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Abstract
Camera	traps	(CTs),	used	in	conjunction	with	capture–	mark–	recapture	analyses	(CMR;	
photo-	CMR),	are	a	valuable	tool	for	estimating	abundances	of	rare	and	elusive	wild-
life.	However,	a	critical	requirement	of	photo-	CMR	is	that	individuals	are	identifiable	
in	CT	images	(photo-	ID).	Thus,	photo-	CMR	is	generally	 limited	to	species	with	con-
spicuous	pelage	patterns	 (e.g.,	 stripes	or	 spots)	using	 lateral-	view	 images	 from	CTs	
stationed along travel paths. Pumas (Puma concolor) are an elusive species for which 
CTs	are	highly	effective	at	collecting	image	data,	but	their	suitability	to	photo-	ID	is	
controversial	due	 to	 their	 lack	of	pelage	markings.	For	 a	wide	 range	of	 taxa,	 facial	
features	are	useful	for	photo-	ID,	but	this	method	has	generally	been	 limited	to	 im-
ages	collected	with	traditional	handheld	cameras.	Here,	we	evaluate	the	feasibility	of	
using	puma	facial	features	for	photo-	ID	in	a	CT	framework.	We	consider	two	issues:	
(1)	the	ability	to	capture	puma	facial	images	using	CTs,	and	(2)	whether	facial	images	
improve	human	ability	to	photo-	ID	pumas.	We	tested	a	novel	CT	accessory	that	used	
light	and	sound	to	attract	the	attention	of	pumas,	thereby	collecting	face	images	for	
use	in	photo-	ID.	Face	captures	rates	increased	at	CTs	that	included	the	accessory	(n = 
208,	χ2 =	43.23,	p	≤	.001).	To	evaluate	if	puma	faces	improve	photo-	ID,	we	measured	
the	 inter-	rater	agreement	of	5	 independent	assessments	of	photo-	ID	for	16	of	our	
puma	face	capture	events.	Agreement	was	moderate	to	good	(Fleiss’	kappa	=	0.54,	
95%	CI	=	0.48–	0.60),	and	was	92.90%	greater	than	a	previously	published	kappa	using	
conventional	CT	methods.	This	study	is	the	first	time	that	such	a	technique	has	been	
used	for	photo-	ID,	and	we	believe	a	promising	demonstration	of	how	photo-	ID	may	
be feasible for an elusive but unmarked species.
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1  |  INTRODUC TION

Accurate	estimates	of	abundance	are	fundamental	to	effective	wild-
life	management	and	conservation.	However,	abundance	estimates	
are	often	difficult	to	obtain,	especially	for	rare	or	elusive	species	for	
which	 direct	 observation	 and	 live	 capture	 are	 difficult	 and	 costly	
(Gese,	 2001;	 Kucera	 &	 Barret,	 2011;	 McDonald,	 2004).	 Motion-	
triggered	remote	cameras,	or	camera	traps	(CTs),	have	thus	become	
an important and often used tool for researching such species due 
to	 their	 ability	 to	 record	wildlife	observations	 autonomously,	 con-
tinuously,	noninvasively,	and	at	relatively	low	cost	(Kucera	&	Barret,	
2011).	There	are	a	wide	variety	of	methods	to	estimate	abundance	
using	CT	data,	but	those	that	 incorporate	 individual	detection	his-
tories	 in	a	capture–	mark–	recapture-	type	 framework	 (CMR,	photo-	
CMR;	Karanth,	1995;	Otis	et	al.,	1978)	are	often	considered	the	“gold	
standard”	 (Sollmann,	 2018).	 CMR	 is	 not	 always	 feasible,	 however,	
due	 to	 the	difficult	 nature	of	 reliably	 identifying	 individuals	 in	CT	
images	(photo-	ID),	especially	for	species	that	do	not	exhibit	conspic-
uous	and	individually	unique	markings	(e.g.,	stripes	or	spots).	Many	
alternatives	to	CMR	exist	for	such	“unmarked”	species	(e.g.,	relative	
abundance	 indices,	 O’Brien	 et	 al.,	 2003;	 occupancy-	based	 abun-
dance	models,	Royle	&	Nichols,	2003;	spatial	count	models,	Chandler	
&	Andrew	Royle,	2013;	random	encounter	models,	Rowcliffe	et	al.,	
2008),	 but	 carry	 important	 disadvantages,	 notably	 the	 inability	 to	
model	individual	capture	heterogeneity	which	can	be	an	important	
variable	for	elusive	species	with	low	detection	rates	(Harmsen	et	al.,	
2011;	Sollmann,	2018).	Spatial	count	models	have	furthermore	been	
shown	to	produce	imprecise	estimates	without	auxiliary	data	which	
may	be	difficult	to	acquire	for	certain	species	(Sollmann	et	al.,	2013),	
and	 random	 encounter	 models	 require	 a	 random	 CT	 placement	
strategy	which	may	not	be	suitable	or	cost-	effective	for	elusive	spe-
cies	that	require	targeted	CT	placement	(Foster	&	Harmsen,	2012;	
Rowcliffe	 et	 al.,	 2013).	 Thus,	 those	 estimators	 which	 incorporate	
detection	 data	 at	 the	 individual	 level,	 including	 “partially	marked”	
methods	(i.e.,	mark–	resight,	McClintock	et	al.,	2009),	are	preferred	
whenever	photo-	ID	is	available.

For	 species	with	conspicuous	 flank	markings,	photo-	ID	 is	 rela-
tively	straightforward	using	CTs	placed	along	travel	paths	to	photo-	
capture the flank markings of species such as tigers (Panthera tigris; 
Karanth,	 1995)	 and	 jaguars	 (Panthera onca;	 Silver	 et	 al.,	 2004).	
Because	markings	are	typically	laterally	asymmetrical,	CTs	are	often	
placed	in	pairs	to	capture	both	flanks,	thus	avoiding	issues	of	partial	
identity	(McClintock	et	al.,	2013).	Of	course,	only	a	subset	of	animal	
species	exhibits	such	markings;	based	on	a	survey	of	176	carnivore	
species	 by	Ortolani	 and	Caro	 (1996),	 over	 60%	 exhibited	 uniform	
flank	coloration.	Some	research	has	shown	that	uniformly	pelaged	
species	may	nevertheless	be	individually	identifiable	by	subtler	char-
acteristics	 such	as	 scars,	 tail	 kinks,	or	 slight	 color	variations	 (Kelly	
et	al.,	2008;	Murphy	et	al.,	2018;	Sarmento	et	al.,	2009).	However,	
this	remains	controversial,	and	other	research	has	found	significant	
issues	with	misidentification	 and	 consequently	 inaccurate	 popula-
tion	estimates	(Alexander	&	Gese,	2018;	Foster	&	Harmsen,	2012;	
Güthlin	et	al.,	2014;	Oliveira-	Santos	et	al.,	2010).

Certain	species,	while	lacking	flank	markings,	may	exhibit	other	
markings	that	are	not	readily	visible	from	a	typical	 lateral-	view	CT	
setup.	 For	 example,	 several	 carnivores	 exhibit	 ventral	 patches	 of	
contrasting fur which can be photocaptured using imaginative CT 
techniques,	 such	 as	 using	 suspended	 bait	 to	 encourage	 an	 animal	
to	 stand	 erect	 and	 expose	 the	 patch	 to	 a	 CT;	 examples	 include	
wolverines (Gulo;	Magoun	et	 al.,	 2011),	American	martens	 (Martes 
americana;	Sirén	et	al.,	2016),	and	Asian	black	bears	(Ursus thibeta-
nus;	Ngoprasert	et	al.,	2012).	Facial	features	are	another	potentially	
useful	identifier	which	has	been	used	to	photo-	ID	a	wide	variety	of	
species,	including	African	lions	(Panthera leo;	Pennycuick	&	Rudnai,	
1970),	elephant	seals	(Mirounga leonine,	Caiafa	et	al.,	2005),	bottle-
nose dolphins (Tursops truncates;	Genov	et	al.,	2018),	brown	bears	
(Ursus arctos,	 Clapham	 et	 al.,	 2020),	 and	 several	 primate	 species	
(Deb	et	al.,	2018).	These	studies	employed	a	variety	of	identification	
methods,	ranging	from	simple	human	judgment	to	modern	machine	
learning	 techniques.	However,	all	used	 images	collected	with	con-
ventional,	handheld	cameras—	an	impractical	proposition	for	rare	and	
elusive	species	for	which	CTs	are	especially	advantageous.	Facial-	ID	
has	rarely	been	used	in	a	CT	framework,	and	only	for	species	with	
distinctive	flank	markings.	For	example,	identification	of	snow	leop-
ards (Panthera uncia)	by	Alexander	et	al.	(2015)	included	facial	spots	
along	with	other	 flank	markings	captured	by	conventional	CTs.	To	
our knowledge there has been no research into adapting CT meth-
ods	explicitly	to	apply	facial-	ID	to	an	elusive	species	without	natural	
markings.

Pumas (Puma concolor)	 are	 an	 elusive,	 sparsely	 occurring,	 and	
uniformly	 pelaged	 species	 for	 which	 population	 monitoring	 has	
proven	challenging.	Yet,	due	to	the	species’	huge	distribution,	eco-
logical	role	as	a	top-	down	regulator	(Ripple	&	Beschta,	2006;	Ripple	
et	al.,	2014;	Rominger,	2018),	and	societal	role	as	an	umbrella	or	flag-
ship	species	(Beier,	2009),	population	estimates	are	often	sought	for	
regional	management	or	broad	conservation	strategies.	While	CTs	
are	highly	effective	at	photocapturing	pumas,	and	potentially	a	cost-	
effective	method	for	estimating	population	size,	pumas’	lack	of	con-
spicuous	markings	makes	them	a	controversial	subject	for	photo-	ID	
(Alexander	 &	Gese,	 2018;	 Foster	 &	Harmsen,	 2012).	 Anecdotally,	
puma	facial	features	(e.g.,	those	visible	in	a	front-	on	view	such	as	the	
shape	or	condition	of	the	eyes,	rhinarium,	or	pinnae)	are	useful	for	
identifying	individuals	but	are	not	well	captured	with	conventional	
CT	techniques.

Here,	we	evaluate	the	feasibility	of	using	facial	 features	to	pho-
to-	ID	pumas	in	CT	surveys.	We	focus	on	two	aspects:	(1)	the	ability	to	
successfully	capture	puma	facial	 features	with	CTs,	and	 (2)	whether	
facial	images	improve	human	ability	to	photo-	ID	pumas.	For	the	for-
mer,	we	designed	a	CT	accessory	to	encourage	pumas	to	face	a	CT	
front-	on,	thereby	generating	facial	images	instead	of	conventional	lat-
eral	images.	We	assessed	the	ability	of	the	device	to	capture	face	im-
ages,	and	examined	possible	behavioral	reactions	(Meek	et	al.,	2016),	
including changes in detection rates that could indicate trap response. 
We	then	used	inter-	rater	agreement	of	photo-	ID	as	a	proxy	for	accu-
racy	of	photo-	ID	when	using	puma	facial	images	(Alexander	&	Gese,	
2018;	Kelly	et	al.,	2008;	Mackey	et	al.,	2007;	McCarthy	et	al.,	2018;	
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Oliveira-	Santos	et	al.,	2010).	We	note	that	our	goal	was	to	assess	the	
feasibility	of	this	novel	method,	as	opposed	to	generating	an	unbiased	
detection	history	large	enough	to	estimate	abundance.

2  |  STUDY ARE A

We	deployed	CTs	year-	round	at	sites	in	the	Jackson	Hole	basin	in	the	
Greater	Yellowstone	Area,	in	northwest	Wyoming.	All	sites	were	on	
lands	administered	by	the	Bridger-	Teton	National	Forest.	Elevations	
ranged	from	2100	m	to	3000	m.	The	climate	was	characterized	by	
long	 snowy	winters	 and	 short	mild	 summers.	 The	 area	was	previ-
ously	home	to	a	long-	term	puma	radio-	collaring	study;	however,	all	
collars	were	removed	before	the	start	of	our	study.	Besides	pumas,	
the	 study	 area	 included	 grizzly	 bears	 (Ursus arctos),	 black	 bears	
(Ursus americanus),	and	grey	wolves	(Canis lupus).	Commonly	occur-
ring	mesocarnivores	 included	coyotes	 (Canis latrans)	and	red	foxes	
(Vulpes vulpes).	Primary	prey	species	 for	puma	 included	mule	deer	
(Odocoileus hemionus),	elk	(Cervus elaphus),	moose	(Alces alces),	big-
horn sheep (Ovis canadensis),	and	various	smaller	mammals	(Elbroch	
et	al.,	2013).

3  |  METHODS

We	deployed	two	types	of	CT	sites	in	the	study	area	from	mid-	2017	
through 2019: conventional CTs and CTs that included a motion- 
activated	 “attention	 caller”	 device	 (ACD),	 which	 we	 designed	 to	
operate	alongside	a	CT.	When	triggered,	the	ACD	played	an	audio	
recording	 of	 a	 juvenile	 puma	 call	 and	 illuminated	 a	 pair	 of	 light-	
emitting	diodes	to	elicit	a	curiosity	response	from	the	target	animal.	
The	ACD	was	enclosed	 in	a	weather-	proof	casing,	and	was	similar	
in	 size,	 battery	 life,	 and	motion	 activation	 (i.e.,	 used	 a	 passive	 in-
tegrated resistor to sense infrared radiation from animals) to a CT 
(Figure	 1).	 It	 operated	 using	 the	 open-	source	Arduino® microcon-
troller	platform.	The	materials	used	to	build	the	ACD	were	relatively	
inexpensive,	with	each	unit	costing	approximately	US$33,	with	ap-
proximately	half	of	that	cost	going	toward	the	waterproof	casing.

Sites	were	chosen	based	on	likely	puma	travel	routes	or	at	puma	
community	scrape	sites	 (see	Allen	et	al.,	2014);	approximately	half	
were	 chosen	 opportunistically	 to	 include	 an	 ACD.	 The	 mean	 dis-
tance	between	sites	was	12.99	km	(SD	=	9.52,	min	=	0.03,	max	= 
54.42).	 Sites	 were	 moved	 after	 ~45	 days	 if	 they	 failed	 to	 detect	
pumas.	 Approximately	 6–	12	 sites	 were	 active	 at	 any	 given	 time	
during	the	survey.	We	fixed	CTs	to	trees	and	mounted	ACDs	imme-
diately	above	or	below.	We	included	a	scent	lure	(e.g.,	Wildcat	Lure	
No.	2	(Hawbaker	&	Sons,	Fort	Loudon,	PA)	or	similar)	at	all	sites.	Lure	
was placed on the ground (~3–	7	m)	 in	front	of	cameras	to	encour-
age the animal to position itself at the center of the field of view 
and	increase	the	likelihood	of	capturing	useful	images	(Alexander	&	
Gese,	2018;	McBride	&	Sensor,	2015).	We	typically	performed	site	
visits	to	download	CTs	and	refresh	scent	 lure	monthly;	this	period	
was	longer	at	some	sites	due	to	wintertime	access	restrictions.	We	

used	Reconyx	CTs	(Hyperfire,	Hyperfire2,	or	Ultrafire	video	models;	
Reconyx,	Inc.,	Holmen,	WI)	programmed	to	take	bursts	of	five	pho-
tos	with	 the	 “rapidfire”	 setting,	or	 set	 to	video	when	available.	All	
CTs	used	infrared	(IR)	flash	for	low-	light	conditions;	daytime	images	
were	color	and	IR	flash	images	were	monochrome.	We	programmed	
ACDs	with	 a	 2-	second	delay	 to	 allow	 an	 animal	 to	 fully	 enter	 the	
field of view before activating. Puma images were organized into 
detection events and were regarded as independent if greater than 
30 minutes passed between photos from the same site.

3.1  |  Effects of the ACD

All	analyses	were	completed	using	R	(R	Core	Team,	2019).	We	cat-
egorized	detection	events	as	having	successfully	captured	a	com-
plete image of the puma's face or not based on all facial features 
being	visible	in	any	single	image	within	the	event	(Figure	2).	We	
also grouped detections into four behavioral categories based on 
apparent	 behavior	 in	 images:	 (1)	 pumas	 moving	 away	 from	 the	
CT	 site	 in	 a	manner	 that	 suggested	 fleeing	 (e.g.,	with	 a	 sudden	
change	 in	 speed	 or	 direction),	 (2)	 looking	 at	 the	 ACD	 with	 no	
other	 changes	 in	 behavior,	 (3)	 a	 strong	 curiosity	 response	 indi-
cated	by	moving	toward	the	CT	to	investigate,	or	(4)	no	apparent	
reaction.	Note	that	face	captures	were	not	limited	to	the	second	
category;	fleeing	and	curiosity	responses	may	have	included	face	

F I G U R E  1 A	standard	camera	trap	with	an	“Attention	caller	
device”	(ACD).	The	camera	and	ACD	were	deployed	together,	and	
both	triggered	by	motion.	When	activated,	the	ACD	emitted	light	
and	sound	to	attract	the	attention	of	a	puma,	resulting	in	direct	
images	of	the	puma's	face.	Camera	traps	and	ACDs	were	deployed	
2017–	2020	in	northwest	Wyoming
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captures	as	well.	We	used	Chi-	squared	tests	of	independence	to	
compare	 counts	of	detection	events,	 face	 captures,	 and	behav-
ioral	reactions	between	ACD	sites	and	conventional	CT	sites,	in-
cluding	whether	events	occurred	during	night	or	day	(defined	by	
astronomical twilight). To test for evidence that pumas learned 
to	avoid	ACD	sites	over	time,	we	used	the	R	package	glmmTMB	
(Brooks	et	al.,	2017)	to	build	a	Poisson	generalized	 linear	mixed	
model	 (GLMM)	with	 daily	 count	 of	 detection	 events	 as	 the	 re-
sponse	variable	(Henrich	et	al.,	2020).	We	included	CT	site,	sea-
son,	and	year	as	random	effects.	Explanatory	variables	included	
days	since	CT	deployment,	days	since	scent	lure	placement	(both	
scaled),	 and	 two	 binary	 factors	 specifying	whether	 the	 CT	 site	
included	an	ACD	and	whether	 the	 site	was	used	by	pumas	as	a	

community	scrape	site	(based	on	presence	of	scrapes	at	deploy-
ment).	 All	 interactions	 were	 considered.	 We	 performed	 model	
selection	using	the	buildmer	package	(Voeten,	2021),	which	finds	
the optimal model based on stepwise backward elimination using 
change	in	log-	likelihood	as	the	criteria.	We	then	compared	simi-
lar	models	using	Akaike's	 information	criterion	 (AIC;	Burnhan	&	
Anderson,	 2002),	 and	diagnostic	 testing	 for	 overdispersion	 and	
zero	 inflation	with	 the	 R	 package	 performance	 (Lüdecke	 et	 al.,	
2021b).	We	used	type	III	analysis	of	variance	(ANOVA)	to	assess	
significance of the predictor variables and their potential inter-
active	 effects	 by	 refitting	 the	model	 with	 sum	 contrast	 coding	
for	factors	(Fox	&	Weisberg,	2018).	Plots	were	created	using	the	
package	sjPlot	(Lüdecke,	2021a).

F I G U R E  2 Camera	trap	photos	of	
pumas	taken	in	northwest	Wyoming	
2017–	2020,	using	a	novel	method	
designed to capture pumas front- on 
for	facial-	ID.	The	photos	are	arranged	
by	individual	identity,	with	each	row	
corresponding	to	an	ID	that	had	100%	
agreement between five independent 
raters	assigning	photo-	ID	to	the	image	set



    |  5 of 11ALEXANDER AND CRAIGHEAD

3.2  |  Photo- ID analysis

To	evaluate	 the	 feasibility	 of	 using	puma	 faces	 for	 photo-	ID,	we	
measured the inter- rater agreement between independent investi-
gators	assigning	photo-	ID	to	detection	events	containing	facial	im-
ages;	 this	process	was	similar	 to	Alexander	and	Gese	 (2018).	We	
developed	an	online	application	 for	assigning	 ID	 to	 images	using	
the	R	package	shiny	 (Chang	et	al.,	2021).	 Investigators	were	pre-
sented	detection	events	in	a	pairwise	manner,	with	one	event	dis-
played	on	each	 side	of	 the	 screen	 (Figure	3).	 Investigators	 could	
cycle	through	events	(and	the	constituent	photos)	on	each	side	of	
the	screen	independently.	Investigators	compared	the	events	and	
rated	each	pairing	as	“same”	or	“different”	based	on	perceived	ID.	
All	events	included,	but	were	not	limited	to,	facial	images.	As	inves-
tigators	 rated	pairings,	 a	network	plot	of	 events	was	updated	 to	
display	 the	 resulting	 identities	 (i.e.,	 events	 were	 graphically	
grouped	by	ID	based	on	the	pairings	rated	as	“same”)	using	the	R	
package	igraph	(Csardi	&	Nepusz,	2006).	The	total	number	of	event	

pairings	 was	 equal	 to	
⎛
⎜
⎜
⎝

n

2

⎞
⎟
⎟
⎠
,	 where	 n was the number of events. 

Consequently,	the	number	of	pairings	to	evaluate	increased	expo-
nentially	 with	 increased	 events;	 to	 avoid	 an	 onerous	 number	 of	
pairings	to	rate,	we	limited	the	number	of	events	to	16,	resulting	in	
120	pairings.	The	16	events	were	 randomly	 selected	 from	 those	
that	 included	 ≥1	 face	 images.	 All	 participants	 had	 either	 profes-
sional	 or	 academic	 experience	 with	 camera	 trapping	 pumas.	
Agreement	was	measured	with	 Fleiss’	 kappa	 (Fleiss,	 1971)	 using	
the	 R	 package	 rel	 (LoMartire,	 2020).	 We	 calculated	 95%	 confi-
dence	intervals	following	Fleiss	et	al.	(1979).	As	with	Alexander	and	
Gese	(2018),	the	true	ID	of	pumas	was	unknown,	and	although	high	
inter-	rater	agreement	would	not	necessarily	indicate	photo-	ID	ac-
curacy,	 low	agreement	would	 strongly	 suggest	high	potential	 for	
misidentification	(Oliveira-	Santos	et	al.,	2010).	To	further	examine	
human	ability	to	photo-	ID	pumas	using	this	method,	we	looked	at	
several	 factors	 which	 may	 have	 affected	 agreement.	 We	 chose	
four	binary	attributes:	 (1)	 image	type	 (monochrome	vs.	color),	 (2)	

F I G U R E  3 A	screen	capture	of	our	web-	based	application	for	matching	pumas	in	camera	trap	images	by	individual	identification.	Each	
side	of	the	screen	displayed	a	camera	trapping	event;	users	were	asked	to	classify	each	event	pairing	as	being	the	same	individual	or	not.	As	
event	pairs	were	matched,	a	graphical	representation	of	puma	IDs	(lower	left)	was	updated.	Camera	trap	images	were	collected	from	2017	to	
2020	in	northwest	Wyoming
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ambient	 lighting	 (ambient	 lighting	 vs.	CT	 flash	only),	 (3)	whether	
pumas	exhibited	clearly	torn	or	missing	pinnae,	and	(4)	image	reso-
lution	of	puma	faces.	Resolution	was	defined	by	determining	the	
number	 of	 pixels	 in	 the	minimum	 bounding	 box	 for	 each	 detec-
tion's	largest	facial	 image;	we	then	performed	a	median	split.	We	
used the above attributes to subset detection pairings in an either/
or/both	 framework	 (e.g.,	 only	 color	 pairings,	 only	 monochrome	
pairings,	or	pairings	with	one	of	each),	and	calculated	Fleiss’	kappa	
for	each.	We	used	Spearman's	rho	to	calculate	the	correlation	be-
tween the attributes.

4  |  RESULTS

We	recorded	13,375	days	of	CT	effort	at	61	sites.	Of	 those	days,	
8,016	included	an	ACD.	We	collected	208	puma	detection	events,	
of	which	98	were	at	ACD	sites	and	110	at	conventional	sites.	Effort	
at	 community	 scrape	 sites	 totaled	 7289	 days,	 with	 151	 events	

occurring	at	those	sites.	Nighttime	events	made	up	43.3%	of	detec-
tions	and	the	IR	flash	was	triggered	in	81.7%	of	detections.

4.1  |  Effects of the ACD

Puma	faces	were	captured	in	52	of	the	ACD	detection	events	(see	
Figure	 3	 for	 examples)	 and	 12	 of	 the	 conventional	 CT	 detection	
events,	 resulting	 in	 respective	 face	 capture	 rates	 of	 ~53.1% and 
~10.9% per event (χ2 =	43.23,	p	≤	.001).	At	CT	sites	without	ACDs,	
~94.5%	of	events	did	not	have	any	apparent	reaction;	ACD	site	reac-
tions	were	more	varied,	with	~83.7%	categorized	as	either	no	reac-
tion	or	a	“look	only”	reaction	(Figure	4).	Retreat	reactions	occurred	
more	at	ACD	sites	than	at	conventional	sites	(χ2 =	3.98,	p =	 .046).	
We	found	no	significant	differences	between	night	and	day	events.

The	 top	 buildmer	Poisson	GLMM	 included	12	 parameters	 and	
several	interactive	terms,	including	a	three-	way	interaction	between	
ACD	presence,	 scrape	 site	 status,	 and	 scent	 lure	 age.	 The	 second	

F I G U R E  4 Counts	of	categorized	
puma behaviors at camera trap sites 
in	Northwest	Wyoming	2017–	2020.	
Detection	counts	were	grouped	on	
whether	the	site	included	an	“attention	
caller	device”	(ACD)	used	to	elicit	face	
images,	and	whether	they	occurred	
at	night	or	day.	The	Y-	axis	was	log-	
transformed. Categorizations were based 
on behavior apparent in camera trap 
images,	and	limited	to	(1)	curiosity	toward	
the	camera,	(2)	looking	at	the	camera	
without	any	other	change	in	behavior,	
(3)	no	reaction	at	all,	or	(4)	sudden	retreat
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TA B L E  1 Model	coefficients,	with	standard	errors	and	type	III	ANOVA	measures	of	significance	for	parameters	effecting	daily	counts	
of	puma	detections	at	camera	trapping	sites	in	northwest	Wyoming,	2017–	2020,	including	presence	of	an	“attention	caller	device”	(ACD),	
presence	of	puma	scrapes	at	deployment,	and	number	of	days	since	the	camera	site	was	deployed

Estimate SE χ2 p

(Intercept) −5.34 0.39 386.62 ≤.001

Scrape site 0.31 0.52 7.04 .008

ACD	site −0.18 0.48 1.57 .210

Days	since	deployment 0.094 0.17 2.80 .095

ACD	*	days	since	deployment −0.58 0.19 9.79 .002

Scrape	*	ACD 1.24 0.69 3.23 .073
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ranked model (ΔAIC	= 2.0) was more parsimonious with eight param-
eters and was selected for our top model (Table 1). The interaction 
between	scrape	site	status	and	ACD	presence	had	a	 large	positive	
effect on detection rates; the model also predicted a detection rate 
decrease	of	0.163%	per	day	(95%	CI	=	0.148–	0.176)	at	all	ACD	sites,	
and	an	 increase	of	0.052%	per	day	 (95%	CI	=	0.009–	0.102)	when	
there	was	no	ACD	 (Figure	5);	we	note	 all	 other	 candidate	models	
predicted similar coefficients for these variables.

4.2  |  Photo- ID analysis

We	 collected	 assessments	 of	 photo-	ID	 from	 five	 independent	 in-
vestigators.	Of	the	16	randomly	sampled	detection	events,	10	were	
comprised of monochrome images with 8 of those occurring at night. 
Pumas	exhibited	conspicuous	damage	to	one	or	both	pinnae	 in	six	
events;	of	those,	a	kinked	tail	was	also	visible	in	two	detections.	The	
median	number	of	 image	pixels	 for	puma	faces	was	39,216	 (min	= 
13,338,	max	=	109,495).	The	mean	number	of	identified	individuals	
was	7.4	(n =	5,	min	=	6,	max	=	9,	SD	=	1.14).	Nighttime	events	were	
(expectedly)	correlated	with	events	using	IR	flash	(Spearman's	rho	= 
0.78,	p	≤	.001).	We	also	found	an	unexpected	correlation	between	
puma face resolution and missing or damaged pinnae (Spearman's 
rho =	0.73,	p	≤	.001).

Fleiss’	kappa	for	the	full	dataset	was	0.54	(95%	CI	=	0.48–	0.60).	
Standard interpretations of this kappa would be categorized as 
“moderate”	(Landis	&	Koch,	1977)	or	“intermediate	to	good”	(Fleiss,	
1971).	 This	 kappa	 was	 92.90%	 greater	 than	 the	 kappa	 reported	
by	 Alexander	 and	 Gese	 (2018),	 which	 used	 conventional	 CT	 im-
ages	of	pumas	and	reported	a	“slight”	or	“poor”	value	of	0.18,	with	
(P.	Alexander	and	E.	Gese,	unpublished data) 95% confidence inter-
vals	of	0.14–	0.23.	In	~43.5%	of	the	pairings	with	<100%	agreement,	

a	 single	 investigator	 was	 in	 disagreement	 with	 the	 others.	When	
these	 singletons	 were	 adjusted	 to	 match	 the	 consensus,	 Fleiss’	
kappa	 increased	 to	 0.76	 (95%	 CI	=	 0.70–	0.82),	 a	 “substantial”	 or	
“excellent”	level	of	agreement.	For	the	analysis	of	attribute	subsets,	
most	kappa	estimates’	95%	confidence	 intervals	overlapped	 those	
of the full dataset estimate (Figure 6). The lowest kappas were for 
pairings in which one or both events used color images. There was 
perfect	agreement	for	event	pairings	in	which	one	puma	exhibited	
pinnae damage and the other did not; these pairings were predict-
ably	all	rated	as	“different.”

5  |  DISCUSSION

Based	on	a	comparison	of	our	results	and	those	of	Alexander	and	
Gese	 (2018),	 inter-	rater	 agreement	 improves	 greatly	when	using	
face images of pumas over conventional CT images for photo-
	ID.	We	note	that	our	study	included	fewer	investigators	(5	vs.	7);	
while	this	can	raise	the	possibility	of	chance	agreement,	that	issue	
is minimized in kappa statistics versus simple percent agreement 
(Gwet,	2010),	 and	 the	95%	confidence	 intervals	of	 the	 two	kap-
pas	did	not	overlap.	Our	study	also	included	a	greater	number	of	
pairings	to	compare	(120	vs.	105),	and,	unlike	the	2018	study,	in-
vestigators were not provided the advantage of knowing spatial/
temporal	 distances	 between	 pairings	 (although	 they	 could	 likely	
infer	which	events	were	from	the	exact	same	site).	The	“substan-
tial”	 agreement	 when	 using	 the	 adjusted	 ratings	 (i.e.,	 switching	
the	 single	 investigator	disagreements)	was	noteworthy;	a	 similar	
reanalysis	 of	 the	 2018	 ratings	 resulted	 in	 a	 “moderate”	 agree-
ment	 kappa	 of	 0.48	 (95%	 CI	=	 0.44–	0.53;	 P.	 Alexander,	 unpub-
lished data),	 which	was	 still	 below	 our	 unadjusted	 kappa.	 These	
adjustments	should	be	 interpreted	cautiously	as	they	resulted	 in	

F I G U R E  5 Predicted	puma	camera	
trapping	rates	using	Poisson	GLMM,	
from	northwest	Wyoming,	2017–	2020.	
Regression lines indicate predictions for 
conventional cameras (solid line) and for 
cameras	using	an	“attention	caller	device”	
(ACD;	dotted	line)	to	elicit	frontal	images	
of pumas. The shaded areas encompass 
the 95% confidence intervals
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contradictory	ID	matchings	which	would	need	to	be	reconciled	if	
used	in	a	detection	history.

Unsurprisingly,	when	one	of	the	two	events	in	a	pairing	exhibited	
visibly	damaged	pinnae,	a	“different”	rating	was	always	ascribed,	re-
sulting	in	the	highest	level	of	agreement	for	the	subset	analysis.	This	
suggested that clear images of both pinnae are useful for distinguish-
ing	individuals,	highlighting	the	value	of	frontal	images	of	pumas	as	
opposed	to	lateral,	which,	especially	when	only	a	single	CT	is	used,	
result	 in	 lateral	 occlusion	 and	 partial	 identity	 issues	 (McClintock	
et	al.,	2013).	 It	 is	also	noteworthy	 that	 this	 feature	was	more	cor-
related with kappa estimates than the image- related features such 
as	 lighting.	 Notably,	 we	 did	 not	 see	 significant	 improvement	 in	
agreement	when	both	events	had	distinctive	pinnae,	although	 the	
sample	size	of	such	pairings	was	relatively	low	with	wide	confidence	
intervals.	The	importance	of	this	feature	was	also	confounded	by	the	

almost	certainly	spurious	correlation	between	image	resolution	and	
damaged	 pinnae,	 although	 kappa	 differences	 were	 comparatively	
low	when	pairings	were	based	on	resolution.	We	note	missing	pin-
nae	were	likely	the	result	of	frostbite,	suggesting	that	(1)	populations	
in	warmer	region	may	have	lower	frequencies	of	this	feature,	and	(2)	
consideration should be given to the permanence of this feature in 
the	context	of	a	 long-	term	survey.	 Indeed,	 this	 issue	may	have	af-
fected	our	results	due	to	the	timespan	of	our	detection	set,	and	the	
importance	of	minimizing	survey	length	should	be	emphasized	(Kelly	
et	al.,	2008).	Surprisingly,	we	found	the	monochrome	pairings	sub-
set	had	increased	estimates	of	kappa,	and	pairings	with	color	images	
were	lower.	One	possibility	was	that	daytime	images	introduced	var-
ied	angles	of	shadows	as	opposed	to	the	uniformly	directed	lighting	
of	the	IR	flash.	Of	course,	these	results	should	be	interpreted	care-
fully	due	to	the	small	sample	sizes,	as	well	as	the	possibility	of	latent	

F I G U R E  6 Estimates	of	agreement	level	(Fleiss’	kappa)	between	five	independent	investigators	matching	camera	trap	images	of	pumas	
by	individual	ID.	Error	bars	indicate	95%	confidence	intervals.	The	different	estimates	represent	agreement	for	various	subsets	of	the	image	
set	based	on	ambient	natural	lighting	(night	vs.	day/crepuscular	images),	use	of	infrared	flash	(color	vs.	monochrome),	pixel	resolution	of	the	
images,	and	whether	pumas	exhibited	damaged	pinnae	(a	particularly	conspicuous	and	potentially	distinguishing	feature).	Estimates	were	
ordered	from	left	to	right	by	the	sum	of	pairings	that	were	positively	matched	by	ID.	The	first	estimate	had	perfect	agreement	and	therefore	
no	confidence	intervals.	Northwest	Wyoming,	2017–	2019
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correlations	with	the	actual	ID	of	pumas,	which	likely	varied	in	their	
identifiability.

The	ACDs	significantly	 improved	 the	success	 rate	of	capturing	
face	 images	compared	to	the	conventional	CTs.	While	much	lower	
than	 the	 raw	puma	detection	 rates,	 the	 face	 capture	 rate	 at	ACD	
sites (~53%) was higher than a theoretical conventional flank cap-
ture	rate,	assuming	single	CTs	and	a	50%	chance	of	capturing	either	
the	right	or	left	flank.	The	only	CT	study	incorporating	facial-	ID	that	
we	are	 aware	of	 is	Alexander	et	 al.	 (2015),	which	 reported	a	32%	
face capture rate of snow leopards using CTs placed in a manner to 
attempt	to	capture	animals	head-	on.	Improvements	in	the	ACD	face	
capture	rate	should	be	attainable,	possibly	through	greater	number	
of	CTs	per	station,	or	an	improved	field	of	view	for	the	CTs.	Indeed,	
we did not count some face detections due to the puma being par-
tially	out	of	frame	despite	apparently	eliciting	the	desired	response	
to	the	ACD.

Clearly,	the	ACD	reduced	an	element	of	non-	invasiveness	nor-
mally	 associated	with	CTs,	 since	 detections	 explicitly	 required	 a	
behavioral	 response.	 The	 proportion	 of	 retreat	 reactions,	 while	
low,	 did	 increase	with	 the	ACD.	We	note	 that	we	 also	 recorded	
such	reactions	without	 the	ACD,	namely	 in	nighttime	detections	
when	pumas	were	likely	reacting	to	the	infrared	flash.	Our	detec-
tion	rate	GLMM	predicted	a	low	decrease	in	detections	over	time,	
possibly	due	to	an	avoidance	behavior.	However,	the	predicted	de-
crease	was	small,	with	 the	95%	confidence	 intervals	overlapping	
those	of	 conventional	CTs,	 and	may	not	 affect	 a	 typical	CT	 sur-
vey	lasting	only	a	few	months.	Importantly,	we	also	report	overall	
greater	 detection	 rates	 at	 ACD	 sites	when	 deployed	 at	 commu-
nity	scrape	sites;	 it	 is	possible	that	this	reflects	some	interactive	
behavioral	response,	but	 it	also	may	be	due	to	our	opportunistic	
sampling	strategy	which	placed	ACDs	at	sites	with	high	probability	
of puma visitation.

In	 this	 study,	 we	 assessed	 human	 ability	 to	 photo-	ID	 pumas.	
However,	it	is	worth	noting	the	increasing	role	of	machine	learning	
techniques	for	photo-	ID,	which	may	reduce	human	effort	and	bias.	
While	photo-	ID	using	machine	learning	could	theoretically	use	CT	
images	of	 individuals	from	any	angle,	facial-	ID	is	a	more	tractable	
machine learning problem and has long been in use for human rec-
ognition;	more	 recently,	 it	 has	 been	extended	 to	 a	 variety	 of	 un-
marked	wildlife	species	(Clapham	et	al.,	2020;	Deb	et	al.,	2018).	Our	
development	of	 the	ACD	 is	 therefore	pertinent,	 as	 it	 could	oper-
ate,	 in	effect,	as	an	in	situ	feature	extractor	in	a	machine	learning	
framework.

Camera	traps	have	yielded	important	improvements	in	our	abil-
ity	to	monitor	rare	and	elusive	species,	especially	in	terms	of	cost-	
effectiveness	and	noninvasiveness.	However,	there	are	many	elusive	
but unmarked species for which the advantages of CTs stop short of 
providing reliable population estimates. Pumas are one of the more 
glaring	examples	of	such	a	species,	given	their	huge	distribution	and	
ecological	 importance,	as	well	as	the	ostensible	cost-	effectiveness	
of CTs to collect data on pumas. This work strove to address some of 
these	limitations	and	hopefully	will	encourage	further	research	into	
similar	field	and	analytical	methods.
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