modifications (e.g., due to mutations) in these proteins [7,8]. In particular, this includes
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the regulatory thin filament proteins, troponin and tropomyosin [9,10]; the thick filament protein,
myosin binding protein C (MyBP-C) [11]; and the large elastic protein, titin [12] that connects the thin
and thick filaments. In accordance with the mentioned disease-associated proteins, they have also
been found to affect several aspects of steady-state muscle contractions even at nearly full activation
(see references below). Furthermore, in addition to the accessory proteins, the three-dimensional (3D)
organization of the thin and thick filaments in the sarcomere (cf. [13]) may play important roles in
sarcomere contractile function [14–19].
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Figure 1. Hierarchical organization of muscle. (A) Isolated myofibril mounted for force measurements [20].
Myofibrils, with repeating structures, sarcomeres, fill the muscle cells in a highly ordered arrangement;
(B) Schematic illustration of sarcomere (longitudinal view), with key protein components, i.e.,
thin filaments with actin and regulatory proteins and thick filaments with myosin heads (cross-bridges,
black) extending from myosin backbone and accessory proteins, i.e., titin and myosin binding protein
C (MyBPC); (C) Isolated full-length myosin molecule with two motor domains (left, S1, heads).
Essential (ELC) and regulatory (RLC) light chains are attached to the lever arm of each of these domains.
Panel C modified from [21] under license CC BY 4.0.

The functional and structural complexity increase further when considering thousands of
sarcomeres in series and in parallel in a muscle cell (cf. Figure 1A) where force and shortening
are developed by the simultaneous action of billions of myosin motors [22,23]. Whereas the ordered
arrangement, i.e., with sarcomeres coupled in series along myofibrils and in parallel over the muscle
cross-section, allows interpretation of contractile phenomena observed in muscle cells and myofibrils
in terms of individual actin–myosin interaction phenomena, it can also introduce pitfalls in data
interpretation. For instance, half sarcomeres in series along a myofibril may not have identical properties,
for example, due to a slightly varying overlap between thin and thick filaments on average [20,24],
expression of different protein isoforms [25,26], or other factors such as posttranslational modifications
and varying activation levels [27,28].



Int. J. Mol. Sci. 2020, 21, 8399 3 of 21

Despite the apparent complexity and added functions of a muscle sarcomere as compared
with isolated actin and myosin, recent modeling work [23,29–32] has successfully accounted for
the contractile properties of muscle, for example, the force-velocity (FV) relationship (Figure 2)
based on the single molecule properties of actin and myosin alone. The ensemble mechanokinetic
models used for this purpose, were based on the theoretical formalism of Hill [33] ([23] for more
intuitive description) and have been further defined, in terms of molecular properties, by kinetic
schemes and free energy diagrams for different states (cf. Figure 3) using parameter values (and
functions) from the literature (cf. Supplementary Information of this paper for similar model used
here). Steady-state contractile properties of the huge ensembles of actomyosin motors in muscle are,
then, derived by solving ordinary differential equations in the state probabilities with observable
variables (force, ATP turnover rate, etc.) obtained from these probabilities. Transient contractile
properties of muscle, are, instead, more easily derived using Monte Carlo simulations (as described
in Methods, see also [31]). In the case of the models in [30,32], there is a 1:1 correspondence in the
model cross-bridge states with the model in Figure 3 used in the present paper, whereas other previous
models were simpler with the model states, AMDPP and AMDPiR (shown in Figure 3) merged into one
state. The introduction of both the AMDPP and the AMDPiR state was required to account for effects of
the small molecular substance blebbistatin. The existence of these states has also been suggested by
recent structural and reverse genetics analysis of isolated myosin [34]. The parameter values used in
previous modeling efforts were primarily derived from single molecule (particularly optical tweezers)
studies and biochemical solution studies of isolated actin and myosin. Therefore, I denote them as
bottom-up types of models [23,35], using terminology frequently adopted in fields such as information
processing, management, nanotechnology etc., where a bottom-up approach denotes the piecing
together of components (in this case single molecules) into more complex systems (half sarcomeres).
This is opposed to a top-down approach which infers the opposite process of decomposition of the
complex system. The bottom-up models, without adjustments of the preset parameter values more
than within experimental uncertainties to fit the data, have been successful in accounting for the rate
of increase in isometric force, at least for the upper 50% of the rising phase, for the steady-state FV
relationship for shortening, and for several other features such as the relationship between sliding
velocity and [MgATP] [29,31,32]. This was achieved without invoking effects of 3D order, accessory
proteins (titin, troponin/tropomyosin, myosin-binding protein C), or emergent cooperative phenomena.
These results imply that there are only minor, if any, influences of the listed properties on the studied
muscle function. This view also gains support from experimental studies of the FV relationship
using isolated actin-myosin ensembles [22,36,37]. These studies demonstrated an FV relationship
for shortening at mM [MgATP] that was quite similar to that observed from muscle cells (Figure 2).
The following hypothesis is stated based on the above findings:

Hypothesis 1. The single molecule properties of actin and myosin account for ensemble contractile properties of
a half sarcomere during shortening and isometric contraction at nearly saturating Ca concentrations.

In this paper, first, the hypothesis is specified in greater detail with regard to scope and limitations.
In this context, the meaning of bottom-up assignment of model parameter values based on single
molecule properties is further specified. Then, different pieces of existing evidence that support or
seem to falsify the hypothesis are considered. In this connection, new modeling data are presented and
the modeling studies and actomyosin ensemble studies mentioned above are described in greater detail.
In addition, previously available evidence is also presented. Finally, testable predictions following
from the hypothesis are further considered and experimental systems to test these predictions are
discussed in greater detail.
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Figure 3. Model [32] slightly modified as in [30] used for simulation of data for Figures 4 and 6 below. 
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Figure 2. Force-velocity (FV) relationship, i.e., velocity of shortening of fast mammalian skeletal muscle
vs. developed force. Data recorded from living fast skeletal muscle (black) of mouse [38] (full squares),
rabbit (extraocular muscle, full line) [39], or rat (dotted line) [40]. Alternatively, data were obtained
(purple) from an isolated ensemble of fast rabbit myosin interacting with a single actin filament
including data from Pertici et al. [36] (dashed line), Kaya et al. [37] (open circles), and Cheng et al. [22]
(open squares). The ensemble data for isolated proteins were derived by either first adsorbing myosin
motor fragments (heavy meromyosin) to optical fiber surfaces [36] (~<20 myosin heads) or by using
filaments (native thick filaments [22] (~<100 myosin heads) or myosin-rod cofilaments [37] (~<20 myosin
heads)) with full length myosin, and then bringing an actin filament, held by an optical trap [36,37] or
by a cantilever [22], in contact with the motor ensemble to record force and displacements. Force and
velocity in this figure are normalized to their maximum values. Data obtained by measurements from
figures in the referenced papers (when symbols are shown) or by reproducing the Hill hyperbolic
function (when lines are shown) fitted to the data in the original papers.
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Figure 3. Model [32] slightly modified as in [30] used for simulation of data for Figures 4 and 6
below. (A) Kinetic scheme with labeling of different myosin (M) states according to actin-binding (AM)
and substrate (ATP:T) or products of ATP turnover (ADP:D, inorganic phosphate P/Pi) at the active site.
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Numerical values of equilibrium constants (uppercase letters) and rate constants (lowercase letters)
given and motivated in Tables S1 and S2 and associated supporting text. Subscripts of the different
states have meanings as follows: PP, prepower stroke state; PiR, Pi-release state; L, low-force strongly
bound state; H, high-force strongly bound state; (B) Free energy diagrams for the different states in (A)
(with same color codes and labeling). The parameters x1, x11, and x2, indicated in the figure, denote
the x-values where the free energy of the states AMDPPP, AMDPPiR (as well as AMDL), and AMDH,
respectively, attain their minimum value.

2. Methods

The key analyses, described below, relied on simulations using the model by Rhaman et al. [32],
updated as in [29,30]. A kinetic scheme and free energy diagrams for the model are depicted in
Figure 3. The origin of the parameter values in experimental studies are given in Tables S1 and S2 in
Supplementary Materials as further considered in the Supplementary Text.

Observable contractile properties were derived in the simulations from the populations of different
cross-bridge states and their elastic properties, strain, etc. [33]. For example, force is given by the
sum of the total number of attached cross-bridges multiplied by the stiffness and strain of each of
these cross-bridges. The strain is given by the quantity x-xi., where xi is the x-value for which the free
energy of the given state has its minimum value (cf. Figure 3B showing x1, x11 and x2) and x is the
coordinate describing the distance between a given point on the thick myosin filament and the nearest
actin binding site. Here, this coordinate system is defined such that x = 0 nm, when the free energy in
the AM state (Figure 3A) attains its minimum. In terms of the model, the free energy increases for
x > xi and x < xi as a result of elastic energy added to chemical free energy of the specific state. In the
case of linear cross-bridge elasticity with stiffness ks, the elastic contribution, GE, to the free energy, is
given by GE = ks(x-xi)2/2, i.e., the free energy diagrams vs. x have a parabolic shape (Figure 3B). In the
simulations, the population of different states for each given x-value are either derived as average
values by steady-state solutions of differential equations in state probabilities (cf. [32] and code in [29])
or as the absolute number of myosin heads in different states (associated with a specific strain) for
each given point in time by the use of Monte Carlo simulations [31,32]. In the latter simulations,
the waiting times between interstate transitions for each strain value (x) is calculated from the value
of the rate functions (Figure 3A and Table S3) using the Gillespie algorithm [41], starting with all
myosin heads in the MDP state at the onset of the simulation (see further [31,32]). Specifically, here,
average half sarcomere properties are simulated by assuming that 556 myosin-binding sites on actin
are available for binding of myosin heads. This number corresponds to the total number of myosin
binding sites along a 20 µm long filament on the assumption of 36 nm distance between neighboring
sites, i.e., 20,000 nm/36 nm ≈ 556. This approach relies on assumptions that are intimately related to
the idea that muscle function can be predicted from single actomyosin properties, as follows: (1) The
muscle half-sarcomere contractile properties can be approximated by the contractile properties of
approximately 20 actin filaments interacting with 10 thick myosin filaments. (2) This situation can be
mimicked by surface adsorbed myosin motors interacting with a sufficiently long single actin filament
(here taken as 20 µm) in an in vitro motility assay configuration (with added possibility to vary load
on the filaments or velocity) with saturating surface density of 5000 active myosin motors per µm2.

These assumptions are supported by the following lines of argumentation: First, if we consider
twenty 1 µm long (thin) actin filaments (with 556 binding sites for myosin in total) interacting with ten
half (thick) myosin filaments that each contains 294 myosin heads, there would be 147 heads per thin
(actin) filament. This is very similar to what is achieved in the in vitro motility assay approximation
used in the simulations. Thus, with a surface density of 5000 active myosin heads per µm2 [42,43],
a 20 µm long filament and a band of 30 nm [43] width, around the filament where surface-adsorbed
myosin heads may reach actin, one arrives at a total number of heads, i.e., 5000 × 0.03 × 20 = 3000 per
20 µm of an actin filament, i.e., 150/µm. Second, if there is no cooperativity or emergent effects arising
from the sarcomere arrangement (key elements of the hypothesis), the force and velocity is the same



Int. J. Mol. Sci. 2020, 21, 8399 6 of 21

for a long single filament with a uniform distribution of myosin heads relative to the binding site as
for twenty single actin filaments of approximately 1 µm length, interacting with a similar number of
uniformly distributed myosin motors. Third, it is a reasonable assumption that the myosin motors in
muscle are uniformly distributed relative to the nearest actin binding site as assumed in the in vitro
motility assay-based Monte Carlo simulations. This idea was originally proposed by Huxley [44] based
on the mismatch of the actin and myosin periodicities. Furthermore, more recently, further conditions
such as variabilities in overlap and register between sarcomeres have been proposed to contribute to
uniform distributions when considering a very large number of half sarcomeres working in parallel
and series (reviewed in [23]). Naturally, this approximation is not valid when the interactions among a
few (say less than 100 myosin motors and actin filaments) are considered. However, in principle, the
assumption of uniform distributions also applies to Monte Carlo simulations of in vitro motility assays
at both high and very low motor densities but, the exact positions of the limited number of myosin
heads relative to the binding sites are determined by a random number generator. The latter distributes
the individual heads in 360 bins, each of 0.1 nm width, with distances in the range 0–36/2 nm relative to
a defined center of the nearest binding site. This approach allowed for simulations where the surface
density of active myosin motors could be varied from very low to saturating density for simulating the
properties of a muscle half sarcomere.

3. Results and Discussion

3.1. Detailed Specifications of Hypothesis and Bottom-Up Method of Assigning Model Parameter Values

The FV relationship for steady-state contractions, i.e., the relationship between the load on
the muscle (equal to muscle force) and the shortening velocity, is central in model testing from
Huxley [44] and onwards [45–49]. The fact that this relationship, at nearly full Ca2+-activation,
is accounted for by the single molecule properties of actin and myosin, without the need to invoke
any cooperative/emergent phenomena or any effect of 3D order and accessory proteins, is a central
facet of the current hypothesis. The statement that there should be no effect of 3D order requires some
clarification. This means that the order does not alter the actin–myosin interaction in a half sarcomere
per se. However, for the effective operation of a whole muscle with billions of myosin heads and
thousands of sarcomeres, in series and in parallel, the 3D order is presumably essential. This is both to
ensure optimal packing of sarcomere proteins into the muscle, to preserve structural integrity during
high-force contractions, and for effective summing of velocities/length changes along the muscle cell
and forces over the muscle cross-section.

The features of the FV relationship that are accounted for by single molecule properties include
its general shape (and the related power output (force x velocity)) and energetics, the maximum
velocity of shortening, and the maximum isometric force. It is hypothesized that the effects of drugs,
altered concentrations of inorganic phosphate [Pi], [ATP], etc., on the steady-state FV relationship
are accounted for. It is also hypothesized that some transient phenomena at close to saturating
[Ca2+] are well approximated based on the single molecule properties. This includes the rate of
increase in isometric force during a tetanus at tension levels >50% of the maximum force [50,51],
the early phase of slow relaxation after an isometric tetanus [27,52], and, a slightly less exact (cf. [19]),
the isometric tension transients in response to step changes in length, temperature, and [Pi]. However,
the tension changes seen at low concentrations of Ca2+ (<80% of maximum) and tension levels <50%
of the isometric value, are unlikely to be well accommodated (cf. [51]) based on only bottom-up
actomyosin properties. This follows from data suggesting incomplete activation due to both thin [50]
and thick [51] filament-based mechanisms at these tension levels. Furthermore, the response to
a stretch of active muscle (eccentric contraction) involves additional complexities not seen during
shortening and isometric contraction. This includes potentially emergent effects due to inter-sarcomere
dynamics [53,54], effects due to stretching of titin [55,56], and finally, different kinetics of the actomyosin
interaction than during shortening [57,58] such as slippage between neighboring sites [32] or inter-head
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cooperativity [59]. Therefore, the hypothesis is limited to isometric and shortening contractions at
nearly maximal Ca2+ concentration (tentatively defined as corresponding to steady-state isometric
tension >80%). Finally, whereas aspects of the hypothesis can, in principle, be tested using whole
muscle cells and myofibrils, the hypothesis is stated for a half sarcomere of a myofibril. The reason is
that complexities due to inter-sarcomere differences and various emergent phenomena may complicate
results from cells and myofibrils.

If the hypothesis is correct, it should be possible to obtain model parameter values for prediction
of the relevant phenomena from the bottom-up using isolated actin and myosin molecules (see
further above). Such experiments that would provide parameter values include single molecule
studies, for example, using optical tweezers to measure force and displacement, and experiments
from disorganized ensembles e.g. biochemical solution kinetics to obtain zero-strain values for rate
constants in the ATP driven actomyosin interaction mechanism.

3.2. Existing Evidence in Favor of the Hypothesis

As briefly mentioned above, central pieces of evidence are the faithful prediction of a range of
contractile data (e.g., the shape of the FV relationship, energetics, and rate of increase in isometric force)
by models of the bottom-up type, as defined above [23,29,31,32] (see Introduction). These bottom-up
models also predict the absolute values of the number of attached cross-bridges and isometric force
per cross-sectional area. This, however, requires (in agreement with experimental findings) [60] the
assumption of three myosin binding sites (three neighboring actin subunits) per properly oriented
actin target zone, separated by ~36 nm along the thin filament [29]. In addition, the maximum
velocity of shortening and the maximum power output are well predicted by such models [23,29,31,32].
Interestingly, potentially even better predictions for the maximum power and the maximum velocity
of shortening are obtained if the cross-bridge elasticity is assumed to be nonlinear, as suggested by
single molecule studies [29,61]. However, from reviews of primarily their own previous and new
mechanical experiments on muscle cells, for example, stiffness measurements at different tension
levels under rigor conditions (in the absence of MgATP), Linari et al. [62] claimed that they found
evidence that cross-bridge stiffness was nearly linear in the myofilament lattice of muscle. Whereas I
hold the experimental data by the researchers behind this paper [62] in high regard, I disagree with
their interpretation. Thus, the evidence is inconclusive (e.g., compare with data from [61], e.g.,
Figures 3B and 5 in [61]) and insufficient as a basis for definite falsification of the idea of nonlinear
cross-bridge elasticity in a muscle cell. More direct tests are required, as proposed below.

Further evidence that properties of single actomyosin interactions account for the ensemble
FV relationship is provided by the similarity of experimental FV relationships recorded from living
mammalian muscles and small isolated actomyosin ensembles, in the latter case without 3D order or
accessory proteins. The latter type of studies have been performed by first adsorbing a small number
of myosin motors (full length myosin or heavy meromyosin) to small silica beads [63] or optical
fiber surfaces [36] (~<20 myosin heads) or by using myosin filaments (native thick filaments [22]
(~<100 myosin heads) or myosin-rod cofilaments [37] (~<20 myosin heads)). Then, an actin filament
held by optical traps [36,37] or by a cantilever [22] are brought in contact with the motor ensemble
to obtain force and velocity data. Such studies were performed at close to physiological [MgATP]
(>1 mM) and at temperatures >20 ◦C for the data illustrated in Figure 2 but similar results were derived
previously in experiments at low [MgATP] (≤100 µM) [63]. A key feature of the data in Figure 2, is a
similar maximum power output (maximum force x velocity) in muscle cells and isolated actomyosin
ensembles, despite the lack of 3D order and accessory proteins in the latter case. If the latter factors
have any key influence over contractile function in muscle cells, one would expect them to increase the
maximum power output, which is a critically important aspect of muscle function. However, the data
reproduced in Figure 2 suggest that the high maximum power output arises from properties inherent
in the actomyosin interaction itself.
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Similarities in steady-state properties between experiments using muscle cells and those using
isolated actin and myosin ensembles are not limited to the FV relationship. Thus, a comparison of
muscle fiber data [64] to in vitro motility assay data (with actin filaments propelled by surface-adsorbed
myosin motor fragments) at a given temperature showed a similar maximum sliding velocity and similar
MgATP concentration (KM

V) for half maximum velocity [23,65]. However, admittedly, equally good
correspondence was not observed in some other studies [18,66]. It remains to be clarified whether
these differences between studies are related to the use of different surface substrates for adsorption of
myosin motor fragments (nitrocellulose coated [18,66] vs. trimethylchlorosilane derivatized [23,65]
glass cf. [67]) or other factors.

In further support of the current hypothesis, it is worth noting that efforts to estimate a range of
single molecule parameters (power-stroke distance, cross-bridge stiffness) from mechanical experiments
on muscle cells and single myosin motors interacting with one actin filament, generally, give quite
similar values [23].

Finally, strain-dependent transitions, for example, with different actomyosin cross-bridge
detachment rates for different distortions of the cross-bridge, are critical in accounting for the
steady-state FV relationship according to models from Huxley [44] and onwards. Therefore, it is of
interest that quantitative data directly demonstrating such strain dependence can be extracted from
interactions between single myosin molecules and one actin filament [68,69].

3.3. Evidence Against the Hypothesis

Kaya et al. [37] recently presented data that seemed to argue against the assumption that
the single molecule properties could predict ensemble contraction without invoking cooperative
phenomena. These data were derived using a setup similar to that described in the legend of Figure 2,
with full length myosin molecules co-polymerized with myosin rods into a myosin-rod co-filament,
allowing less than 20 myosin molecules to interact with an actin filament held by an optical trap.
Displacements were, then, recorded at different load levels. Using this setup, Kaya et al. [37] found 4 nm
stepwise actin displacements at a rather high load (>30 pN). Due to the fact that the mechanical work
of 4 × 30 pN nm = 120 pN nm ≈ 30 kBT is greater than the free energy of MgATP turnover (25 kBT,
cf. Table S1), the observation was taken to imply that the steps were not due to single myosins but
potentially due to coordinated force generation by several myosin motors. As Kaya et al. [37] stated,
“our findings reveal how the properties of skeletal myosin are tuned to perform cooperative force
generation for efficient muscle contraction“. In partial contradiction of this statement, one can argue
that the findings are actually consistent with the current hypothesis where cooperative effects are
deemed to be unimportant. However, in this context, it is extremely important to very clearly define
what is meant by cooperative interactions. Obvious cooperative effects would be different kinetic
actomyosin properties in ensembles as compared with individual motors, for example, with different
strain dependence of transition rates or new transitions in ensembles as compared with the single
molecule case. In this case, new transitions could include slippage transitions between neighboring sites
on actin and cooperativity between the two myosin heads only in ensembles. Such phenomena were
not operative in the studies of Kaya et al. but one could also consider the possibility of cooperativity
between different myosin molecules in the ensemble, which seems similar to what was found by
Kaya et al. [37]. However, importantly, the latter type of cooperative effect does not prevent conclusions
about ensemble contraction based on single molecule properties. Thus, the kinetic properties of other
motors (see above) were not altered by the actions of one of them in the work of Kaya et al. [37]. Instead,
their findings could be explained by the fact that actions of a given motor changed the distance of
the actin filament sites relative to a fixed reference point on the thick filament. This changed various
interstate transition rates due to altered strain, but it neither implied a change in the strain dependence
or the rates of the individual motor (see also Duke [70]) nor the introduction of new types of transitions.
Similar effects have actually emerged in a range of recent cross-bridge models, most notably the
bottom-up models [29,31,32,61] mentioned above, which are considered to be strong pieces of evidence
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in favor of the current hypothesis. Thus, the latter models [29,31,32,61] also gave effects (Figure 4)
with several (2–4 under unloaded conditions) coordinated strokes and sub-strokes when implemented
using a Monte Carlo approach for similar conditions (~20 myosin motors interacting with one actin
filament), as in the work of Kaya et al. [37]. However, the Monte Carlo model, used in Figure 4,
gives similar predictions for steady-state FV relationships as the steady-state solution of differential
equations in state probabilities [32] if the number of interacting myosin heads is increased towards
infinity, consistent with the current hypothesis.
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Figure 4. Simulated myosin propelled actin filament sliding produced by 18 myosin molecules against
zero load. This number of molecules is similar to that used in the experiments of Kaya and Higuchi
(2017) [37]. (A) Displacement record, time interval between vertical dashed lines considered in greater
detail in (B); (B) Step changes in displacement, ∆d from region within dashed lines in A. Each point
represents a step change in displacement. Note that substantial fractions of the steps are clustered in
seven different 0.4 ms time intervals (covered by transparent red lines) with 2–4 steps, of amplitudes
from ~1 nm to ~7 nm in each cluster.

Several mechanokinetic models (see [71–73] and references therein) require the assumption of
faster attachment rate during shortening, to account for high power output, than required to account
for the rate of increase in isometric force following a release imposed under conditions of maximum
activation. This has led to schemes that assumed a velocity dependent attachment rate constant [72,73]
where the latter was highest at shortening velocities with maximal power output as compared with
other velocities. In reality, such a velocity dependent attachment rate constant could correspond to
sequential actions of the two myosin heads [59,74,75] or slipping transitions of each individual head
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between neighboring sites on actin [31,32,76] at certain velocities. Furthermore, [71] considered the
possibility that an apparent velocity dependence of the attachment rate was related to thick filament
based activation where myosin heads increasingly swung out from the thick filament backbone when
the backbone was subjected to increasing tension.

However, somewhat surprisingly, recent models of the bottom-up type have predicted maximum
power output in the experimentally observed range (Figures 2 and 5), assuming the same attachment
rate constant as required to account for the maximum rate of increase in force during a tetanus [29,31,32].
Thus, in these models, there does not seem to be any critical need to assume a velocity dependent
attachment rate constant to account for high maximal power (Figure 5). The reason for greater success
of the recent bottom-up models, in this regard, is not entirely clear. Possibly, it reflects the careful
derivation of parameter values from isolated proteins under conditions as similar as possible with
regard to ionic strength, temperature, and species [29,31,32] (see further notes of Tables S1 and S2
and supporting text). It is also suggested, based on the data in Figure 5, that the power output was
further increased in models assuming nonlinear cross-bridge elasticity, as found recently in single
molecules [77]. Finally, a possible basis for improved prediction of both maximum power output and
the rate of increase in isometric force may be that fine details of the models have changed as compared
with earlier models. For instance (Figure 6), a rather small change in position of the free-energy
minimum, x1 of the initial stereo-specifically bound pre-power stroke state with ADP and Pi at the
active site (AMDPP in Figure 3A), leads to opposite changes in power output and the predicted rate
of increase in isometric force. This can be understood because an increased value of x1 increases the
distance over which a cross-bridge can develop positive force during sliding, contributing to increased
power. At the same time, an increased value of x1 makes force development slower because the optimal
point of cross-bridge attachment is shifted, to slow the transition into subsequent high-force states if
there is no sliding between actin and myosin.
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binding sites for myosin on neighboring actin subunits in target zones separated by 36 nm along the
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actin filament as compared with experimental data from Figure 2. (A,B) Linear cross-bridge elasticity
with stiffness 2.8 pN/nm assumed; (C,D) Nonlinear cross-bridge elasticity similar to that found by Kaya
and Higuchi in single molecule studies. Figure reproduced from [29] under license (CC BY-NC-SA
4.0). Model similar to that described in Figure 3 but without the initial pre-power stroke state
(AMADPPP) that was introduced [32] to account for the effect of the small molecular compound
blebbistatin (see further Introduction) and with slightly modified parameter values (within experimental
uncertainties, details in [29]).
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Figure 6. Maximum power and rate of increase in force during an isometric contraction simulated
for different values of the parameter x1 in the model described in Figure 3 (similar to that in [32]).
(A) Maximum power derived by steady-state solutions of differential equations in state probabilities.
Statistically significant (p = 0.0167) correlation (Spearman’s r = 1) between x1 and maximum power;
(B) Rate of increase in force starting from all myosin heads in the AMDPPP state estimated from fits to
4 Monte Carlo simulations at each x1 value. In each of these cases, the parameter x11 was changed
in parallel with x1 with x11 = x1 −0.5 nm. Data are given as mean ± standard error of the mean.
Statistically significant (p = 0.0010) correlation (Spearman´s r = −0.68) between x1 and rate constant.

The key regulatory proteins on the thin filaments are troponin and tropomyosin. According to
current models of thin filament-based activation [78,79], binding of Ca2+ to the troponin C unit of
troponin leads to release of the tropomyosin-troponin complex from a linkage via troponin I to the
actin filament surface. This in turns leads to a shift in equilibrium position of the troponin-tropomyosin
complex on the thin filament surface from what is often termed a blocked position at nM Ca2+

(pCa < 7) in relaxation, to what is termed a closed position at µM Ca2+ (pCa > 6) in activation. In the
latter position, the myosin-binding sites of actin are exposed to allow binding of myosin motors and
force generation. Such binding in strong-binding states is believed to lead to a further shift of the
tropomyosin-troponin complex over the thin filament surface to a fully open state. The most important
contractile manifestation of these events is a sigmoidal increase in force with a decrease in pCa from <7
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to about 5. This is a major reason for assuming that force development early during a tetanus or other
phenomena at low levels of activation cannot readily be accommodated within the current hypothesis.

In stating the hypothesis, we assume that troponin and tropomyosin do not appreciably change
steady-state contractile properties at full activation. Experimental data seem to cast this statement
in doubt to some extent. Thus, it has been consistently found [80–82] that reconstitution of actin
filaments with troponin and tropomyosin, to produce “regulated thin filaments”, increased the
maximum isometric force at full activation (µM Ca2+). This increase in force has been attributed to
increased force per cross-bridge attributed to strengthened hydrophobic interactions between actin
and myosin [83]. In particular, the effect of tropomyosin and troponin reconstitution on force seems
to be attributed to tropomyosin [67]. However, reported effects of tropomyosin on velocity seem
less consistent. Thus, using what seems to be saturating HMM density on an in vitro motility assay
surface, Homsher et al. [66] found higher maximum myosin induced sliding velocity for regulated
thin filaments (with both troponin and tropomyosin) as compared with pure actin filaments at full
Ca2+ activation. A similar effect was, however, not observed by van Buren et al. [84], by adding only
tropomyosin to the actin filaments. Moreover, Marston reported [67] that, whereas regulated thin
filaments exhibited higher sliding velocity at full Ca2+ activation than actin filaments, when propelled
by HMM adsorbed to nitrocellulose, (as also used in [66]) no such effect was observed when HMM
was adsorbed to silanized surfaces.

The myosin binding protein C (MyBP-C) is believed to play roles in thick filament activation relying
on tension sensing [85,86], as well as sensitization to Ca2+ in thin filament-based activation [86–89].
In addition, however, it has been found, using both skeletal muscle and cardiac muscle proteins,
that MyBP-C affects function at full Ca2+ activation. Thus, both actin filaments without regulatory
proteins and native thin filaments (including both troponin and tropomyosin) that slide along native
thick filaments at µM Ca2+, exhibited appreciably reduced velocity when they reached the C-zone
where the MyBP-C was located [87,88,90]. In line with these findings, Robinett et al. [91] concluded,
from their studies of skinned skeletal muscle fibers that “MyBP-C and its phosphorylation state regulate
sarcomere contraction by a combination of cross-bridge recruitment, modification of cross-bridge
cycling kinetics, and alteration of drag forces that originate in the C-zone”.

Spatially explicit mechanokinetic models are models that take into account central aspects of the
geometrical relationship between thin and thick filaments, and in several cases, include key accessory
proteins, as well as the elastic properties of the filaments [14,15,19,92,93]. This gives rich potential to
fit details and test intricate predictions involving both geometrical changes and accessory proteins,
albeit with certain potential drawbacks [29].

Spatially explicit modeling studies have suggested that the detailed geometry was important to
accurately predict certain phenomena. According to one study [14], this included a higher force output
per cross-bridge and a higher fraction of attached cross-bridges for a model that explicitly takes into
account the 2:1 ratio and the actual geometry between thin and thick filaments, as well as the elastic
properties of both filaments and cross-bridges.

Finally, potential radial components of cross-bridge force have been suggested to be important for
function [15,16] as both axial and radial forces may depend on lattice spacing. However, in relation to the
latter result, it is of interest to note that experimental data suggested limited changes in these properties
upon altered sarcomere length in active muscle fibers if the effects of passive elastic components were
taken into account [94–96]. The change in sarcomere length tests the role of inter-filament spacing due
to constant volume behavior of the myofilament lattice [13] in intact muscle fibers which leads to a
reduced inter-filament distance with increased sarcomere length.

To summarize, there is evidence to indicate that either the maximum isometric force or the
maximum velocity of shortening, or both, are affected by the presence of accessory proteins and that
models that take 3D order into account may lead to different predictions than simpler models. It is
important, in the context of these results, to clarify to what extent such effects are consistent with the
evidence presented above, in favor of the current hypothesis. Thus, are any effects of accessory proteins
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and 3D order at high activation levels so minor that they are not detected when comparing predictions
of bottom-up models to experimental data and when comparing experiments from muscle/myofibrils to
those on small disordered actomyosin ensembles? In that case, the hypothesis would be approximately
valid and highly useful for first order understanding of muscle function. Alternatively, could different
experimental systems and conditions using isolated proteins modulate the phenomena studied, as
exemplified by effects of surface substrates in the in vitro motility assay [67,97,98]. In any case,
additional dedicated experiments are required to more definitely clarify these issues.

3.4. Future Tests of Hypothesis

Further testing of the hypothesis will require experimental systems that enable addition/removal
of one natural component (e.g., accessory proteins, hierarchical order) at a time and direct studies of
elastic properties of myosin motors with intact myofilament lattice. Furthermore, it will be essential to
exclude, while using these experimental systems, that the addition/removal of one component does
not introduce complicating factors such as new interaction points with artificial surfaces or disorder of
the myofilament lattice (Figure 7).
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Figure 7. Schematic of experimental system to study effects of force and velocity, building on previous
work [22,36,37,99].

The following two principles, or combinations of them, may be considered for adding and
removing components: (1) Bottom-up assembled systems and (2) top-down disassembled systems
(see Introduction).

3.5. Bottom-Up Assembled Experimental Systems

In this approach, one starts with purified protein components, for example, MyBP-C, troponin,
and tropomyosin, which can self-assemble with myosin and actin filaments, respectively. The simplest
examples are unloaded in vitro motility assays where different components such as troponin,
tropomyosin, and MyBP-C are added, and bind to actin and myosin, followed by studies using
conventional motility assays to elucidate effects on maximum unloaded sliding velocity [84,100–102].
However, it is of interest to extend these assays to systems that allow detailed studies of the force-velocity
relationship. Whereas such studies are possible to some extent using so-called loaded in vitro motility
assays [80], the latter are difficult to use for detailed quantitative analysis of the FV relationship and
power output.

Particularly, assays of the type illustrated in Figure 7 (cf. [22,36,37,63]), where force and
displacement are recorded for small ensembles of myosin motors, would be useful for testing the present
hypothesis. They would allow studies of the FV relationship upon addition/removal of different protein
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components, one after the other, under otherwise similar conditions. After supplementation with
microfluidics methods, for rapid solution exchange (cf. [103]) or the use of caged compounds [104,105],
similar experimental systems may be useful to study tension transients in response to rapid
concentration changes of, for example, Ca2+, ATP, or inorganic phosphate. Possible modifications, as
compared with recently published work [22,36,37,63], that may be of interest is the introduction of
microscale square pedestals for motor adsorption, rather than curved surface which has been used
in recent optical tweezers studies [36,37]. This would allow better control of the number of motors,
facilitate production of various ordered arrays of myosin motors, and combination with total internal
reflection fluorescence (TIRF) microscopy. The latter could be used for studies of ATP turnover by single
molecule techniques [106,107] and single molecule fluorescence resonance transfer (FRET) for studies
of structural dynamics within the myosin motor. With regard to the production of ordered arrays
of myosin motors, DNA nanotechnology (DNA origami) [108] has some advantages, for example,
to produce unipolar arrays. However, it is important to be able to compare the results with those where
myosin motors are incorporated into native thick filaments. An experimental system studying a large
number of motors (>> 20) would enable more detailed characterization of the force-velocity relationship
by reducing force fluctuations (e.g., related to inter-motor cooperativity in very small ensembles) [37]
and achieving a situation with a large number of available cross-bridges more similar to muscle cells.
This would, however, require a nano/micro-fabricated cantilever-based force measuring system [22,99]
rather than optical tweezers, and possible problems related to thin filament stability at high forces
would need to be addressed. What would be of appreciable interest is if parts of the 3D order of the
sarcomere could be reconstructed in a system similar to that in Figure 7, for example, using scaffolds
created by combinations of top-down (e.g., lithographic techniques) [43,109] and bottom-up (DNA
origami) [108] nanotechnology.

As with all experimental interventions, bottom-up studies come with a number of challenges
that must be circumvented to avoid non-physiological results. This includes challenges related to
protein production, whether by purification from tissue, for example, using proteolytic enzymes or by
protein expression. In this process, parts of the molecule could, at least to some degree, be cleaved
off [90], be partly unfolded, as is a challenge with expression of striated muscle myosin II [110], or lack
important posttranslational modifications [111]. A further challenge, in experiments with bottom-up
reconstruction, is to ensure that the reassembly with myosin and actin leads to physiologically relevant
interactions between all proteins involved. Particular concerns may arise in this regard when using
fragments, rather than full length proteins, of for example, MyBP-C [86,87]. Additionally, as touched
on briefly above, it is important that the re-assembly or the whole artificial setup does not introduce
complications, for example, due to unwanted surface-protein interactions [67].

3.6. Top-Down Disassembled Systems

Myofibrils isolated from muscle represent one hierarchical level of disassembly. However,
the myofibrils are still highly complex structures, containing most sarcomere proteins (that are
not soluble) in addition to actin and myosin. Therefore, further disassembly to investigate the effects
of specific protein components, by their selective removal, should be considered in a context with
similar efforts using skinned, demembranated muscle cells. Nevertheless, further disassembly to
selectively remove thick filaments from just preselected sarcomeres, for example, to investigate the
effects on inter-sarcomere dynamics, is greatly facilitated by the use of myofibrils [112,113]. However,
in studying the role of specific sarcomere proteins, such as troponin, tropomyosin, MyBP-C, and titin,
achieving the selective removal/addition of these is of interest, more generally for all sarcomeres,
whether in myofibrils or muscle cells.

The top-down disassembly of sarcomere components can take the simple form of removal of
specific wild-type protein components (e.g., troponin C) [114], possibly followed by reconstitution
with a modified protein.
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In contrast, an appreciably more extensive disassembly can be achieved using the actin severing
protein gelsolin to remove the thin filaments [81,83,115] or a solution of increased ionic strength to
remove thick filaments. In the case of the thin filaments, the disassembly can be followed by bottom-up
reconstitution by addition of the thin filament components, i.e., G-actin, tropomyosin, and troponin,
opening for a wide range of studies [81,83,115]. The latter includes effects of the different proteins on
force and motion generation (see above) but also the effects of mutations in, for example, troponin and
tropomyosin [116]. To the best of my knowledge, no similar reconstitution approach as for the thin
filaments, is available for thick filaments.

The selective removal/addition of proteins while maintaining sarcomere structure has appreciable
potential for investigating effects of the protein on the ordered filament network. However, this approach
may be prone to complexities. This includes uncertainties about the fraction of successfully removed
normal proteins, as well as quantification of the successful fractional reconstitution with proteins
(e.g., troponin/tropomyosin/actin stoichiometry). Furthermore, it is essential that the procedure to
remove/add protein components does not change other potentially important characteristics of the
contractile system, such as the degree of myofilament order or inter-sarcomere uniformity.

A type of disassembly that may be viewed as appreciably more radical than selective removal
of individual protein components from otherwise intact sarcomeres, is the isolation of native thick
and thin filaments from muscle. This procedure has the potential to provide other types of valuable
information than studies using the bottom-up (reconstituted filaments) approach [90,117]. However,
one must keep in mind that such native filaments are also modified to different degrees during the
purification process. For instance, the titin link between the thin and thick filaments in the sarcomere is
removed and there may also be other effects, for example, due to the use of proteolytic enzymes [90].
Experimental challenges also include the limited length of the filaments and the bipolar nature of thick
filaments with myosin heads extending in different directions on either side of the M-line. These effects
complicate mechanical studies, for example, manipulating the filaments in force-measuring setups
(cf. Figure 7).

3.7. The Cross-Bridge Elasticity with an Intact Myofilament Lattice

As pointed out above, the elastic properties of the actomyosin cross-bridges are of importance for
some phenomena related to the proposed hypothesis. Whereas these properties may be determined in
assays of the type illustrated in Figure 7, this is not of significant interest because it is quite generally
accepted that the elasticity of isolated myosin molecules is nonlinear [77]. The nonlinearity has instead
been questioned, particularly for preparations such as myofibrils and muscle cells with an intact 3D
ordered myofilament lattice. A method to characterize the elasticity in such a system was proposed
recently by [61]. Thus, nanometer tracking methods [65,118] are suggested for probing the distance
between fluorescent molecules/particles (e.g., quantum dots) on the myosin filament backbone and the
myosin motor domain (e.g., attached via a regulatory light chain) in myofibrillar preparations.

4. Conclusions

A hypothesis has been presented, together with evidence that corroborates it, as well as pieces of
evidence that argue against the hypothesis. Further studies, such as suggested above, are required.
Most likely, considering the potential complexities involved, the issue cannot be fully resolved without
the combined use of several types of bottom-up and top-down experimental approaches. Currently,
in this paper, the opinion is that the hypothesis is true to a high degree of approximation. However,
the hypothesis is highly useful, even if a weaker form of the hypothesis could be corroborated
and if the phenomena that it does or does not apply to could be more clearly delineated For the
conditions where it is valid, it would avoid the uncertainties of assigning parameter values and
interpreting more complex models that would have to take into account both effects of accessory
proteins and 3D order. It may also be important for in depth insight into a range of phenomena to
better clarify under which specific conditions the hypothesis best approximates contractile function.
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For instance, if the hypothesis is a very good approximation for normal muscle proteins but not for
proteins modified by diseases (e.g., in HCM as suggested previously [23]) this might give clues to
disease mechanisms. Such knowledge is also of importance for drug discovery efforts by clarifying
to what degree experimental findings using isolated proteins can be extrapolated to the tissue level.
In this paper, the validity of the hypothesis has been tentatively limited to high levels of activation.
However, the limitations need to be delineated in greater detail as well as their possible change under
disease conditions.
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