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Abstract
Camera traps (CTs), used in conjunction with capture–mark–recapture analyses (CMR; 
photo-CMR), are a valuable tool for estimating abundances of rare and elusive wild-
life. However, a critical requirement of photo-CMR is that individuals are identifiable 
in CT images (photo-ID). Thus, photo-CMR is generally limited to species with con-
spicuous pelage patterns (e.g., stripes or spots) using lateral-view images from CTs 
stationed along travel paths. Pumas (Puma concolor) are an elusive species for which 
CTs are highly effective at collecting image data, but their suitability to photo-ID is 
controversial due to their lack of pelage markings. For a wide range of taxa, facial 
features are useful for photo-ID, but this method has generally been limited to im-
ages collected with traditional handheld cameras. Here, we evaluate the feasibility of 
using puma facial features for photo-ID in a CT framework. We consider two issues: 
(1) the ability to capture puma facial images using CTs, and (2) whether facial images 
improve human ability to photo-ID pumas. We tested a novel CT accessory that used 
light and sound to attract the attention of pumas, thereby collecting face images for 
use in photo-ID. Face captures rates increased at CTs that included the accessory (n = 
208, χ2 = 43.23, p ≤ .001). To evaluate if puma faces improve photo-ID, we measured 
the inter-rater agreement of 5 independent assessments of photo-ID for 16 of our 
puma face capture events. Agreement was moderate to good (Fleiss’ kappa = 0.54, 
95% CI = 0.48–0.60), and was 92.90% greater than a previously published kappa using 
conventional CT methods. This study is the first time that such a technique has been 
used for photo-ID, and we believe a promising demonstration of how photo-ID may 
be feasible for an elusive but unmarked species.
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1  |  INTRODUC TION

Accurate estimates of abundance are fundamental to effective wild-
life management and conservation. However, abundance estimates 
are often difficult to obtain, especially for rare or elusive species for 
which direct observation and live capture are difficult and costly 
(Gese, 2001; Kucera & Barret, 2011; McDonald, 2004). Motion-
triggered remote cameras, or camera traps (CTs), have thus become 
an important and often used tool for researching such species due 
to their ability to record wildlife observations autonomously, con-
tinuously, noninvasively, and at relatively low cost (Kucera & Barret, 
2011). There are a wide variety of methods to estimate abundance 
using CT data, but those that incorporate individual detection his-
tories in a capture–mark–recapture-type framework (CMR, photo-
CMR; Karanth, 1995; Otis et al., 1978) are often considered the “gold 
standard” (Sollmann, 2018). CMR is not always feasible, however, 
due to the difficult nature of reliably identifying individuals in CT 
images (photo-ID), especially for species that do not exhibit conspic-
uous and individually unique markings (e.g., stripes or spots). Many 
alternatives to CMR exist for such “unmarked” species (e.g., relative 
abundance indices, O’Brien et al., 2003; occupancy-based abun-
dance models, Royle & Nichols, 2003; spatial count models, Chandler 
& Andrew Royle, 2013; random encounter models, Rowcliffe et al., 
2008), but carry important disadvantages, notably the inability to 
model individual capture heterogeneity which can be an important 
variable for elusive species with low detection rates (Harmsen et al., 
2011; Sollmann, 2018). Spatial count models have furthermore been 
shown to produce imprecise estimates without auxiliary data which 
may be difficult to acquire for certain species (Sollmann et al., 2013), 
and random encounter models require a random CT placement 
strategy which may not be suitable or cost-effective for elusive spe-
cies that require targeted CT placement (Foster & Harmsen, 2012; 
Rowcliffe et al., 2013). Thus, those estimators which incorporate 
detection data at the individual level, including “partially marked” 
methods (i.e., mark–resight, McClintock et al., 2009), are preferred 
whenever photo-ID is available.

For species with conspicuous flank markings, photo-ID is rela-
tively straightforward using CTs placed along travel paths to photo-
capture the flank markings of species such as tigers (Panthera tigris; 
Karanth, 1995) and jaguars (Panthera onca; Silver et al., 2004). 
Because markings are typically laterally asymmetrical, CTs are often 
placed in pairs to capture both flanks, thus avoiding issues of partial 
identity (McClintock et al., 2013). Of course, only a subset of animal 
species exhibits such markings; based on a survey of 176 carnivore 
species by Ortolani and Caro (1996), over 60% exhibited uniform 
flank coloration. Some research has shown that uniformly pelaged 
species may nevertheless be individually identifiable by subtler char-
acteristics such as scars, tail kinks, or slight color variations (Kelly 
et al., 2008; Murphy et al., 2018; Sarmento et al., 2009). However, 
this remains controversial, and other research has found significant 
issues with misidentification and consequently inaccurate popula-
tion estimates (Alexander & Gese, 2018; Foster & Harmsen, 2012; 
Güthlin et al., 2014; Oliveira-Santos et al., 2010).

Certain species, while lacking flank markings, may exhibit other 
markings that are not readily visible from a typical lateral-view CT 
setup. For example, several carnivores exhibit ventral patches of 
contrasting fur which can be photocaptured using imaginative CT 
techniques, such as using suspended bait to encourage an animal 
to stand erect and expose the patch to a CT; examples include 
wolverines (Gulo; Magoun et al., 2011), American martens (Martes 
americana; Sirén et al., 2016), and Asian black bears (Ursus thibeta-
nus; Ngoprasert et al., 2012). Facial features are another potentially 
useful identifier which has been used to photo-ID a wide variety of 
species, including African lions (Panthera leo; Pennycuick & Rudnai, 
1970), elephant seals (Mirounga leonine, Caiafa et al., 2005), bottle-
nose dolphins (Tursops truncates; Genov et al., 2018), brown bears 
(Ursus arctos, Clapham et al., 2020), and several primate species 
(Deb et al., 2018). These studies employed a variety of identification 
methods, ranging from simple human judgment to modern machine 
learning techniques. However, all used images collected with con-
ventional, handheld cameras—an impractical proposition for rare and 
elusive species for which CTs are especially advantageous. Facial-ID 
has rarely been used in a CT framework, and only for species with 
distinctive flank markings. For example, identification of snow leop-
ards (Panthera uncia) by Alexander et al. (2015) included facial spots 
along with other flank markings captured by conventional CTs. To 
our knowledge there has been no research into adapting CT meth-
ods explicitly to apply facial-ID to an elusive species without natural 
markings.

Pumas (Puma concolor) are an elusive, sparsely occurring, and 
uniformly pelaged species for which population monitoring has 
proven challenging. Yet, due to the species’ huge distribution, eco-
logical role as a top-down regulator (Ripple & Beschta, 2006; Ripple 
et al., 2014; Rominger, 2018), and societal role as an umbrella or flag-
ship species (Beier, 2009), population estimates are often sought for 
regional management or broad conservation strategies. While CTs 
are highly effective at photocapturing pumas, and potentially a cost-
effective method for estimating population size, pumas’ lack of con-
spicuous markings makes them a controversial subject for photo-ID 
(Alexander & Gese, 2018; Foster & Harmsen, 2012). Anecdotally, 
puma facial features (e.g., those visible in a front-on view such as the 
shape or condition of the eyes, rhinarium, or pinnae) are useful for 
identifying individuals but are not well captured with conventional 
CT techniques.

Here, we evaluate the feasibility of using facial features to pho-
to-ID pumas in CT surveys. We focus on two aspects: (1) the ability to 
successfully capture puma facial features with CTs, and (2) whether 
facial images improve human ability to photo-ID pumas. For the for-
mer, we designed a CT accessory to encourage pumas to face a CT 
front-on, thereby generating facial images instead of conventional lat-
eral images. We assessed the ability of the device to capture face im-
ages, and examined possible behavioral reactions (Meek et al., 2016), 
including changes in detection rates that could indicate trap response. 
We then used inter-rater agreement of photo-ID as a proxy for accu-
racy of photo-ID when using puma facial images (Alexander & Gese, 
2018; Kelly et al., 2008; Mackey et al., 2007; McCarthy et al., 2018; 
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Oliveira-Santos et al., 2010). We note that our goal was to assess the 
feasibility of this novel method, as opposed to generating an unbiased 
detection history large enough to estimate abundance.

2  |  STUDY ARE A

We deployed CTs year-round at sites in the Jackson Hole basin in the 
Greater Yellowstone Area, in northwest Wyoming. All sites were on 
lands administered by the Bridger-Teton National Forest. Elevations 
ranged from 2100 m to 3000 m. The climate was characterized by 
long snowy winters and short mild summers. The area was previ-
ously home to a long-term puma radio-collaring study; however, all 
collars were removed before the start of our study. Besides pumas, 
the study area included grizzly bears (Ursus arctos), black bears 
(Ursus americanus), and grey wolves (Canis lupus). Commonly occur-
ring mesocarnivores included coyotes (Canis latrans) and red foxes 
(Vulpes vulpes). Primary prey species for puma included mule deer 
(Odocoileus hemionus), elk (Cervus elaphus), moose (Alces alces), big-
horn sheep (Ovis canadensis), and various smaller mammals (Elbroch 
et al., 2013).

3  |  METHODS

We deployed two types of CT sites in the study area from mid-2017 
through 2019: conventional CTs and CTs that included a motion-
activated “attention caller” device (ACD), which we designed to 
operate alongside a CT. When triggered, the ACD played an audio 
recording of a juvenile puma call and illuminated a pair of light-
emitting diodes to elicit a curiosity response from the target animal. 
The ACD was enclosed in a weather-proof casing, and was similar 
in size, battery life, and motion activation (i.e., used a passive in-
tegrated resistor to sense infrared radiation from animals) to a CT 
(Figure 1). It operated using the open-source Arduino® microcon-
troller platform. The materials used to build the ACD were relatively 
inexpensive, with each unit costing approximately US$33, with ap-
proximately half of that cost going toward the waterproof casing.

Sites were chosen based on likely puma travel routes or at puma 
community scrape sites (see Allen et al., 2014); approximately half 
were chosen opportunistically to include an ACD. The mean dis-
tance between sites was 12.99 km (SD = 9.52, min = 0.03, max = 
54.42). Sites were moved after ~45  days if they failed to detect 
pumas. Approximately 6–12  sites were active at any given time 
during the survey. We fixed CTs to trees and mounted ACDs imme-
diately above or below. We included a scent lure (e.g., Wildcat Lure 
No. 2 (Hawbaker & Sons, Fort Loudon, PA) or similar) at all sites. Lure 
was placed on the ground (~3–7 m) in front of cameras to encour-
age the animal to position itself at the center of the field of view 
and increase the likelihood of capturing useful images (Alexander & 
Gese, 2018; McBride & Sensor, 2015). We typically performed site 
visits to download CTs and refresh scent lure monthly; this period 
was longer at some sites due to wintertime access restrictions. We 

used Reconyx CTs (Hyperfire, Hyperfire2, or Ultrafire video models; 
Reconyx, Inc., Holmen, WI) programmed to take bursts of five pho-
tos with the “rapidfire” setting, or set to video when available. All 
CTs used infrared (IR) flash for low-light conditions; daytime images 
were color and IR flash images were monochrome. We programmed 
ACDs with a 2-second delay to allow an animal to fully enter the 
field of view before activating. Puma images were organized into 
detection events and were regarded as independent if greater than 
30 minutes passed between photos from the same site.

3.1  |  Effects of the ACD

All analyses were completed using R (R Core Team, 2019). We cat-
egorized detection events as having successfully captured a com-
plete image of the puma's face or not based on all facial features 
being visible in any single image within the event (Figure 2). We 
also grouped detections into four behavioral categories based on 
apparent behavior in images: (1) pumas moving away from the 
CT site in a manner that suggested fleeing (e.g., with a sudden 
change in speed or direction), (2) looking at the ACD with no 
other changes in behavior, (3) a strong curiosity response indi-
cated by moving toward the CT to investigate, or (4) no apparent 
reaction. Note that face captures were not limited to the second 
category; fleeing and curiosity responses may have included face 

F I G U R E  1 A standard camera trap with an “Attention caller 
device” (ACD). The camera and ACD were deployed together, and 
both triggered by motion. When activated, the ACD emitted light 
and sound to attract the attention of a puma, resulting in direct 
images of the puma's face. Camera traps and ACDs were deployed 
2017–2020 in northwest Wyoming
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captures as well. We used Chi-squared tests of independence to 
compare counts of detection events, face captures, and behav-
ioral reactions between ACD sites and conventional CT sites, in-
cluding whether events occurred during night or day (defined by 
astronomical twilight). To test for evidence that pumas learned 
to avoid ACD sites over time, we used the R package glmmTMB 
(Brooks et al., 2017) to build a Poisson generalized linear mixed 
model (GLMM) with daily count of detection events as the re-
sponse variable (Henrich et al., 2020). We included CT site, sea-
son, and year as random effects. Explanatory variables included 
days since CT deployment, days since scent lure placement (both 
scaled), and two binary factors specifying whether the CT site 
included an ACD and whether the site was used by pumas as a 

community scrape site (based on presence of scrapes at deploy-
ment). All interactions were considered. We performed model 
selection using the buildmer package (Voeten, 2021), which finds 
the optimal model based on stepwise backward elimination using 
change in log-likelihood as the criteria. We then compared simi-
lar models using Akaike's information criterion (AIC; Burnhan & 
Anderson, 2002), and diagnostic testing for overdispersion and 
zero inflation with the R package performance (Lüdecke et al., 
2021b). We used type III analysis of variance (ANOVA) to assess 
significance of the predictor variables and their potential inter-
active effects by refitting the model with sum contrast coding 
for factors (Fox & Weisberg, 2018). Plots were created using the 
package sjPlot (Lüdecke, 2021a).

F I G U R E  2 Camera trap photos of 
pumas taken in northwest Wyoming 
2017–2020, using a novel method 
designed to capture pumas front-on 
for facial-ID. The photos are arranged 
by individual identity, with each row 
corresponding to an ID that had 100% 
agreement between five independent 
raters assigning photo-ID to the image set
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3.2  |  Photo-ID analysis

To evaluate the feasibility of using puma faces for photo-ID, we 
measured the inter-rater agreement between independent investi-
gators assigning photo-ID to detection events containing facial im-
ages; this process was similar to Alexander and Gese (2018). We 
developed an online application for assigning ID to images using 
the R package shiny (Chang et al., 2021). Investigators were pre-
sented detection events in a pairwise manner, with one event dis-
played on each side of the screen (Figure 3). Investigators could 
cycle through events (and the constituent photos) on each side of 
the screen independently. Investigators compared the events and 
rated each pairing as “same” or “different” based on perceived ID. 
All events included, but were not limited to, facial images. As inves-
tigators rated pairings, a network plot of events was updated to 
display the resulting identities (i.e., events were graphically 
grouped by ID based on the pairings rated as “same”) using the R 
package igraph (Csardi & Nepusz, 2006). The total number of event 

pairings was equal to 
⎛
⎜
⎜
⎝

n

2

⎞
⎟
⎟
⎠
, where n was the number of events. 

Consequently, the number of pairings to evaluate increased expo-
nentially with increased events; to avoid an onerous number of 
pairings to rate, we limited the number of events to 16, resulting in 
120 pairings. The 16 events were randomly selected from those 
that included ≥1 face images. All participants had either profes-
sional or academic experience with camera trapping pumas. 
Agreement was measured with Fleiss’ kappa (Fleiss, 1971) using 
the R package rel (LoMartire, 2020). We calculated 95% confi-
dence intervals following Fleiss et al. (1979). As with Alexander and 
Gese (2018), the true ID of pumas was unknown, and although high 
inter-rater agreement would not necessarily indicate photo-ID ac-
curacy, low agreement would strongly suggest high potential for 
misidentification (Oliveira-Santos et al., 2010). To further examine 
human ability to photo-ID pumas using this method, we looked at 
several factors which may have affected agreement. We chose 
four binary attributes: (1) image type (monochrome vs. color), (2) 

F I G U R E  3 A screen capture of our web-based application for matching pumas in camera trap images by individual identification. Each 
side of the screen displayed a camera trapping event; users were asked to classify each event pairing as being the same individual or not. As 
event pairs were matched, a graphical representation of puma IDs (lower left) was updated. Camera trap images were collected from 2017 to 
2020 in northwest Wyoming
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ambient lighting (ambient lighting vs. CT flash only), (3) whether 
pumas exhibited clearly torn or missing pinnae, and (4) image reso-
lution of puma faces. Resolution was defined by determining the 
number of pixels in the minimum bounding box for each detec-
tion's largest facial image; we then performed a median split. We 
used the above attributes to subset detection pairings in an either/
or/both framework (e.g., only color pairings, only monochrome 
pairings, or pairings with one of each), and calculated Fleiss’ kappa 
for each. We used Spearman's rho to calculate the correlation be-
tween the attributes.

4  |  RESULTS

We recorded 13,375 days of CT effort at 61 sites. Of those days, 
8,016 included an ACD. We collected 208 puma detection events, 
of which 98 were at ACD sites and 110 at conventional sites. Effort 
at community scrape sites totaled 7289  days, with 151 events 

occurring at those sites. Nighttime events made up 43.3% of detec-
tions and the IR flash was triggered in 81.7% of detections.

4.1  |  Effects of the ACD

Puma faces were captured in 52 of the ACD detection events (see 
Figure 3 for examples) and 12 of the conventional CT detection 
events, resulting in respective face capture rates of ~53.1% and 
~10.9% per event (χ2 = 43.23, p ≤ .001). At CT sites without ACDs, 
~94.5% of events did not have any apparent reaction; ACD site reac-
tions were more varied, with ~83.7% categorized as either no reac-
tion or a “look only” reaction (Figure 4). Retreat reactions occurred 
more at ACD sites than at conventional sites (χ2 = 3.98, p = .046). 
We found no significant differences between night and day events.

The top buildmer Poisson GLMM included 12 parameters and 
several interactive terms, including a three-way interaction between 
ACD presence, scrape site status, and scent lure age. The second 

F I G U R E  4 Counts of categorized 
puma behaviors at camera trap sites 
in Northwest Wyoming 2017–2020. 
Detection counts were grouped on 
whether the site included an “attention 
caller device” (ACD) used to elicit face 
images, and whether they occurred 
at night or day. The Y-axis was log-
transformed. Categorizations were based 
on behavior apparent in camera trap 
images, and limited to (1) curiosity toward 
the camera, (2) looking at the camera 
without any other change in behavior, 
(3) no reaction at all, or (4) sudden retreat
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TA B L E  1 Model coefficients, with standard errors and type III ANOVA measures of significance for parameters effecting daily counts 
of puma detections at camera trapping sites in northwest Wyoming, 2017–2020, including presence of an “attention caller device” (ACD), 
presence of puma scrapes at deployment, and number of days since the camera site was deployed

Estimate SE χ2 p

(Intercept) −5.34 0.39 386.62 ≤.001

Scrape site 0.31 0.52 7.04 .008

ACD site −0.18 0.48 1.57 .210

Days since deployment 0.094 0.17 2.80 .095

ACD * days since deployment −0.58 0.19 9.79 .002

Scrape * ACD 1.24 0.69 3.23 .073
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ranked model (ΔAIC = 2.0) was more parsimonious with eight param-
eters and was selected for our top model (Table 1). The interaction 
between scrape site status and ACD presence had a large positive 
effect on detection rates; the model also predicted a detection rate 
decrease of 0.163% per day (95% CI = 0.148–0.176) at all ACD sites, 
and an increase of 0.052% per day (95% CI = 0.009–0.102) when 
there was no ACD (Figure 5); we note all other candidate models 
predicted similar coefficients for these variables.

4.2  |  Photo-ID analysis

We collected assessments of photo-ID from five independent in-
vestigators. Of the 16 randomly sampled detection events, 10 were 
comprised of monochrome images with 8 of those occurring at night. 
Pumas exhibited conspicuous damage to one or both pinnae in six 
events; of those, a kinked tail was also visible in two detections. The 
median number of image pixels for puma faces was 39,216 (min = 
13,338, max = 109,495). The mean number of identified individuals 
was 7.4 (n = 5, min = 6, max = 9, SD = 1.14). Nighttime events were 
(expectedly) correlated with events using IR flash (Spearman's rho = 
0.78, p ≤ .001). We also found an unexpected correlation between 
puma face resolution and missing or damaged pinnae (Spearman's 
rho = 0.73, p ≤ .001).

Fleiss’ kappa for the full dataset was 0.54 (95% CI = 0.48–0.60). 
Standard interpretations of this kappa would be categorized as 
“moderate” (Landis & Koch, 1977) or “intermediate to good” (Fleiss, 
1971). This kappa was 92.90% greater than the kappa reported 
by Alexander and Gese (2018), which used conventional CT im-
ages of pumas and reported a “slight” or “poor” value of 0.18, with 
(P. Alexander and E. Gese, unpublished data) 95% confidence inter-
vals of 0.14–0.23. In ~43.5% of the pairings with <100% agreement, 

a single investigator was in disagreement with the others. When 
these singletons were adjusted to match the consensus, Fleiss’ 
kappa increased to 0.76 (95% CI = 0.70–0.82), a “substantial” or 
“excellent” level of agreement. For the analysis of attribute subsets, 
most kappa estimates’ 95% confidence intervals overlapped those 
of the full dataset estimate (Figure 6). The lowest kappas were for 
pairings in which one or both events used color images. There was 
perfect agreement for event pairings in which one puma exhibited 
pinnae damage and the other did not; these pairings were predict-
ably all rated as “different.”

5  |  DISCUSSION

Based on a comparison of our results and those of Alexander and 
Gese (2018), inter-rater agreement improves greatly when using 
face images of pumas over conventional CT images for photo-
ID. We note that our study included fewer investigators (5 vs. 7); 
while this can raise the possibility of chance agreement, that issue 
is minimized in kappa statistics versus simple percent agreement 
(Gwet, 2010), and the 95% confidence intervals of the two kap-
pas did not overlap. Our study also included a greater number of 
pairings to compare (120 vs. 105), and, unlike the 2018 study, in-
vestigators were not provided the advantage of knowing spatial/
temporal distances between pairings (although they could likely 
infer which events were from the exact same site). The “substan-
tial” agreement when using the adjusted ratings (i.e., switching 
the single investigator disagreements) was noteworthy; a similar 
reanalysis of the 2018 ratings resulted in a “moderate” agree-
ment kappa of 0.48 (95% CI = 0.44–0.53; P. Alexander, unpub-
lished data), which was still below our unadjusted kappa. These 
adjustments should be interpreted cautiously as they resulted in 

F I G U R E  5 Predicted puma camera 
trapping rates using Poisson GLMM, 
from northwest Wyoming, 2017–2020. 
Regression lines indicate predictions for 
conventional cameras (solid line) and for 
cameras using an “attention caller device” 
(ACD; dotted line) to elicit frontal images 
of pumas. The shaded areas encompass 
the 95% confidence intervals
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contradictory ID matchings which would need to be reconciled if 
used in a detection history.

Unsurprisingly, when one of the two events in a pairing exhibited 
visibly damaged pinnae, a “different” rating was always ascribed, re-
sulting in the highest level of agreement for the subset analysis. This 
suggested that clear images of both pinnae are useful for distinguish-
ing individuals, highlighting the value of frontal images of pumas as 
opposed to lateral, which, especially when only a single CT is used, 
result in lateral occlusion and partial identity issues (McClintock 
et al., 2013). It is also noteworthy that this feature was more cor-
related with kappa estimates than the image-related features such 
as lighting. Notably, we did not see significant improvement in 
agreement when both events had distinctive pinnae, although the 
sample size of such pairings was relatively low with wide confidence 
intervals. The importance of this feature was also confounded by the 

almost certainly spurious correlation between image resolution and 
damaged pinnae, although kappa differences were comparatively 
low when pairings were based on resolution. We note missing pin-
nae were likely the result of frostbite, suggesting that (1) populations 
in warmer region may have lower frequencies of this feature, and (2) 
consideration should be given to the permanence of this feature in 
the context of a long-term survey. Indeed, this issue may have af-
fected our results due to the timespan of our detection set, and the 
importance of minimizing survey length should be emphasized (Kelly 
et al., 2008). Surprisingly, we found the monochrome pairings sub-
set had increased estimates of kappa, and pairings with color images 
were lower. One possibility was that daytime images introduced var-
ied angles of shadows as opposed to the uniformly directed lighting 
of the IR flash. Of course, these results should be interpreted care-
fully due to the small sample sizes, as well as the possibility of latent 

F I G U R E  6 Estimates of agreement level (Fleiss’ kappa) between five independent investigators matching camera trap images of pumas 
by individual ID. Error bars indicate 95% confidence intervals. The different estimates represent agreement for various subsets of the image 
set based on ambient natural lighting (night vs. day/crepuscular images), use of infrared flash (color vs. monochrome), pixel resolution of the 
images, and whether pumas exhibited damaged pinnae (a particularly conspicuous and potentially distinguishing feature). Estimates were 
ordered from left to right by the sum of pairings that were positively matched by ID. The first estimate had perfect agreement and therefore 
no confidence intervals. Northwest Wyoming, 2017–2019

��

��

��

��

��

��

��

��

��

��

��

��

��

n=24

n=61

n=28

n=14

n=56

n=43

n=28

n=61

n=24

n=15

n=60

n=38

n=113

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pinnae:
Damaged
& intact

Flash:
Color
only

Light:
Day

& night

Face res:
High only

Light:
Day only

Face res:
Low

& high

Face res:
Low only

Pinnae:
Damaged

Light:
Night
only

Flash:
Color
& IR

Flash:
IR only

Pinnae:
Intact
only

All
pairings

Event pairing attributes

K
ap

pa
 e

st
im

at
e



    |  9 of 11ALEXANDER and CRAIGHEAD

correlations with the actual ID of pumas, which likely varied in their 
identifiability.

The ACDs significantly improved the success rate of capturing 
face images compared to the conventional CTs. While much lower 
than the raw puma detection rates, the face capture rate at ACD 
sites (~53%) was higher than a theoretical conventional flank cap-
ture rate, assuming single CTs and a 50% chance of capturing either 
the right or left flank. The only CT study incorporating facial-ID that 
we are aware of is Alexander et al. (2015), which reported a 32% 
face capture rate of snow leopards using CTs placed in a manner to 
attempt to capture animals head-on. Improvements in the ACD face 
capture rate should be attainable, possibly through greater number 
of CTs per station, or an improved field of view for the CTs. Indeed, 
we did not count some face detections due to the puma being par-
tially out of frame despite apparently eliciting the desired response 
to the ACD.

Clearly, the ACD reduced an element of non-invasiveness nor-
mally associated with CTs, since detections explicitly required a 
behavioral response. The proportion of retreat reactions, while 
low, did increase with the ACD. We note that we also recorded 
such reactions without the ACD, namely in nighttime detections 
when pumas were likely reacting to the infrared flash. Our detec-
tion rate GLMM predicted a low decrease in detections over time, 
possibly due to an avoidance behavior. However, the predicted de-
crease was small, with the 95% confidence intervals overlapping 
those of conventional CTs, and may not affect a typical CT sur-
vey lasting only a few months. Importantly, we also report overall 
greater detection rates at ACD sites when deployed at commu-
nity scrape sites; it is possible that this reflects some interactive 
behavioral response, but it also may be due to our opportunistic 
sampling strategy which placed ACDs at sites with high probability 
of puma visitation.

In this study, we assessed human ability to photo-ID pumas. 
However, it is worth noting the increasing role of machine learning 
techniques for photo-ID, which may reduce human effort and bias. 
While photo-ID using machine learning could theoretically use CT 
images of individuals from any angle, facial-ID is a more tractable 
machine learning problem and has long been in use for human rec-
ognition; more recently, it has been extended to a variety of un-
marked wildlife species (Clapham et al., 2020; Deb et al., 2018). Our 
development of the ACD is therefore pertinent, as it could oper-
ate, in effect, as an in situ feature extractor in a machine learning 
framework.

Camera traps have yielded important improvements in our abil-
ity to monitor rare and elusive species, especially in terms of cost-
effectiveness and noninvasiveness. However, there are many elusive 
but unmarked species for which the advantages of CTs stop short of 
providing reliable population estimates. Pumas are one of the more 
glaring examples of such a species, given their huge distribution and 
ecological importance, as well as the ostensible cost-effectiveness 
of CTs to collect data on pumas. This work strove to address some of 
these limitations and hopefully will encourage further research into 
similar field and analytical methods.
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