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Are There Rearrangement Hotspots in the
Human Genome?

Max A. AIekseyev*, Pavel A. Pevzner

Department of Computer Science and Engineering, University of California San Diego, San Diego, California, United States of America

In a landmark paper, Nadeau and Taylor [18] formulated the random breakage model (RBM) of chromosome evolution
that postulates that there are no rearrangement hotspots in the human genome. In the next two decades, numerous
studies with progressively increasing levels of resolution made RBM the de facto theory of chromosome evolution.
Despite the fact that RBM had prophetic prediction power, it was recently refuted by Pevzner and Tesler [4], who
introduced the fragile breakage model (FBM), postulating that the human genome is a mosaic of solid regions (with
low propensity for rearrangements) and fragile regions (rearrangement hotspots). However, the rebuttal of RBM
caused a controversy and led to a split among researchers studying genome evolution. In particular, it remains unclear
whether some complex rearrangements (e.g., transpositions) can create an appearance of rearrangement hotspots. We
contribute to the ongoing debate by analyzing multi-break rearrangements that break a genome into multiple
fragments and further glue them together in a new order. In particular, we demonstrate that (1) even if transpositions
were a dominant force in mammalian evolution, the arguments in favor of FBM still stand, and (2) the “gene deletion”
argument against FBM is flawed.
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Introduction

In 1970, Susumu Ohno came up with two fundamental
models of chromosome evolution that were subject to many
controversies in the last 35 years [1]. One of them (the whole
genome duplication model) was first met with skepticism and
only recently was proven to be correct [2,3]. The other, the
random breakage model (RBM), had a very different fate. It
was embraced by biologists from the very beginning (due to
its prophetic prediction power) and only recently was refuted
by Pevzner and Tesler [4] using a theorem from [5]. However,
the rebuttal of RBM caused a controversy and shortly after [4]
was published Sankoff and Trinh [6,7] gave a rebuttal of the
rebuttal of RBM.

Rearrangements are genomic “earthquakes” that change
the chromosomal architectures. The fundamental question in
molecular evolution is whether there exist “chromosomal
faults” (rearrangement hotspots) where rearrangements are
happening over and over again. RBM postulates that
rearrangements are ‘“random,” and thus there are no
rearrangement hotspots in mammalian genomes.

For the sake of completeness, we give a simple version of
both the Pevzner-Tesler and Sankoff-Trinh arguments.
Shortly after the human and mouse genomes were sequenced,
Pevzner and Tesler [4] argued that if (1) the human-mouse
synteny blocks are constructed correctly, and (2) chromosomal
architectures mainly evolve by the “standard” rearrangement
operations (reversals, translocations, fissions, and fusions),
then every evolutionary scenario for transforming the mouse
genome into the human genome must have a very large
number of breakpoint re-uses. This result implies that the same
regions of the genome are being broken over and over again
in the course evolution (rearrangement hotspots), a contra-
diction to RBM (note that high breakpoint re-use by itself
does not invalidate RBM; however, a combination of high
breakpoint re-use with scan statistics of the human-mouse
breakpoint arrangements invalidates RBM; see Text S1).
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Consequently, Pevzner and Tesler [4] suggested an alternative
fragile breakage model (FBM) of chromosome evolution that
was later supported by Murphy et al. [8]. Recent studies
further argued for existence of fragile regions (rearrange-
ment hotspots) in mammalian genomes [9-17].

These results are in conflict with the classical Nadeau and
Taylor [18] analysis of RBM that implies that there are no
rearrangement hotspots in the human genome. In the next
two decades, numerous studies with progressively increasing
levels of resolution made RBM the de facto theory of
chromosome evolution. As a result, the Nadeau-Taylor
analysis was until recently viewed as among the most
... the history and development of the
mouse as a research tool” [19]. The paper [4] challenged this

significant results in *
view and was quickly followed by other studies questioning
the RBM. For example, Kikuta et al. [16] recently wrote “...the
results in this study suggest that the Nadeau and Taylor
hypothesis is not plausible for the explanation of synteny in
general.”

Sankoff and Trinh [6,7] did not question the validity of
combinatorial arguments against RBM in [4], but instead
argued that the synteny block generation algorithm is
parameter-dependent and that question (1) above is more
subtle than it may look at first glance. Sankoff and Trinh [6]
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emphasized how important it is to generate synteny blocks by
constructing a series of random rearrangements that create
an appearance of breakpoint re-use. They generated a series
of random rearrangements according to RBM (i.e.,, no
rearrangement hotspots), computed the resulting synteny
blocks, applied the same arguments as in [4], and came to the
conclusion that the rearrangement hotspots exist. These
hotspots, however, are clearly artifacts of synteny block
generation rather than real hotspots, since the simulation in
[6] followed RBM.

Recently, Peng et al. [20] re-examined Sankoff and Trinh’s
arguments and demonstrated that Sankoff and Trinh fell
victim to their inaccurate synteny block generation algo-
rithm. Peng et al. [20] further demonstrated that if Sankoff
and Trinh had fixed these problems and chosen realistic
parameters, their arguments against [4] would disappear.
Sankoff recently acknowledged the flaw in [6] (see [21]), and it
seems that condition (1) is not controversial anymore.
However, Sankoff still appeared reluctant to acknowledge
the validity of the Pevzner-Tesler rebuttal of RBM, this time
arguing that condition (2) above may also be violated in
mammalian evolution. This led to a split among researchers
studying chromosome evolution: while most recent studies
support the existence of rearrangement hotspots [9-
14,16,17], others feel that further analysis is needed to resolve
the validity of RBM [22]. Indeed, since the mathematical
theory used to refute RBM does not cover more complex
rearrangement operations (like transpositions), the argu-
ments in [4] do not apply for the case when transpositions are
frequent. In this paper, we develop a theory for analyzing
complex rearrangements (including transpositions) and
demonstrate that even if transpositions were a dominant
evolutionary force, there are still rearrangement hotspots in
mammalian evolution. This results in a rebuttal of the
rebuttal [21] of the rebuttal [20] of the rebuttal [6,7] of the
rebuttal [4] of RBM.

The standard rearrangement operations (i.e., reversals,
translocations, fusions, fissions) can be modelled by making
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two breaks in a genome and gluing the resulting fragments in
a new order. One can imagine a hypothetical k-break
rearrangement operation that makes k breaks in a genome
and further glues the resulting pieces in a new order. In
particular, the human genome can be modelled as the mouse
genome broken into ~280 pieces that are glued together in
the “mouse” order. Sankoff [21] is correct in stating that the
rebuttal of RBM is not applicable if there was a significant
presence of k-break rearrangements for large % (in fact, it was
acknowledged in [4]). However, rearrangements are rare
evolutionary events and, starting from the classical Dobzhan-
sky and Sturtevant studies of Drosophila, most biologists
believe that k-break rearrangements are unlikely for k£ > 3,
and relatively rare for k=3 (at least in mammalian evolution).
Indeed, biophysical limitations and selective constraints are
already severe for k=2, let alone for k£ > 2. However, 3-break
rearrangements (e.g., transpositions) undoubtedly happen in
evolution, although it is still unclear how frequent they are in
mammalian evolution. Also, in radiation biology, chromo-
some aberrations for k > 2 (indicative of chromosome
damage rather than evolutionary viable variations) may be
more common (e.g., complex rearrangements in irradiated
human lymphocytes [23-26]). Thus, both the existing con-
troversy about RBM and radiation/cancer biology call for
studies of k-break rearrangements for k£ > 2.

We recently proved the duality theorem for the k-break
distance between multichromosomal genomes, and showed
how to compute it [27]. In this paper, we focus on the case
k=23 (the most relevant case in evolutionary studies) and show
that even if 3-break rearrangements were frequent, the
Pevzner-Tesler argument against RBM still stands. We further
discuss the claim [7,21] that deletion of short synteny blocks
may also create an appearance of high breakpoint re-use, an
argument against FBM. We invalidate this argument by
showing that deletion of short blocks does not lead to
increase in breakpoint re-use under the realistic choice of
parameters.

Results

Multi-break Rearrangements and Breakpoint Graphs

We start our analysis with circular genomes (i.e., genomes
consisting of circular chromosomes). We will find it conven-
ient to represent a circular chromosome with genes x;,...,x,, as
a cycle (Figure 1) composed of n directed labeled edges
(corresponding to genes) and n undirected unlabeled edges
(connecting adjacent genes). The directions of the edges
correspond to signs (strand) of the genes. We label the tail and
head of a directed edge x; as x; and X", respectively. Vertex x;
is called the obverse of vertex x;", and vice versa. Vertices in a
chromosome connected by an undirected edge are called
adjacent. We represent a genome as a graph consisting of
disjoint cycles (one for each chromosome). The edges in each
cycle alternate between two colors: one color (usually black or
gray) is reserved for undirected edges, and the other color
(traditionally called “obverse” and portrayed by dashed lines
in Figure 1) is reserved for directed edges. We do not
explicitly show the directions of obverse edges since they are
defined by superscripts “¢” and “A” (Figure 1).

Let P be a genome represented as a collection of alternating
black-obverse cycles (a cycle is alternating if the colors of its
edges alternate). For any two black edges (u,v) and (x,y) in the
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Figure 1. The Breakpoint Graph
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The breakpoint graph G(P,Q) of a two-chromosomal genome P = (4 a + b — ¢) (—d + e) and a unichromosomal genome Q=(Ha +b - e+ c—d)
represented as two black-obverse cycles and a gray-obverse cycle, correspondingly.

doi:10.1371/journal.pcbi.0030209.9001

genome (graph) P, we define a 2-break rearrangement as
replacement of these edges with either a pair of edges (u,x),
(v,y), or a pair of edges (u)), (vyx) (Figure 2). 2-Breaks
correspond to standard rearrangement operations of rever-
sals (Figure 2A), fissions (Figure 2B), or fusions/translocations
(Figure 2C). This definition of elementary rearrangement
operations follows the standard definitions of reversals,
translocations, fissions, and fusions for the case of circular
chromosomes. For circular chromosomes, fusions and trans-
locations are not distinguishable; i.e., every fusion of circular
chromosomes can be viewed as a translocation and vice versa.
The 2-break rearrangements can be generalized as follows.
Given k black edges forming a matching (i.e., a vertex-disjoint
set of edges) on 2k vertices, define a k-break as replacement of
these edges with a set of k black edges forming another
matching on the same set of 2k vertices. Note that a 2-break is
a particular case of a 3-break (as well as of a k-break for k > 3),
in which case only two edges are replaced and the third one
remains the same.

Let P and Q be two signed genomes on the same set of
genes G. The breakpoint graph G(P,Q) is defined on the set of

vertices V= {x'x" | x € G} with edges of three colors: obverse,
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Figure 2. Different Types of 2-Breaks

black, and gray (Figure 1). Edges of each color form a
matching on V: obverse matching (pairs of obverse vertices),
black matching (adjacent vertices in P), and gray matching
(adjacent vertices in Q). Every pair of matchings forms a
collection of alternating cycles in G(P,Q) called black-gray,
black-obverse, and gray-obverse cycles, respectively. The chromo-
somes of the genome P (respectively, Q) can be read along
black-obverse (respectively, gray-obverse) cycles. The black-
gray cycles in the breakpoint graph play an important role in
analyzing rearrangements [28] (see Chapter 10 of [29] for
background information on genome rearrangements).

Multi-Break Distance between Circular Genomes

The k-break distance d,(P,Q) between circular genomes P
and Q is defined as the minimum number of k-breaks
required to transform one genome into the other. Every k-
break in the genome P corresponds to a transformation of
the breakpoint graph G(P,Q). Since the breakpoint graph of
two identical genomes is a collection of ¢rivial black-gray
cycles with one black and one gray edges (the identity
breakpoint graph), the problem of transforming the genome
P into the genome Q by k-breaks can be formulated as the
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A 2-break on edges (u,v) and (x,y) corresponding to (A) reversal: the edges belong to the same black-obverse cycle that is rearranged after 2-break; (B)
fission: the edges belong to the same black-obverse cycle that is split by 2-break; and (C) translocation/fusion: the edges belong to different black-

obverse cycles that are joined by 2-break.
doi:10.1371/journal.pcbi.0030209.g002
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Figure 3. Example of a 3-Break That Corresponds to a Transposition
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A 3-break on edges (u,v), (x,y) and (z,t) corresponding to a transposition of the segment y. ..t from one chromosome to another.

A transposition cuts off a segment of one chromosome and inserts it into the same or another chromosome. A transposition of a segment m;m;, ;. . .7; of
achromosome ;.. .M Ty y. . .M. . Ty 1Tk - . Tip iNtO @ pOsition k of the same chromosome results ina chromosome 7. . .7y . . T Ty . TGM. - TTp
For chromosomes n=m;...n, and 6= 0;. . .0, a transposition of a segment 7w, ;. . .m; of chromosome = into a position k in the chromosome ¢ results
in chromosomes m;...m. MMy, .. Ty, and oy...04 Ty . . .M0k...0.,. Underlining shows a piece of chromosome that was

transposed from one chromosome to another.
doi:10.1371/journal.pcbi.0030209.g003

problem of transforming the breakpoint graph G(P,Q) into
the identity breakpoint graph G(Q,Q).

Different from the genomic distance problem [5,30,31] (for
linear multichromosomal genomes), the 2-break distance
problem for circular multichromosomal genomes has a trivial
solution (first given in [32] in a slightly different context). For
the sake of completeness, we reproduce a proof from [33]:

Theorem 1. The 2-break distance between circular genomes P and
Q is |P| — ¢(P,Q) where ¢(P,Q) is the number of black-gray cycles in
G(P,Q).

Proof. It is easy to see that every nontrivial black-gray
cycle in the breakpoint graph G(P,Q) can be split into two by
a 2-break, implying that dx(P,Q) < |P| — ¢(P,Q). Since every
2-break adds two new edges, it can create at most two new
black-gray cycles. On the other hand, since every 2-break
removes two old edges, it should remove at least one old
black-gray cycle. Hence, no 2-break can increase the number
of black-gray cycles by more than one, implying that d,(P,Q)
> |P| — ¢(P,Q). Therefore, do(P,Q) = |P| — ¢(P,Q). Q.ED.

While 2-breaks correspond to standard rearrangements, 3-
breaks add transposition-like operations (transpositions and
inverted transpositions) as well as three-way fissions to the set
of rearrangements (Figure 3). Different from standard
rearrangements (modeled as 2-breaks), transpositions intro-
duce three breaks in the genome, making them notoriously
difficult to analyze. Computing the minimum number of
transpositions transforming one genome into another is
called “sorting by transpositions.” A number of researchers
considered transpositions in conjunction with other rear-
rangement operations [34-40]. Despite many studies, the
complexity of sorting by transpositions remains unknown
[41-45].
Let c‘"M(P,Q) be the number of black-gray cycles in the
breakpoint graph G(P,Q) with an odd number of black edges
(odd cycles).

Theorem 2. The 3-break distance between circular genomes P and
Qis (|P| — (P.Q) | 2.

Proof. It is easy to see that as soon as there is a nontrivial
black-gray odd cycle in the breakpoint graph G(P,Q), it can be
split into three odd cycles by a 3-break, thus increasing the
number of odd cycles by two. On the other hand, if there
exists a black-gray even cycle, it can be split into two odd
cycles, thus again increasing the number of odd cycles by two.
Therefore, there exists a series of (|P| — ¢**(P,Q)) | 2 3-breaks
transforming G(P,Q) into the identity breakpoint graph,
implying that d;P,Q) < (|P| — ¢™(P,Q)) | 2. On the other
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hand, since no 3-break can increase the number of black-gray
cycles by more than two, we have d3P,Q) > (|P| — c"dd(P,Q)) /2.
Therefore, d;(P,Q) = (|P| — ¢"“P,Q)) | 2. QED.

For the sake of completeness, below we formulate the
duality theorem for the k-break distance for an arbitrary k
from [27]. A subset of cycles in the breakpoint graph G(P,Q) is
called breakable if the total number of black edges in these
cycles equals 1 modulo (¢ — 1). Let s,(P,Q) be the maximum
number of disjoint breakable subsets in G(P,Q). For example,
for k = 3, every odd cycle forms a breakable subset and every
breakable subset must contain at least one odd cycle,
implying that s3(P,Q) = c”dd(P,Q).

Theorem 3. The k-break distance between circular genomes P and

Qis [(IP| = (P, @)/ (k= 1)].

Transpositions and breakpoint re-use.
Sankoff summarized arguments against FBM in the follow-
ing sentence [21]:

“..And we cannot infer whether mutually randomized
synteny block orderings derived from two divergent genomes
were created through bona fide breakpoint re-use or rather
through noise introduced in block construction or through
processes other than reversals and translocations.”

Below we consider the “other processes” argument. The
“noise in block construction” argument consists of two parts:
synteny block generation and gene deletion. The flaw in the
first argument was revealed in [20]. The second argument
(“gene deletion”) is analyzed after the “other processes”
argument.

In this paper, we study transformations between the human
genome H and the mouse genome M with 3-breaks, using the
281 synteny blocks from [46] and assume that all chromo-
somes are circular. While analyzing linear chromosomes
would be more adequate than analyzing their circularized
versions, it poses additional algorithmic challenges that
remain beyond the scope of this paper. The related paper
[47] addressed these challenges and demonstrated that
switching from linear to circular chromosomes does not lead
to significant changes in the multi-break distance.

The breakpoint graph G(H,M) contains 35 black-gray cycles,
including three odd black-gray cycles, implying that d,(H,M) =
246 (Theorem 1) and d3(H,M)=139 (Theorem 2). If each of 139
3-breaks on a shortest evolutionary path from H to M made
three breaks, it would imply that there were 139 X 3 - 281 =136
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Figure 4. Breakpoint Re-Use Rate as a Function of the Number of
Complete 3-Breaks

A lower bound for the breakpoint re-use rate as a function of the number
of complete 3-breaks in a series of 3-breaks between the circularized
human and mouse genomes based on 281 conserved segments from
[46].

In the case of linear genomes, the plot is similar, with the breakpoint re-
use rate of ~0.1 lower than in the circular case [47]. In particular, even in
the extreme case when the number of transpositions is not limited, the
breakpoint re-use rate of ~1.31 is still higher than the breakpoint re-use
rate expected for RBM (see [4]).

doi:10.1371/journal.pcbi.0030209.g004

breakpoint re-uses (for this particular evolutionary path),
resulting in the breakpoint re-use rate 1.48 (see Peng et al.
[20]). While this is a high breakpoint re-use rate (inconsistent
with RBM and the scan statistics), this estimate relies on the
assumption that each 3-break on the evolutionary path from H
to M makes three breaks (complete 3-breaks). In reality, some 3-
breaks can make two breaks (incomplete 3-breaks) as 2-breaks
are particular cases of 3-breaks, reducing the estimate for the
number of breakpoint re-uses. Moreover, the minimum
number of breakpoint re-uses may be achieved on a
suboptimal evolutionary path from H to M.

The rebuttal of RBM raises a question about finding a
transformation of H into M by 3-breaks that makes the
minimal number of individual breaks. The following theorem
shows that there exists a series of 3-breaks that makes the
minimum number of breaks while transforming P into Q.

Theorem 4. Any series of m k-breaks transforming a circular
genome P into a circular genome Q makes at least m + d(P,Q ) breaks.
Moreover, there exists a series of d3(P,Q ) 3-breaks transforming P into
Q that makes ds(P,Q) + dx(P,Q) breaks.

Proof. For each k-break operation, let A(cycles) be the
increase in the number of cycles and A(breaks) be the increase
in the number of breaks. It is easy to see that A(cycles) <
A(breaks) — 1. Summing up over a series of m k-breaks
transforming P into Q, we have |P| — ¢(P,Q) < b—m, where b is
the total number of breaks made in the series. Therefore, b >
|P| — c¢(P,Q) + m=dx(P,Q)+ m.

Consider a shortest series of complete 3-breaks trans-
forming every odd black-gray cycle into a trivial cycle and
every even black-gray cycle into trivial cycles and a single
cycle with two black edges. This series consists of d;(P,Q) —
¢ (P,Q) 3-breaks and results in ¢ (P,Q) cycles with two
black edges that can be transformed into trivial cycles with a
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series of ¢ (P,Q) incomplete 3-breaks (i.e., 2-breaks). The
total number of 3-breaks in this transformation is d;(P,Q),
and they make 3(d5(P,Q) — ¢ (P,Q)) + 2¢“"(P,Q) = 3d5(P,Q) —
¢MP,Q) = ds(P,Q) + da(P,Q) breaks overall. Q.E.D.

Corollary 5. Every transformation between the circularized human
genome H and mouse genome M by 3-breaks requires at least 104
breakpoint re-uses (implying that there exist rearrangement hotspots in
the human genome).

Proof. Any transformation of H into M requires at least
ds;(HM) + dy(HM) = 139 4 246 = 385 breaks. Since there are
281 breakpoints between the human and mouse genomes, it
implies that there were at least 385 — 281 =104 breakpoint re-
uses on the evolutionary path from human to mouse,
resulting in breakpoint re-use rate 1.37. This is still higher
than the expected breakpoint re-use rate of RBM as
computed by scan statistics (see [4] and simulations in the
next section). It provides an argument against RBM not only
for k=2 but also for k=3 and invalidates arguments from [21]
in the case k=3 (see also [47]). Since k-breaks for k > 3 were
never reported in previous evolutionary studies, it is unlikely
that they significantly affect our conclusions. Q.E.D.

Theorem 4 implies that any transformation of the human
genome H into the mouse genome M with 2-breaks makes at
least dx(H,M) + do(H,M) = 246 + 246 = 492 breaks, while any
transformation of H into M with 3-breaks makes at least
d3;(H.M) + do(H,M) = 139 + 246 = 385 breaks. Below, we show
how the number of breaks made in a series of 3-breaks
depends on the number of complete 3-breaks in this series.

Theorem 6. For any series of m 3-breaks transforming a genome P
into a genome Q with t complete 3-breaks, m > max{dZ(P,Q ) —t,
ds(P,Q)}. Moreover, there exists a series of max{ds(P,Q)—t, d3(P,Q)}
3-breaks transforming P into Q with at most t complete 3-breaks.

Proof. Since k-break can increase the number of cycles in
the breakpoint graph by at most k — 1, a series with ¢ complete
3-breaks and m — t incomplete 3-breaks (i.e., 2-breaks) can
increase the number of cycles by at most 2t + (m — ¢t) =m +¢. If
it transforms the genome P into the genome Q, then m + ¢ >
|P| — ¢(P,Q) = d2(P,Q). Therefore, m > do(P,Q) — t.

Consider a series of complete 3-breaks, transforming every
black-gray cycle with ¢ > 3 black edges into two trivial cycles
and a cycle with ¢ — 2 black edges. Note that such a series may
have at most d3(P,Q) — ¢ (P,Q) 3-breaks (the longest possible
series results in ¢””(P,Q) cycles with two black edges and |P| —
¢"(P,Q) trivial cycles). Since every such 3-break increases the
number of cycles by two, a series of ¢ = min {¢, d;(P,Q) —
¢ (P,Q)} such 3-breaks results in ¢(P,Q) + 2¢ cycles. These
cycles can be transformed into trivial cycles with a series of
|P| — (c(P,Q)+ 2q) = do(P,Q) — 2¢q 2-breaks. The total number of
3-breaks and 2-breaks in this transformation is ¢ + d>(P,Q) —
2q = do(P,Q) — min {t, d5(P,Q) — <" (P,Q)} = max {d(P,Q) — ¢,
ds(P,Q)}. QED.

Theorems 4 and 6 imply:

Corollary 7. Any series of 3-breaks with t complete 3-breaks,
transforming a genome P into a genome Q, makes at least d»(P,Q) +
max {dx(P,Q) — t, d5(P,Q)} breaks. In particular, any such series of 3-
breaks with t < dy(P,Q) — ds(P,Q) complete 3-breaks makes at least
2d,(P,Q) — t breaks.

Corollary 7 gives the lower bound for the breakpoint re-use
rate as a function of the number of complete 3-breaks (i.e.,
transpositions and three-way fissions) in a series of 3-breaks
transforming one genome into the other. For the human
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Figure 5. Breakpoint Re-Use Rate as a Function of 6, the Proportion of the Elements Deleted

(A) Breakpoint re-use rate for parameters n =100 (m =5, 12, 20, 32, and 48) and n = 1,000 (m = 50, 120, 200, 320, and 480), where n stands for the
number of elements (genes) and m stands for the number of reversals. Since we reproduced simulations in [7], this figure and Figure 1 from [7] are
identical. Detailed description (including pseudocode) of this simulation is given in [20].

(B) Breakpoint re-use rate for parameters n = 25,000 (m = 50, 120, 200, 320, and 480).

doi:10.1371/journal.pcbi.0030209.g005

genome H and mouse genome M, this lower bound is shown
in Figure 4.

Corollaries 5 and 7 address only the case of circularized
chromosomes and further analysis is needed to extend it to
the case of linear chromosomes (see [47]). Recently, Bergeron
et al. [48] described another promising approach to analyzing
both circular and linear chromosomes (using double-cut-and-
join operations proposed in [32]) that also opens a possibility
to obtain the breakpoint re-use estimates for linear genomes.
However, the above estimate is based on the extreme
assumption that certain 3-breaks (transpositions and three-
way fissions/fusions) represent the dominant rearrangements
while reversals and translocations are extremely rare (con-
trary to the existing view). We emphasize that we do not share
the point of view that genomes mainly evolve by trans-
positions and three-way fissions/fusions, and that we analyzed
this assumption only to refute the arguments against FBM. A
more realistic analysis of 3-breaks leads to a much higher
estimate of the breakpoint re-use (see Figure 4).

Deletion of Short Blocks and Breakpoint Re-Use

The papers [7,21] claim that deletion of some synteny
blocks in [4] may create an appearance of breakpoint re-use
even if there was no breakpoint re-use at all. Below, we show
that this argument suffers from the same problem (unrealistic
parameter choice) that was revealed in [20]. Sankoff and
Trinh acknowledged the problem with unrealistic parameter
choice in [6] in application to synteny block generation:

“..In fact, Pavel Pevzner (personal communication) has
pointed out likely errors in our simulation procedure.
Subsequent experiments showed that with realistic sizes and
numbers of short inversions, unrealistically large number of
long inversions were necessary for the amalgamation process
to have an effect...”

Despite the importance of choosing realistic parameters,
the paper [7] has no discussion of parameters that are
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relevant to the human-mouse analysis. Below, we study the
deletion process, reproduce simulations in [7], and show that
if Sankoff and Trinh used realistic parameters they would
confirm (rather than refute) FBM.

Sankoff and Trinh [7] show that deletion of a large number
of elements (genes) from a permutation produced by
“random” rearrangements would produce a permutation
with large breakpoint re-use (Figure 5A). This is not
surprising—the only question is what is the realistic number
of deleted elements (we use the term “deleted elements”
instead of the term “deleted blocks” in [7] to avoid confusion
with synteny blocks) to match the reality of human-mouse
comparison. If this number does not match the reality of
human-mouse comparison, then the observation that the
breakpoint re-use increases with element deletions turns into
a purely mathematical statement that we are not debating
and that is irrelevant to the conclusion in [4] about break-
point re-use in mammalian evolution. For example, if only
20% of all elements are deleted, then Figure 5A (reproduced
from [7]) supports rather than rejects FBM (low breakpoint
re-use at 0 =0.2). However, if one deletes 50% of all elements,
the breakpoint re-use becomes rather high, and the Sankoff-
Trinh argument against [4] stands. This observation seems to
imply that a long-standing debate must be easy to resolve—
one should compute the number of deleted elements (genes?)
in the human genome and consult Figure 5A. Unfortunately,
since it is unclear how one can estimate the number of
deleted elements, Figure 5A cannot refute or validate FBM.

The inability to connect Figure 5A with the realities of
human-mouse genomic architectures is only part of the
problem with the simulations in [7]. Another problem is the
parameter choice; for example, it is not clear why the
parameter n= 100 in Figure 5A is chosen, since the number of
rearrangements between the human and mouse genomes
clearly exceeds 100. Moreover, most plots for n = 1,000 in
Figure BA (particularly those with high breakpoint re-use)
produce synteny blocks that do not even fit RBM, which [7] is
arguing for. Figure 6A shows that the distribution of synteny
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(A) Synteny block sizes (for a permutation with 1,000 elements after 320 reversals) do not fit the exponential distribution expected from RBM.
(B) Synteny block sizes (for a permutation with 25,000 elements after 320 reversals) fit the exponential distribution expected from RBM.

doi:10.1371/journal.pcbi.0030209.g006

block sizes (for n = 1,000 elements and m = 320 rearrange-
ments, averaged over 100 simulations) is quite different from
the exponential distribution characteristic for RBM. In fact,
~400 out of 640 resulting synteny blocks have (minimal) size 1
(compare with Figure 1, middle panel, in [4] that is used as an
argument against RBM). One can argue that Sankoff and
Trinh [7] are only interested in reversal distance of the
resulting synteny block arrangements, and the sizes of the
synteny blocks do not matter. While this argument is correct
for 0 =0, it becomes flawed for 0 > 0, since the results of the
deletion process are highly dependent on the distribution of
the synteny block sizes. Short synteny blocks (of size 1) are
“easy” to delete and the unrealistically high proportion of
such blocks in the Sankoff-Trinh simulation makes the plot in
Figure bA look quite different from what one would expect if
the simulations would follow RBM.

This particular deficiency of the Sankoff-Trinh simulations
is easy to fix: one should simply increase the granularity (i.e.,
increase n) to better model RBM. Figure 5B shows the results
of simulations with n= 25,000 (rough estimate of the number
of genes in mammalian genomes) and m = 320, while Figure
6B shows that the distribution of the sizes of the synteny
blocks (for these parameters) fits the exponential curve and is
consistent with RBM). If Sankoff and Trinh presented a (more
realistic) plot in Figure 5B in their paper, they would likely
confirm rather than refute FBM—indeed, one needs to delete
more than 90% of genes (elements) to see significant
breakpoint re-use. The sequenced mammalian genomes do
not show any evidence of such extreme gene loss. However,
although the plot in Figure 5B shows small breakpoint re-use
(for any realistic choice of parameters), we prefer not to use it
as a counter-argument against the Sankoff-Trinh argument
since (similarly to [7]) we do not know what is the best way to
choose the parameters (e.g., the number of rearrangements)
matching the realities of the human-mouse analysis.

This problem did not escape the attention of Pevzner and
Tesler [4]; in fact, they implicitly constructed an analog of
Figure 5 and even described the scan statistics to analyze it.
The only difference is that instead of parameter 0 (the
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number of deleted blocks), they used different parameters ¢
(the minimum size of a synteny block, all smaller ones are
deleted) and 7 (the total size of deleted synteny blocks).
Although all these parameters seem to be interchangeable,
there is a big difference between them when it comes to the
real human-mouse comparison: ¢ and 7, different from 0, are
easy to estimate. Indeed, the key conclusion of [4] is that the
large synteny blocks (>1 Mb) cover almost the entire genome
(95%), while breakpoint regions (where elusive short synteny
blocks hide) cover only =~5% of the human genome. We
emphasize that synteny blocks in [4] are hardly controversial
since all follow-up studies with different synteny block
generation algorithms came up with roughly the same set of
blocks. These blocks are further confirmed by a large number
of genes (in the same conserved order with few micro-
rearrangements).

Figure 7 describes a simulation similar to the Sankoff-
Trinh simulations, but in ¢ rather that in 0 coordinates (all
synteny blocks shorter than ¢ X GenomeLength are deleted). It
is as good as Figure 5 for refuting FBM since the breakpoint
re-use eventually increases when ¢ increases. However, one
can see that breakpoint re-use is low at ¢ = 0.00033
(corresponding to 1 Mb, the maximal size of deleted blocks
in [4]) and it is nowhere close to the observed human-mouse
breakpoint re-use for any realistic values of parameter o. In
100,000 simulations, the breakpoint re-use never reached the
value 1.37 specified in Corollary 5, indicating that reaching
such high breakpoint re-use is highly unlikely in the RBM
framework.

We admit that since the choice of 1 Mb (¢ =0.00033) as the
threshold for the deleting short synteny blocks is somewhat
arbitrary, one can argue that the breakpoint re-use becomes
large when o exceeds 0.00150 (=5 Mb). Therefore, one can
argue that if Pevzner and Tesler [4] had chosen 5 Mb as the
threshold for synteny block deletion, they would fall into the
trap described in [7]. Below we explain a flaw with this
counter-argument.

Indeed, in this case all synteny blocks shorter than 5 Mb
would have to be deleted, and thus would have to be declared
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(A) Breakpoint re-use rate as a function of the maximal size of deleted synteny blocks (as the proportion of the whole genome length). Deletion of
blocks shorter than 1 Mb as in [4] (assuming that the human genome is =3,000 Mb long, 0 =1 Mb/3,000 Mb ~ 0.00033) results in low breakpoint re-use
(=1.2). The plot shows simulations for a genome with 25,000 genes and 320 reversals (in this case, ¢ = 0.00033 corresponds to deleting all synteny

blocks shorter than nine genes).

(B) The distribution of breakpoint re-use at ¢ = 0.00033 with a mean of 1.23 and a standard deviation of 0.02 (100,000 simulations). The maximum
breakpoint re-use rate in this simulation was 1.33, and it appeared only once.

doi:10.1371/journal.pcbi.0030209.9g007

to be the breakpoint regions rather than the synteny blocks
(for ¢ = 0.00150). It would result in a genome with an
extremely high proportion of breakpoint regions (as opposed
to 5% reported in [4] for 1 Mb threshold). Application of scan
statistics to such a genome would not reveal any surprising
breakpoint clustering, and the conclusion that evolution
follows RBM would be confirmed—therefore, in this case [4]
would never be written (let alone, published). This flawed
“counter-argument” illustrates the key problem with [7]: it
never took into account or even commented on the 5%-95%
split between breakpoint regions and synteny blocks in the
human and mouse genomes, the key argument against RBM.
The rebuttal of RBM is based on both arguments (breakpoint-
re-use and 5%-95% split) and [4] never claimed that
breakpoint re-use alone invalidates RBM. Therefore, the
rebuttal of [4] based solely on the breakpoint re-use argument
(as in [7]) is flawed.

We emphasize that Figures 4 and 6 represent rather similar
simulations and differ mainly in the choice of parameters for
representing the results of these simulations (0 versus o).
There is no intrinsic advantage in choosing one simulation
over another; the only difference is that one of these
simulations (0) is difficult to connect to the realities of the
human-mouse analysis, while the other one () has a clear
interpretation. We also remark that for typical parameters,
the Sankoff-Trinh “gene deletion” process is not dramatically
different from the Pevzner-Tesler “synteny block deletion”
process. For example, even if half of all genes are deleted (0=
0.5), the Sankoff-Trinh simulation deletes (on average) 1/2°
blocks of size i; i.e., removes mainly short blocks as in [46]. Of
course, there is no one-to-one correspondence between the
Sankoff-Trinh and Pevzner-Tesler deletion processes: some
blocks shorter than the threshold are retained, and some
blocks larger than the threshold are deleted in the Sankoff-
Trinh simulation.

To better compare the Sankoff-Trinh gene deletion
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process with the synteny block deletion process, one may
switch to parameter 7, the proportion of the total size of
deleted blocks (this parameter can be directly computed for
the Sankoff-Trinh simulation). For y = 0.05 corresponding to
the 5% proportion of the breakpoint regions in human-
mouse comparison, the breakpoint re-use is small (~1.2). The
fact that it becomes as large as 1.9 for y = 0.3 is irrelevant,
since it does not reflect the reality of human-mouse
comparison: indeed, we do not find that 30% of the human
genome is formed by breakpoint regions that do not exhibit
similarity with other mammalian genomes and have few
orthologous genes. Again, if the human-mouse analysis in [4]
revealed that the breakpoint regions account for a third of
the genome, the paper [4] would never be written.

Discussion

Nadeau and Taylor [18] proposed RBM based on a single
observation: the exponential distribution of human-mouse
synteny block sizes. There is no doubt that jumping to this
conclusion was not fully justified mathematically: there are
many other models (e.g., FBM) that lead to the same
exponential distribution of the sizes of the “visible” synteny
block. Apart from the 20-year old legacy, human and mouse
genomes provide no evidence that would allow one to claim
that RBM is correct and FBM is not; indeed, all statistical
support for RBM immediately translates into statistical
support for FBM. From this perspective, it is not clear how
one can favor RBM over FBM without a single piece of
evidence that holds for RBM but is violated for FBM. Pevzner
and Tesler [4] presented the first evidence that RBM is in
conflict with mammalian genomic architectures. Sankoff and
Trinh [6,7] argued that the Pevzner-Tesler arguments against
RBM are flawed. We acknowledge the important contribution
of [6] in raising awareness that there are many subtle details
and parameters in rearrangement analysis. At the same time,

November 2007 | Volume 3 | Issue 11 | €209



a) 250 . : .

200

150

Frequency

100

50 |

0 —‘Hmﬂﬂﬁﬂmﬁﬁr—i—\ L o = L L
10 20 30 40 50 60 70
Block length (Mb)

Rearrangement Hotspots in Human Genome

by 250 . . . T T

200

150

Frequency

100

50

0 —‘Hmﬂﬂmﬁmﬁ’_‘r—vﬁ . . fua) . .
10 20 30

40 50 60 70 80
Block length (Mb)

Figure 8. Distribution of the Synteny Block Sizes between the Human and Mouse Genomes

Distribution of the synteny block sizes between the human and mouse genomes based on (A) 281 synteny blocks from [46] with extra 190 “hidden”
short synteny blocks as predicted in [4] (this figure corresponds to Figure 1, center panel in [4]); and (B) 566 human-mouse synteny blocks derived from
1,338 multispecies conserved segments in [22]. The large number of confirmed short synteny blocks (leftmost bar in [B]) is already in conflict with the
exponential distribution imposed by RBM. Moreover, the leftmost bar in (B) represents only the currently known short synteny blocks and does not
even account for still unknown “hidden” synteny blocks that may have evaded the computational techniques in [22].

doi:10.1371/journal.pcbi.0030209.g008

we emphasize that [6] did not present any arguments against
FBM and did not connect their simulations with the realities
of mammalian genomes.

Perusal of the UCSC Genome Browser (http://genome.ucsc.
edu) reveals large numbers of short adjacent regions
corresponding to parts of several chromosomes [49]. For
example, the antibody regions in mammalian genomes show
signs of multiple recurrent rearrangements. However, until
recently, it remained unclear whether these regions reflect
genome rearrangements (relevant to this paper), or duplica-
tions/assembly errors/alignment artifacts [50]. While previous
studies attributed the fragile regions to high repeat density,
high recombination rate, or pairs of tRNA genes, it remained
unclear how to distinguish “true” short synteny blocks from
computational artifacts [50].

When RBM was formalized in 1984 [18], the short blocks in
the human-mouse comparison were not available. By 2003,
many short blocks were found, but it was not possible to
decide which of them (if any) were real synteny blocks and
which represented algorithmic or statistical artifacts. Ac-
knowledging that these newly found short blocks were
unreliable, Pevzner and Tesler [4] did not use any of them
to refute RBM. Instead, they proved that such short blocks
exist (without finding them) and predicted that the distribu-
tion of the synteny block sizes looks like Figure 8A (with an
abnormally high bar corresponding to “hidden” short
blocks). Recently, Ma et al. [22] finally revealed some short
synteny blocks via the analysis of multiple mammalian
genomes. Their distribution (Figure 8B) is remarkably similar
to the distribution predicted by Pevzner and Tesler in 2003
[4] (Figure 8A).

The paper [4] has been cited in many biological papers, and
we feel it is important to resolve the controversy that now
confuses many researchers studying genome evolution. Since
the rebuttal of RBM is based on a sophisticated theorem for
computing rearrangement distances, few biologists can grasp
all the details of both [4] and [6]. Fortunately, since both [4]
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and [6] use only computational arguments and simulations to
refute/support RBM, this controversy (different from some
biological controversies) is easy to resolve: one should simply
check all computational arguments and simulations. In this
paper, we developed algorithms for analyzing 3-breaks that
generalize the standard rearrangements and make the
analysis of rearrangements more transparent. We further
analyzed the effects of transpositions (and other 3-breaks) on
breakpoint re-use and came to the conclusion that even if
transpositions and three-way fissions/fusions were dominant
rearrangement operations, the arguments against RBM still
hold. While one can still argue that rearrangements even
more complex than 3-breaks (e.g., 4-breaks) are common, this
argument is not supported by existing biological knowledge.
We also reproduced the simulations from [6] and came to the
conclusion that the “block deletion” argument in [7] is
flawed, similarly to the already refuted “synteny blocks”
argument in [6].

If RBM is put to rest in favor of FBM, one has to answer the
question of what makes certain regions break and others not
break. Peng et al. [20] argued that long regulatory regions and
inhomogeneity of gene distribution in mammalian genomes
might be responsible for the breakpoint reuse phenomenon.
The link between rearrangements and regulatory regions was
explored in depth by Kikuta et al. [16], who argued that long-
range interactions between genes and their regulatory
regions might explain solid and fragile regions in the
genomes. However, revealing all factors responsible for
genomic fragility and discovery of all fragile regions in the
human genome remains an open problem.

Methods

A computational approach based on comparison of gene orders
was pioneered by David Sankoff [51,52]. Since some methods and
notations used in this paper differ from the previous papers, below
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we briefly review the key concepts/methods that are relevant for this
paper and put them in the context of previous studies.

Initially, genome rearrangements were modeled by a combinato-
rial problem of sorting by reversals, as described below. The order of
genes in two organisms is represented by permutations © = 7;%. . .7,
and 6 =0,05...0,. A reversal p(ij) of an interval [ij] is the permutation

2
2

1
1

i—-1 i i+1

i—1j j-1

n

j—1 3 j+1
i+1 i j+1 n

The reversal p(ij) has the effect of reversing the order of mmy;. . .7;
and transforming =;...m ;7. . .My .W, into wP(Lf) = w...
T T, . Ty - T, Given permutations @ and o, the reversal distance
problem is to find a series of reversals p;,p5,...,p, such that 7-p;-p> _.p,
=0 and ¢ is minimal. We call ¢ the reversal distance between 7 and ¢.
Sorting 7 by reversals is the problem of finding the reversal distance
d(m) between m and the identity permutation (12...n).

We extend a permutation © = m;7,. ..w, by adding ny=0 and 7, ; =
n+ 1. We call a pair of elements (,7,,,), 0 < i < n, of m an adjacency if
|7; - mieq] =1, and a breakpoint if |m; — 14| > 1. It is easy to see that d(m)
> b(m) | 2, where b(m) is the number of breakpoints in n. However, the
estimate of reversal distance in terms of breakpoints is very
inaccurate. Bafna and Pevzner [53] showed that another parameter
(size of a maximum cycle decomposition of the breakpoint graph)
estimates reversal distance with much greater accuracy.

Originally, the breakpoint graph of a permutation m was defined as an
edge-colored graph G(n) with n + 2 vertices {mg, 7, ..., T, Tuys} = {0,
1, .., n+ 1}. We join vertices 7; and 7;; by a black edge for 0 <i < n.
We join vertices 1; and 7; by a gray edge if ; — ;= 1. A ¢ycle in an edge-
colored graph G is called alternating if the colors of every two
consecutive edges of this cycle are distinct. It is easy to see that G(m)
contains an alternating Eulerian cycle. Therefore, there exists a cycle
decomposition of G(m) into edge-disjoint alternating cycles (every edge
in the graph belongs to exactly one cycle in the decomposition). We
are interested in the decomposition of the breakpoint graph into a
maximum number ¢(r) of edge-disjoint alternating cycles.

Cycle decompositions play an important role in estimating reversal
distance. Bafna and Pevzner [53] proved the bound d(n) > n+ 1 —¢(n),
which is much tighter than the bound in terms of breakpoints d(m) >
b(m) | 2.

Finding a maximal cycle decomposition is a difficult problem.
Fortunately, in the more biologically relevant case of signed
permutations, this problem is trivial. Genes are directed fragments of
DNA, and a sequence of n genes in a genome is represented by a signed
permutation on {/,..,n} with a “+” or “=” sign associated with every
element of 7m. In the signed case, every reversal of fragment [i;]
changes both the order and the signs of the elements within that
fragment. We are interested in the minimum number of reversals d(m)
required to transform a signed permutation 7 into the identity signed
permutation (+1+2..+4n).

The concept of a breakpoint graph extends naturally to signed
permutations by mimicking every directed element by two undir-
ected elements, which substitute for the tail and the head of the
directed element [53]. For signed permutations, the bound d(r) > n+1
— ¢(m) approximates the reversal distance extremely well. Hannenhalli
and Pevzner [54] showed that

n+1—c(n) +h(n) <d(n) <n+2—c(n) + h(n)

where A(m) is the number of hurdles in 7.
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In the model of the multichromosomal genomes we consider, every
gene is represented by an integer whose sign (“+” or “-”) reflects the
direction of the gene. A chromosome is defined as a sequence of
genes, while a genome is defined as a set of chromosomes. Given two
genomes 7 and I', we are interested in a most parsimonious scenario
of evolution of II into I' (i.e., the shortest sequence of rearrangement
events [defined below] required to transform II into I'). We assume
that IT and I' contain the same set of genes.
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representations of the same chromosome (i.e., the directions of
chromosomes are irrelevant). The four most common elementary
rearrangement events in multichromosomal genomes are reversals,
translocations, fusions, and fissions, defined below.
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number of (nonempty) chromosomes, is known in molecular biology
as a fusion. The translocation p(m,@,,1) for 1 < i < n “breaks” a
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Supporting Information

Text S1. An Overview of RBM and FBM
Found at doi:10.1371/journal.pcbi.0030209.sd001 (123 KB PDF).

Acknowledgments

We are indebted to Glenn Tesler, who kindly provided us with a
detailed review of roughly the same length as this paper. We are also
grateful to Vikas Bansal, Tzvika Hartman, and Alex Zelikovsky for
insightful comments. We are indebted to David Sankoff for insightful
critical arguments in [6,7,21] that eventually led to this paper.

Author contributions. MAA and PAP conceived and designed the
experiments, analyzed the data, and wrote the paper. MAA
performed the experiments.

Funding. The authors received no specific funding for this study.

Competing interests. The authors have declared that no competing
interests exist.

Sankoff D, Trinh P (2005) Chromosomal breakpoint reuse in genome
sequence rearrangement. J Comput Biol 12: 812-821.

Murphy WJ, Larkin DM, van der Wind AE, Bourque G, Tesler G, et al. (2005)
Dynamics of mammalian chromosome evolution inferred from multi-
species comparative map. Science 309: 613-617.

van der Wind AE, Kata SR, Band MR, Rebeiz M, Larkin DM, et al. (2004) A
1,463 gene cattle-human comparative map with anchor points defined by
human genome sequence coordinates. Genome Res 14: 1424-1437.

Bailey J, Baertsch R, Kent W, Haussler D, Eichler E (2004) Hotspots of
mammalian chromosomal evolution. Genome Biol 5: R23.

Zhao S, Shetty J, Hou L, Delcher A, Zhu B, et al. (2004) Human, mouse, and
rat genome large-scale rearrangements: Stability versus speciation. Ge-
nome Res 14: 1851-1860.

Webber C, Ponting CP (2005) Hotspots of mutation and breakage in dog
and human chromosomes. Genome Res 15: 1787-1797.

Hinsch H, Hannenhalli S (2006) Recurring genomic breaks in independent
lineages support genomic fragility. BMC Evol Biol 6: 90.

Ruiz-Herrera A, Castresana J, Robinson TJ (2006) Is mammalian chromo-

10.

11.

12.
13.

14.

November 2007 | Volume 3 | Issue 11 | €209



16.

17.

18.

20.

21.

22,

26.

27.

28.

29.

30.

34.

somal evolution driven by regions of genome fragility? Genome Biol 7:
R115.

. Yue Y, Haaf T (2006) 7E olfactory receptor gene clusters and evolutionary

chromosome rearrangements. Cytogenet Genome Res 112: 6-10.

Kikuta H, Laplante M, Navratilova P, Komisarczuk AZ, Engstrom PG, et al.
(2007) Genomic regulatory blocks encompass multiple neighboring genes
and maintain conserved synteny in vertebrates. Genome Res 17: 545-555.
Mehan MR, Almonte M, Slaten E, Freimer NB, Rao PN, et al. (2007) Analysis
of segmental duplications reveals a distinct pattern of continuation-of-
synteny between human and mouse genomes. Hum Genet 121: 93-100.
Nadeau JH, Taylor BA (1984) Lengths of chromosomal segments conserved
since divergence of man and mouse. Proc Natl Acad Sci U S A 81: 814-818.

. Pennisi E (2000) MOUSE ECONOMY: A mouse chronology. Science 288:

248-257.

Peng Q, Pevzner PA, Tesler G (2006) The fragile breakage versus random
breakage models of chromosome evolution. PLoS Comput Biol 2: el4.
doi:10.1371/journal.pcbi.0020014

Sankoff D (2006) The signal in the genomes. PLoS Comput Biol 2: 0320-
0321. doi:10.1371/journal.pcbi.0020035

Ma J, Zhang L, Suh BB, Raney BJ, Burhans RC, et al. (2006) Reconstructing
contiguous regions of an ancestral genome. Genome Res 16: 1557-1565.

. Sachs RK, Levy D, Hahnfeldt P, Hlatky L (2004) Quantitative analysis of

radiation-induced chromosome aberrations. Cytogenet Genome Res 104:
142-148.

. Levy D, Vazquez M, Cornforth M, Loucas B, Sachs RK, et al. (2004)

Comparing DNA damage-processing pathways by computer analysis of
chromosome painting data. ] Comput Biol 11: 626-641.

. Vazquez M, et al. (2002) Computer analysis of mFISH chromosome

aberration data uncovers an excess of very complicated metaphases. Int J
Radiat Biol 78: 1103-1115.

Sachs RK, Arsuaga J, Vazquez M, Hlatky L, Hahnfeldt P (2002) Using graph
theory to describe and model chromosome aberrations. Radiat Res 158:
556-567.

Alekseyev MA, Pevzner PA (2007) Multi-break rearrangements and
chromosomal evolution. Theoret Comput Sci. In press.

Bafna V, Pevzner PA (1996) Genome rearrangement and sorting by
reversals. SIAM J Comput 25: 272-289.

Pevzner PA (2000) Computational molecular biology: An algorithmic
approach. Cambridge (Massachusetts): MIT Press. 314 p.

Tesler G (2002) Efficient algorithms for multichromosomal genome
rearrangements. ] Comput Syst Sci 65: 587-609.

. Ozery-Flato M, Shamir R (2003) Two notes on genome rearrangement. J

Bioinform Comput Biol 1: 71-94.

. Yancopoulos S, Attie O, Friedberg R (2005) Efficient sorting of genomic

permutations by translocation, inversion and block interchange. Bioinfor-
matics 21: 3340-3346.

. Alekseyev. MA, Pevzner PA (2007) Whole genome duplications, multi-

break rearrangements, and genome halving theorem. Proceedings of the
18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA); 7-9
January 2007; New Orleans, Louisiana, United States. SIAM 2007: 665-
679.

Bader M, Ohlebusch E (2006) Sorting by weighted reversals, transpositions,
and inverted transpositions. Proceedings of the 10th Conference on
Research in Computational Molecular Biology (RECOMB); 2-5 April 2006:
Venice, Italy. Lect Notes Comp Sci 3909: 563-577.

@ PLoS Computational Biology | www.ploscompbiol.org

2121

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

Rearrangement Hotspots in Human Genome

Gu QP, Peng S, Sudborough H (1999) A 2-approximation algorithm for
genome rearrangements by reversals and transpositions. Theoret Comput
Sci 210: 327-339.

Hartman T, Sharan R (2004) A 1.5-approximation algorithm for sorting by
transpositions and transreversals. Lect Notes Comput Sci 3240: 50-61.
Lin GH, Xue G (2001) Signed genome rearrangements by reversals and
transpositions: Models and approximations. Theoret Comput Sci 259: 513-
531.

Lin YC, Lu CL, Chang HY, Tang CY (2005) An efficient algorithm for
sorting by block-interchanges and its application to the evolution of vibrio
species. ] Comput Biol 12: 102-112.

Radcliffe AJ, Scott AD, Wilmer EL (2005) Reversals and transpositions over
finite alphabets. SIAM J Discrete Math 19: 224-244.

Walter ME, Dias Z, Meidanis J (1998) Reversal and transposition distance of
linear chromosomes. Proceedings of String Processing and Information
Retrieval (SPIRE): A South American Symposium; 9-11 September 1995;
Santa Cruz de la Sierra, Bolivia. IEEE: 96-102.

Bafna V, Pevzner PA (1998) Sorting permutations by transpositions. SIAM J
Discrete Math 11: 224-240.

Christie DA (1999) Genome rearrangement problems [dissertation].
Glasgow (Scotland): University of Glasgow. 153 pages. Available: http://
www.jagstar.freeserve.co.uk/unilthesis.pdf. Accessed 4 October 2007.
Walter ME, Reginaldo L, Curado AF, Oliveira AG (2003) Working on the
problem of sorting by transpositions on genome rearrangements. Lect
Notes Comput Sci 2676: 372-383.

Hartman T (2003) A simpler 1.5-approximation algorithm for sorting by
transpositions. Lect Notes Comput Sci 2676: 156-169.

Elias I, Hartman T (2005) A 1.375-approximation algorithm for sorting by
transpositions. Lect Notes Comput Sci 3692: 204-214.

Pevzner P, Tesler G (2003) Genome rearrangements in mammalian
evolution: Lessons from human and mouse genomes. Genome Res 13:
37-45.

Alekseyev MA (2007) Multi-break rearrangements: from circular to linear
genomes. Proceedings of Fifth Annual RECOMB Satellite Workshop on
Comparative Genomics; 14-16 September; La Jolla, California, United
States. Lect Notes Bioinform. 4751: 1-15. doi:10.1007/978-3-540-74960-8_1
Bergeron A, Mixtacki J, Stoye J (2006) A unifying view of genome
rearrangements. Lect Notes Comput Sci 4175: 163-173.

Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D (2003) Evolution’s
cauldron: Duplication, deletion, and rearrangement in the mouse and
human genomes. Proc Natl Acad Sci U S A 100: 11484-11489.

Sankoff D (2003) Rearrangements and chromosomal evolution. Curr Opin
Genet Dev 13: 583-587.

Sankoff D, Leduc G, Antoine N, Paquin B, Lang B, et al. (1992) Gene order
comparisons for phylogenetic inference: Evolution of the mitochondrial
genome. Proc Natl Acad Sci U S A 89: 6575-6579.

. Sankoff D (1992) Edit distance for genome comparison based on non-local

operations. Lect Notes Comput Sci 644: 121-135.

. Bafna V, Pevzner PA (1996) Genome rearrangements and sorting by

reversals. SIAM J Comput 25: 272-289.

. Hannenhalli S, Pevzner P (1999) Transforming cabbage into turnip

(polynomial algorithm for sorting signed permutations by reversals).
Proceedings of the 27th Annual ACM Symposium on the Theory of
Computing; 29 May to 1 June, 1995; Las Vegas, Nevada, United States, pp.
178-189. ] ACM 46: 1-27 (1999).

November 2007 | Volume 3 | Issue 11 | €209



