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Confident peptide identification is one of the most important components in mass-spectrometry-based
proteomics. We propose a method to properly combine the results from different database search
methods to enhance the accuracy of peptide identifications. The database search methods included in
our analysis are SEQUEST (v27 rev12), ProbID (v1.0), InsPecT (v20060505), Mascot (v2.1), X! Tandem
(v2007.07.01.2), OMSSA (v2.0) and RAId_DbS. Using two data sets, one collected in profile mode and
one collected in centroid mode, we tested the search performance of all 21 combinations of two search
methods as well as all 35 possible combinations of three search methods. The results obtained from
our study suggest that properly combining search methods does improve retrieval accuracy. In addition
to performance results, we also describe the theoretical framework which in principle allows one to
combine many independent scoring methods including de novo sequencing and spectral library
searches. The correlations among different methods are also investigated in terms of common true
positives, common false positives, and a global analysis. We find that the average correlation strength,
between any pairwise combination of the seven methods studied, is usually smaller than the associated
standard error. This indicates only weak correlation may be present among different methods and
validates our approach in combining the search results. The usefulness of our approach is further
confirmed by showing that the average cumulative number of false positive peptides agrees reasonably
well with the combined E-value. The data related to this study are freely available upon request.

Introduction

Confident peptide identification through tandem mass spec-
trometry (MS) is one of the most important components in MS-
based proteomics. For this reason, a great amount of effort has
been invested to develop automated data analysis tools to
identify peptides through tandem MS (MS2) spectra. Among
available data analysis tools, methods based on database
searches are most frequently used. Because each search
method uses a different algorithm and proceeds from a
different view of what spectrum components contain the most
critical information for identification, the search results for one
spectrum from various search engines may differ significantly.
However, it is also well-recognized that such difference may
be turned into positive use: it would be useful to find
complementary engines and combine the results in an effective
way to enhance peptide identification.1

Combining search results from different methods, if feasible,
definitely bears the possibility to improve the peptide identi-
fication confidence via reducing noise and utilizing comple-
mentary strengths. The difficulty in combining results from
different search methods largely comes from the lack of a

common statistical standard.2 The importance of having a
community standard has been stressed, and efforts in reaching
such community standard have been invested. Using iterative
expectation-maximization (EM), Keller et al. 3 proposed a
statistical model to estimate the probability, determined through
a global analysis of MS2 spectra from an experiment, for a given
spectrum to have correct peptide identification. In principle,
results from different search methods may go through the same
analysis and thus compared. However, if after the statistical
analysis two different methods report different confident
identifications for the same spectrum, one ends up needing to
invent an ad hoc rule to decide which identification should be
kept. Furthermore, to use the EM approach, one needs to
assume or guess, without theoretical/statistical foundation, the
forms of the score distributions for true positives and false
positives. This, unfortunately, must weaken the validity of any
statistical significance assignment obtained from such type of
analyses.

In our recent work,4 it was shown possible to calibrate the
statistics (E-value) of various search methods to reach a
universal standard that is in agreement with the fundamental
definition of E-value. For a given query spectrum and quality
score cutoff S, E-value is defined as the expected number of
hits, in a random database, with quality score being the same
as or larger than the cutoff. A realistic E-value assignment thus
provides the user with the number of false positives to
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anticipate when setting a quality score threshold. Most impor-
tantly, this peptide-centric statistical calibration allows one to
combine search results even if the top hits from various
methods disagree. Another possible approach to establish
common statistical standard is through equating the false
discovery rate (FDR)5 of various methods considered. This
approach, however, does not provide statistical significance for
each peptide hit and thus is not directly applicable to peptide-
centric combination of different search results. To be explicit,
one may refer from FDR the E-value of a peptide hit with score
identical to the first false positive, but any peptide hits with
score better than the first false positive cannot have their
E-value assigned. Furthermore, for peptides with scores falling
in the range [Sk+1, Sk], where Sk represents the kth best score
of false positives, one cannot distinguish them statistically well
except by using some ad hoc interpolations. There also exist
other issues concerning misleading inference using FDR, but
this is not the focus of the current paper and we refer the
readers to a few relevant literatures.6,7

In this paper, in addition to providing a universal protocol
to combine search results, we also carry out the performance
assessment for all possible combinations, among seven data-
base search methods, of two and three search methods using
the Receiver Operating Characteristic (ROC) curves. The da-
tabase search methods employed in our analysis are SEQUEST8

(v27 rev12), ProbID9 (v1.0), InsPecT10 (v20060505), Mascot11

(v2.1), X! Tandem12 (v2007.07.01.2), OMSSA13 (v2.0) and RAId-
_DbS.14

To better illustrate the main points of this paper, we have
relegated to the Supporting Information a large number of ROC
curves that convey similar information of that exhibited in the
plots of the main text. Since the centroid mode seems to be
the dominant mode in MS2 database searches today, we
present in the main text only results from centroid mode data
and results from profile mode data are shown in the Appendix
A. Throughout the paper, we use Dalton (Da) as the unit for
molecular weight. In the following, we first describe the
theoretical foundation for combining the search results. We will
then describe briefly in Materials the implementation, followed
by our main results: best combinations within search methods
tested. We conclude with a brief summary, remarks and future
directions.

Theory

In this section, we will start with the definitions of P-value
and E-value, which will be frequently used for the rest of this
paper. We then describe the mathematical underpinnings of
how to combine the P-values of different database search
methods to result in a final E-value. We should note that the
mathematical formulation employed here was first introduced
by Fisher,15 and its extensions and applications to other
research areas also exist.16–18 To the proteomics community,
however, this is still relatively new. Therefore, for the sake of
completeness, we will provide sufficient mathematical details.

P-Value and E-Value. Let us define the P-value and E-value
in the context of peptide identification in database searches.
For a given spectrum σ and a score cutoff Sc, one may ask what
is the probability for a qualified (with molecular weight in the
allowed range) random peptide to reach a score larger than or
equal to Sc. This probability P(Sc), a function of Sc, is called
the P-value. For spectrum σ, if a database contains Nσ qualified,
unrelated random peptides, one will expect to have E(Sc) )
NσP(Sc) number of random peptides to have quality score larger

than or equal to Sc. This expectation value E(Sc) is by definition
the E-value associated with score cutoff Sc.

If one further assumes that the occurrence of a high-scoring
random hit is a rare event and thus can be modeled by a
Poisson process with expected number of occurrence E(Sc), one
may then define another P-value, which is called the database
P-value, via

Pdb(Sc)) 1- e-E(Sc) (1)

The database P-value Pdb(Sc) represents the probability of
seeing at least one hit in a given random database with quality
score larger than or equal to Sc. Note that, at the level of Pdb,
one may compare the statistics from different search methods
using different sizes of random databases. Because of the
differences in the choices of optimal search parameters, it is
likely that different search methods, for the same query
spectrum, may search over different number of qualified
peptides, that is, having different effective database sizes.
Therefore, combining the database P-values is the natural
choice if one were to merge results from different search
methods.

Suppose that one wishes to combine the search results from
L different search methods, each peptide candidate will have
in principle L different P-values reported by the L search
methods. The formula in eq 6 of the next subsection provides
us the final combined P-value Pcomb from the list. Once Pcomb

is obtained, we may invert the formula in eq 1 to get a
combined E-value Ecomb via

Ecomb ) ln( 1
1-Pcomb

) (2)

Having outlined how to obtain the final quantity of interest,
Ecomb, we now turn to the mathematical underpinnings of how
to combine a list of, ideally independent, P-values reported by
different database search methods.

Combine Independent P-Values. Consider an event labeled
by a list of L independent quantities s1, s2,..., sL. Each quantity
si may have an associated P-value pi depending on the statistics
of the variable si. An important issue to address is how one
should combine all the pi values to obtain an overall P-value.
In the context of combining search results of different methods
to assign statistical significance to a certain candidate peptide
π, si represents the quality score assigned to π by the ith search
method.

The question then reduces to the following. Given L random
variables (p1, p2,..., pL) uniformly distributed in the interval
(0, 1)], what is the probability of finding their product to be
smaller than a certain threshold τ. To put it in a more concrete
framework, one may consider a unit hypercube whose interior
points having coordinates (x1, x2,..., xL) with 0 e xi e 1 for all
1 e i e L. One then asks what is the volume bounded by the
hypersurfaces xi g 0 and (∏i)1

L xi) e τ with τ ) ∏i)1
L pi.

We may express this volume F(τ) mathematically as an
integral:

F(τ))∫0

1
· · ·∫0

1
θ(τ-∏

i)1

L

xi) dx1dx2 . . . dxL (3)

where θ(x) is a step function with θ(x > 0) ) 1 and θ(x < 0) )
0. Apparently we have F(τ ) 0) ) 0. We now evaluate the
function F(τ) by first taking its derivative. Let f(τ) ≡ ∂F(τ)/∂τ,
we have
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f(τ))∫0

1
· · ·∫0

1
δ(τ-∏

i)1

L

xi) dx1dx2 . . . dxL (4)

with δ(x) being the Dirac delta function that takes zero value
everywhere except when x ) 0 where its value approaches
infinity.

For the ease of computation, we make the following changes
of variables: τ ≡ e-t and xi ≡ e-ui. After this change, all the
new variables t and ui are in the range (0,∞). Equation 4 now
becomes (with τ ) e-t understood)

f(τ))∫0

∞
· · ·∫0

∞
ete-Σiuiδ(t-∑

i)1

L

ui) du1du2 . . . duL

where the identity δ(e-t - e-c) ) etδ(t - c) is used. Using the
integral expression of the delta function,

δ(t- c)) 1
2π∫-∞

∞
e-ik(t-c)dk

we may rewrite eq 4 as (with τ ) e-t understood)

f(τ)) 1
2π∫-∞

∞
dk et-ikt[∫0

∞
e-ui(1-ik)]L

) 1
2π∫-∞

∞
dk e-it(k+i)[ i

k+ i]L
) tL-1

(L- 1)!

(5)

where the last equality results from choosing the integration
path to enclose the lower half of the complex k plane. We may
now go back to F(τ) by integrating f(τ).

F(τ))∫0

τ
f(τ ′ )dτ ′ )∫∞

ln(1⁄τ)
e-t tL-1

(L- 1)!
(-dt)

)∫ln(1⁄τ)

∞
e-t tL-1

(L- 1)!
dt

) τ∑
n)0

L-1
[ln(1 ⁄ τ)]n

n!

(6)

with τ ) ∏i)1
L pi while combining the L P-values p1, p2,..., pL.

As specific examples, when L ) 2, we have F(p1p2) ) p1p2[1 -
ln (p1p2)], and when L ) 3, we have F(p1p2p3) ) p1p2p3[1 -
ln(p1p2p3) + ½ ln2(p1p2p3)]. We will provide in the Appendix B
more examples to elucidate the consequence of the formula
provided in eq 6.

Materials

Two data sets were used in this study: one consists of
centroid spectra, while the other consists of profile spectra. The
centroid data set was generated by the Institute for Systems
Biology.19 This data set contains 12 subsets, each subset
consists of spectra from a run of the experiment. Since the
statistical calibration is not yet done for centroid data, we used
some subsets (A5-A8) for statistical calibration following the
protocol described earlier4 while used other subsets (A1-A4
and A9-A12) for performance test. Each group of four subsets
contains about 7000 raw spectra, a large number arising from
not setting threshold during extraction. We chose not to set
any threshold to avoid bias toward any method tested. How-
ever, inevitably, spectra of low parent ion count are all included,
and thus, correct peptide identification from them is expected
to be difficult. The profile data set was generated in house with
procedures described in ref 14. To conform with the centroid
data, no threshold was set during the extraction of the profile
data. For profile data, since the statistical calibration was
already done,4 we adopted the results there and used them for
analyzing our in-house data set as described in the next section.

Analyses and Results
For each spectrum, database search is performed for each

of the seven methods studied using their respective default
parameters; each method returns a list of candidate peptides.
The candidate peptides in the reported lists are then compared
against the target proteins. A candidate peptide is called a true
positive if it is a partial sequence of any of the target proteins,
and is called a false positive otherwise. Although we have
obtained results from using both the centroid mode data as
well as the profile mode data, in the figures and tables of the
main text, we only present the centroid results. The corre-
sponding results from using profile data are shown in the
Appendix A for interested readers.

Individual performance of all seven methods and the per-
formances of combining multiple methods are shown using
the ROC curves which we detail below. For a given search
method, the reported peptides may be pooled together to form
two groups: one contains true hits and the other contains only
false hits. Given a cutoff, which can be either score or E-value,
one may further classify the group of true hits into true positives
(TP) with score/E-value larger/smaller than the cutoff and false
negatives (FN) with score/E-value smaller/larger than the cutoff.
Similarly, with a cutoff given, one may also further classify the
false hits into false positives (FP) with score/E-value larger/
smaller than the cutoff and true negative (TN) with score/E-
value smaller/larger than the cutoff. At a given cutoff, the
sensitivity is expressed as TP/(TP + FN) while the specificity is
given by TN/(FP + TN).

There are two types of ROC curves that one may use. The
first kind plots sensitivity versus 1 - specificity by varying the
cutoff. For this type of ROC, the area under curve (AUC), with
maximum value 1, is also termed accuracy and the quantity 2
× AUC - 1 may be viewed as the discriminating power. The
second kind of ROC curve plots directly TP (true hits with
score/E-value larger/smaller than the cutoff) versus FP (false
hits with score/E-value larger/smaller than the cutoff) by
varying the cutoff. A ROC curve is therefore a parametric plot
of either score, E-value, or other chosen internal parameter.
The first type of ROC curve, although popularly used, does not
reflect the total number of true hits found within a given cutoff.
Furthermore, it is likely that for a given spectrum different
search methods report different number of true/false hits, and
thus, the trend of AUC may not agree with the second type of
ROC curve. Because the AUC derived from the first type of ROC
curve seems most common, we used it as a reference to sort
different search method combinations but by no means suggest
using it as the only measure of the merit of a search method
or any combination of search methods. To be more complete,
we find it informative to provide both types of ROC curves in
our analysis.

To produce a ROC curve for a single search method, we used
the E-value as the internal parameter for methods reporting
E-values. For other methods, the internal parameter is chosen
to be some sort of quality scores. For example, we use
X-correlation for SEQUEST, posterior probability for ProbId,
and MQ_score for InSpecT. When combining search results
from multiple search methods to form a single ROC curve, we
use the protocol described earlier4 to calibrate E-values first,
we then convert the E-value into a database P-value (see eq
1), use formula 6 to obtain the final P-value, and eq 2 to obtain
the final combined E-value. It should be noted that, for different
search methods, the best database retrieval may be achieved
by using parameters other than those chosen here. For
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example, it may be desirable to introduce some sort of
discriminant function that is aimed to incorporate more
information than the parameters chosen here. However, it is
up to the software developers/experienced users to choose their
best discriminant function and then calibrate the E-values using
their best discriminant function. Therefore, one may not wish
to view our ROC curves as complete performance comparisons.
The key point of this paper is to show that there exists a
theoretically and statistically sound approach to combine
search results from different search methods.

In a ROC curve associated with a search method or a
combination of a number of methods, the abscissa plots the
number of false positives (or 1 - specificity) and the ordinate
plots the number of true positives (or sensitivity). Therefore,
the more toward the upper-left corner a ROC curve is, the
better the corresponding method is performing. Another
popular way to assess the performance is to count the number
of true positives at a fixed false positive number threshold. One
may, for example, fix the false positive number threshold to
be 500 and see how many true positives are found by each
method (allowing up to 500 false positives) to evaluate various
methods.

Standardized E-Values and Single Search Method. We will
start this section with a brief description of how one may
standardize statistics via converting quality scores reported by
different search methods to E-values. Readers interested in
details are encouraged to read ref 4. The basic idea is to adhere
to the textbook definition of the E-value: expected number of
(false positive) hits from a random database. For a peptide hit
with quality score S, its E-value E(S) indicates the expected
number of hits from a random database with quality score
larger or equal to S.

One starts by constructing randomized protein databases of
various sizes and making sure that true peptides (partial
sequences of target proteins used for the calibration purpose)
are absent from those random databases. Querying the spectra
produced from target protein mixture against the random
databases, one obtains for each spectrum only false positive
hits. To calibrate the statistics, one needs an internal parameter
which may vary from method to method. For a method that
reports E-value, we simply use the reported E-value as the
internal parameter. Otherwise, one may use e-S as the internal
parameter, where S represents the reported quality score.
Basically, a more confident hit is associated with a smaller
internal parameter. After this step is done, for a given method,
one may pool the reported peptide hits from all spectra and
compute for a given internal parameter cutoff the total number
of false positives with their internal parameters less than the
cutoff. Upon dividing this number by the total number of query
spectra, one obtains the “expected number of false positives”
within a given internal parameter cutoff. For every search
method, this procedure allows one to identify the correspond-
ing “expected number of false hits” within any given internal
parameter cutoff, which in turn is related to the statistical
significance or the quality scores reported. Since the calibrated
E-values will depend on the database size, one also needs to
identify the necessary database size corrections, which is
demonstrated explicitly in ref 4. The accuracy of this standard-
ization procedure may be obtained via repeating the procedure
several times, each time with a different random database, for
every database size of interest.

We have applied the protocol mentioned above to calibrate
profile data. Therefore, no further calibration is done when

analyzing profile data search results. For a given peptide hit,
the respective calibration formula presented earlier4 was
employed to generate the standardized E-value for each search
method. On the other hand, the complete E-value calibration
protocol is performed on the A5-A8 subsets of the centroid
data to obtain the calibration formulas for each of the seven
methods tested.

In Figure 1, we demonstrate the statistical calibrations for
centroid data. Using formulas found for profile data,4 we first
transform the respective quality scores (or E-values) of each
method to profile E-values. Panel A of Figure 1 shows the profile
E-value versus the average of the cumulative number of false
positives when tested using the centroid data (A5-A8 subsets
of ref 19). It is seen that the profile calibration, when used on
centroid data, still provides the relative E-values reasonably
accurately. To bring the E-value to agree with its fundamental
definition, all one needs is an additional method-specific
constant factor to be multiplied to the calibration formula
developed for profile data. Specifically, for a given method, we
have Ecent. ) amethodEprof., where Eprof. represents the E-value
obtained through employing calibration formulas4 given earlier
and Ecent. represents the calibrated E-value when data is
collected using centroid mode.

As an example, for SEQUEST, we need an additional factor
of ¼ to bring the profile calibration to the centroid calibration.
For a peptide hit with an X-correlation value 3.5, our profile
mode calibration4 converts this X-correlation value into an
E-value of 0.00413 when searching a database of size 100 Mega
residues. This means that for a hit, from querying a centroid
spectrum, with the same X-correlation value, the corresponding
E-value will be 0.00103, a more significant value than before.
This, however, is not surprising because, when the spectrum
is more sparse (centroid mode), it is less likely to have a strong
X-correlation, and thus, a smaller E-value should be assigned
to a centroid hit than to a profile hit when the same X-
correlation value is obtained for both.

Table 1 documents the overall factor needed for each
method. Except for Mascot, every method has a conversion
factor less than or equal to one, similar to the scenario of
SEQUEST. Since the scoring detail of Mascot is not available,
we cannot make comments regarding why when transforming
from Eprof. to Ecent. it has a conversion factor larger than 1. It
is worth noting that for RAId_DbS and X! Tandem the mode
conversion factor amethod is 1; that is, these two methods
require no further adjustments in statistical significance as-
signment for data acquired in centroid mode.

Similar to panel A, panel B of Figure 1 also shows the
statistical calibration results but after (manually) removing
highly homologous peptides from the hit list and after the
method-specific factor (Table. 1) has been applied. In panels
C and D of Figure 1, we apply the calibrated formula (along
with the method-specific factor found from the first calibration)
to the subsets A1-A4 and A9-A12 of ref 19. We find that the
calibration done using subset A5-A8 (when applied to other
centroid data subsets) provides us with realistic statistics,
supporting the universality of statistical calibration.

For performance baselines on peptide identification, we
show the ROC curves in Figure 2 for the seven methods tested.
Panels A and B display ROC curves of the first and the second
type for the methods tested when spectral data are acquired
in centroid mode (subsets A1-A4 of ref 19). Note that the
number of false positives in panel B may seem high at the level
of say 100 true positives. This may be because a peptide is
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counted as a false positive if it is not a partial sequence of any
of the target proteins, even if it is very homologous to the true
hit or if it is a partial sequence of proteins that are very
homologous to the target proteins. As a matter of fact, if one
were to introduce a decoy database, one will not find any hits
from the decoy database within the cutoff yet. This will suggest
that one is looking at a region of zero FDR, while if one were
to calculate the FDR from the ROC curve, one will get a large
value. Therefore, it is a region where FDR exhibits a consider-
able uncertainty and we do not advise the readers to infer FDR
from the ROC curves provided here.

Prior to presenting the results from combining search results
from multiple search methods, let us first outline how P-values

are combined. For a given spectrum σ, to combine search
results from m search methods (say method A1,..., Am), we first
construct a union peptide list L(σ) ≡ LA1

(σ) ∪... ∪ LAm
(σ), where

LAi
(σ) is the reported list of peptide hits by method Ai for

spectrum σ. A peptide in the union list has at least one, and
may have up to m calibrated E-values, depending on how many
search methods reported that specific peptide in their candi-
date lists. Each of the calibrated E-values associated with a
peptide will be first transformed into a database P-value. For
a given peptide π, for method(s) that did not report π as a
candidate, the associated database P-value(s) of π from that
(those) method(s) is (are) set to 1. After this procedure, each
peptide in the list L(σ) have m database P-values and eq 6 is
applied to obtain the final P-value associated with π. The final
P-value Pcomb(π) will then be transformed into a final E-value
Ecomb(π) via eq 2. We then use Ecomb(π) as the final E-value to
determine the statistical significance of peptide candidate π,
similar to what is used in ref 18.

We now comment on the effect of assigning P-value of 1
for the missing P-values. Prior to combining P-values, setting
the unreported peptide’s P-value to be 1, the largest P-value
(or least statistically significant) possible, makes the final
P-value larger than it should be, that is, more conservative.
However, Figure 3 shows that even with this drastic choice

Figure 1. The statistical calibrations for centroid data. (A) The profile E-value (using calibration formulas4) versus the average of the
cumulative number of false positives when tested using the centroid data (A5-A8 subsets of ref 19). (B)The statistical calibration
results but after (manually) removing highly homologous peptides from the hit list and after the method-specific factor amethod (see
text) has been applied. (C and D) We apply the calibrated formula (along with the method-specific factor found from the first calibration)
to the subsets A1-A4 and A9-A12 of ref 19. We find that the calibration done using subset A5-A8 (when applied to other centroid
data subsets) provides us with realistic statistics, supporting the universality of statistical calibration. It is worth noting that the lowest
E-value in those calibration plot can only go to roughly one over the total number of spectra used for calibration. Since we used about
10 000 spectra, the lowest E-value that can be shown is of order 10-4. In real database searches, a really significant hit probably may
have an E-value much smaller than 10-4 and many users may not wish to consider hits with E-values larger than 10-1.

Table 1. The Numerical Factor Needed to Obtain Calibrated
E-Values for Centroid Data from Calibrated E-Values for Profile
Data

method amethod

RAId_DbS 1
X! Tandem 1
Mascot 2
OMSSA 1/6
ProbID 6.1 × 10-5

SEQUEST 1/4
InsPecT 1/5
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the increase in the final P-value, from combining the
reported P-value and 1, is not drastically larger than the
reported P-value. We also display in Figure 3 the final P-value
versus a starting P-value when it is combined with a P-value
of 0.1, 0.01, 0.001, or 0.0001.

Pairwise Combinations. Using Ecomb as the internal param-
eter, the cumulative number of TP, FN, FP and TN may be
expressed as

TP(Ecombe Ec))∑
σ

∑
π∈L(σ)

θ(Ec - Ecomb(π)|π ∈ {tp}) (7)

FN(Ecombe Ec))∑
σ

∑
π∈L(σ)

θ(Ecomb(π)- Ec|π ∈ {tp}) (8)

FP(Ecombe Ec))∑
σ

∑
π∈L(σ)

θ(Ec - Ecomb(π)|π ∉ {tp}) (9)

TN(Ecombe Ec))∑
σ

∑
π∈L(σ)

θ(Ecomb(π)- Ec|π ∉ {tp}) (10)

where {tp} represents the set of all partial sequences of target
proteins and θ(x|G) is a conditional step function that takes
value 1 if both x G 0 and condition G holds true, and takes
value 0 if x < 0 or condition G is false.

Seven pairwise combinations of search methods with best
AUC, measured by the first type of ROC, are shown in Figure
4. Panel A shows ROC curves of the first kind resulting from
the centroid data (A1-A4 subsets of ref 19), while panel B
documents the ROC curves of the second kind from the same
data. It is apparent that many of these pairwise combinations
of search methods outperform, in terms of AUC and TP(FP )
500), each individual search methods shown in Figure 2. This
provides a proof of principle that properly combining search
results does enhance peptide identification accuracy.

Triplet Combinations. Using Ecomb as the internal param-
eter, the cumulative number of TP, FN, FP and TN are obtained
via eqs 7–10. The ROC curves of seven combinations of three
search methods, giving rise to the seven best AUC, are shown
in Figure 5. Panel A shows ROC curves of the first kind resulting
from the centroid data (A1-A4 subsets of ref 19), while panel
B documents ROC curves of the second kind from the same
data. It is quite visible that most of these combinations of three
search methods outperform individual search methods and the
pairwise combinations of search methods shown in Figures 2
and 4. Nevertheless, it is also obvious that the improvement
from combining two search methods to combining three search
methods is weaker than from single search method to com-
bining two search methods. A preliminary test, combining four
best individual performers, seems to be in accordance with the
trend of diminishing improvement size.

The trend of diminishing improvement sizeswhen going from
single search method, combining two search methods, to com-
bining three search methods and moressuggests that there may
exist non-negligible correlations among the search methods
examined. In some way, this is intuitively plausible. Because most
methods agree on the idea that, for MS2 spectra produced by
collision induced dissociation, b and y fragment series are most
prominent, the scoring will somehow emphasize more these
fragment series thus introducing some correlations among various
methods. To quantify the correlations among methods and the
impact of correlations on the effectiveness of combining search

Figure 2. ROC curves for the seven database search methods tested when using the centroid data (A1-A4 of ISB data set). Each search
method is abbreviated by its first letter in the figure legend. ROC curves of the first type are displayed in panel A, while the ROC curves
of the second type are displayed in panel B. Since the total number of spectra in this subset is about 7000, in panel B, the displayed
highest number of false positives, 600, corresponds approximately to E-value 0.1. We did not show ROC curves of the second type to
larger FP value because users probably will not be too interested in the large E-value regime.

Figure 3. Final P-value from combining a reported P-value P2 and
a fixed P-value P1. The fixed P-value P1 is chosen to be either 1,
10-1, 10-2, 10-3 or 10-4. As one may see, although the relation-
ship between P2 and the final P-value is still reasonably linear in
the log - log plot, the slope has deviated from 1.
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methods, the pairwise method-method correlations are investi-
gated whose details we now turn to.

Method Correlations and Combined Statistics. For a pair
of search methods, say method A and method B, the correlation
between them is assessed in two ways. First, we consider the
number of common false positives and the number of common
true positives up to a given specified E-value threshold. Second,
we consider the correlation of reported E-values. Since not
every peptide will be reported by both methods, we need to
simulate the missing E-values in order to perform the second
investigation. In addition to method correlation, we also
examine here how well the final E-value, after combining the
results from two methods, agrees with the theoretical definition.

Consider a given spectrum σ. Let us again denote by LA(σ)
(LB(σ)) the candidate peptide list returned by method A (B)
when using σ as the query spectrum. In addition to the union
list L(σ) ≡ LA(σ) ∪ LB(σ), let us also define the intersection list
I(σ) ≡ LA(σ) ∩ LB(σ). Each peptide in the list I(σ) is thus either
a common true positive or a common false positive.

As before, each peptide in the list L(σ) has its final E-value.
We denote by TTPσ(E e Ec) the total number of true positives

in the list L(σ) with E-value less than or equal to Ec. We further
denote by CTPσ(E e Ec)/CFPσ(E e Ec) the number of common
true/false positives in the list I(σ) with E-value less than or equal
to Ec. Ideally, methods that complement each other well should
have ∑σ CTPσ(E e Ec) large and ∑σ CFPσ(E e Ec) small.
Furthermore, one will mostly be interested in only the region
of E-value cutoff where ∑σ CFPσ(E e Ec) e ∑σ TTPσ(E e Ec).

The following ratios may serve as measures of degree of
correlation between two search methods at various E-value
cutoffs:

RC(Ee Ec))
∑ σ

CTPσ(Ee Ec)

∑ σ
CFPσ(Ee Ec)

(11)

PFfT(Ee Ec))
2∑ σ

CFPσ(Ee Ec)

∑ σ
CFPσ(Ee Ec)+∑ σ

TTPσ(Ee Ec)
(12)

Basically, one may regard PFfT(E e Ec) as the probability of
mistaking a false hit reported by both methods as a positive
hit upon combining the search result. To be more specific, up

Figure 4. ROC curves for the seven pairwise combinations giving rise to seven largest AUC, values shown in panel A, when using the
centroid data (A1-A4 subsets of the ISB data). Each search method is abbreviated by its first letter in the figure legend. ROC curves
of the first type are displayed in panel A. Panel B shows ROC curves of the second type. Since the total number of spectra in this
subset is about 7000, in panel B, the displayed highest number of false positives, 600, corresponds approximately to E-value of 0.1.
We did not show ROC curves of the second type to larger FP value because users probably will not be too interested in the large
E-value regime.

Figure 5. ROC curves for the seven triplets giving rise to seven largest AUC, values shown in panel A, when using the centroid data
(A1-A4 subsets of the ISB data). Each search method is abbreviated by its first letter in the figure legend. ROC curves of the first type
are displayed in panel A. Panel B shows ROC curves of the second type. Since the total number of spectra in this subset is about 7000,
in panel B, the displayed highest number of false positives, 600, corresponds approximately to E-value of 0.1. We did not show ROC
curves of the second type to larger FP value because users probably will not be too interested in the large E-value regime.
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to a given E-value cutoff, provided the best E-values reported
by both search methods are smaller than the cutoff, combining
the search results will have approximately the probability
PFfT(E e Ec) for counting a common false hit as a significant
positive hit.

The two ratios introduced above as a function of the cutoff
E-value Ec are plotted for every possible pairwise combinations
of search methods in Figure 6 (for the centroid data). These
plots provide information regarding the range of combined
E-values that is fruitful to use. For example, if one were to look
at the merged results from RAId_DbS and Mascot, one probably
will consider peptides with combined E-values as high as 0.1
where the probability of incorporating a false positive into a
true positive drastically increases and the magnitude of RC
drops significantly.

As an illustration of how we calculate the global correlation
between method A and B, let us again consider a given
spectrum σ, the hit lists LA(σ), LB(σ) and the union hit list L(σ)
≡ LA(σ) ∪ LB(σ). Each peptide in the union list will constitute
a data point. The overall analysis of all the points in L(σ) will
generate a spectrum-dependent correlation between the two
methods. One may obtain the mean correlation by averaging
over a large number of spectra.

For a candidate peptide that is reported by both methods,
say methods A and B, we plot, respectively, the logarithm of
the reported E-values by methods A and B along the x-axis and
the y -axis. For a candidate peptide that is reported by only
one method, say method A, one needs to estimate its corre-
sponding E-value if it were to be reported by method B. As
one may have expected, such E-value will be larger than or
equal to the maximum E-value, Emax(B, σ), reported by method
B for the spectrum considered. To tackle this problem, we
employ the approximation method elaborated earlier.4 Fol-

lowing our earlier elaboration,4 the probability of having at least
r peptide hits all with E-value smaller than or equal to Ec is
given by e-Ec[∑l)k

∞ Ec
l /l !] ) 1 - e-Ec[∑l)0

k-1 Ec
l /l !]. Consequently,

the probability of having at least one hit, out of k + 1 reported
hits, with E-value larger than E ′c is given by e-E ′c[∑l)0

k E ′cl /l !].
The associated probability density is found to be e-E ′cE ′ck/k !.
We may then sample using this pdf but restricted to the region
E g Emax(B, σ). Similarly, for a peptide that is not reported by
method A, we sample its E-value from the same pdf but
restricted to the region E g Emax(A, σ). The simulated Pearson
correlation between two method for a given spectrum σ is then
easily obtained.

The simulated correlation between any two methods is
computed for each spectrum. The average correlation and
the associated standard error over all available spectra from
a given data type are also computed. Table 2 documents the
results obtained. Most pairwise correlation has mean close
to 0 and size much smaller than its associated standard error.
This implies that the correlation strength between any pair
of method is at most weak, which was also observed in ref
2 and justifies our use of the Fisher’s formula in combining
the statistical significance. However, one should note that
we are presenting the correlations averaged over a large
number of spectra. For each individual spectrum, there
might still exist non-negligible correlations, positive or
negative, among various methods which eventually results
in a diminishing improvement size upon combining more
and more search methods.

Finally, we examine the accuracy of the final combined
E-value. For a given spectrum σ, let L(σ) ≡ LA(σ) ∪ LB(σ) denote
the union hit list from considering both methods A and B, with
LA(σ) (LB(σ)) representing the hit list from method A(B). Within
L(σ), we may separate the peptide hits into two groups: one

Figure 6. Method correlations evaluated using the centroid data (A1-A4 subsets of the ISB data). Each search method is abbreviated
by its first letter in the figure legend. The panels on the first row display the RC ratio, CTP(E e Ec)/CFP(E e Ec), described in eq 11 as
a function of the cutoff E-value. The panels on the second row display the likelihood of mistaking a common false hit as a significant
hit, see eq 12.
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contains the true hits and the other contains only false hits.
Using the group containing only the false hits, we may find
the cumulative number of false positives as a function of the
combined E-value cutoff. Ideally, the average number of false
positive should be identical to the E-value cutoff and thus
follow the y ) x straight line. In Figure 7, we plot the combined
E-value along the abscissa and the average number of false
positives along the ordinate. The curves plotted mostly band
together within the 5-fold range of the theoretical line; that is,
they mostly fall between the two straight lines parametrized
by y ) 5x and y ) x/5.

Concluding Summary and Outlook

In this paper, we propose a procedure suitable for combining
search results for different database search methods. The
method proposed is generic and can, in principle, be applied
to any identification methods (de novo sequencing, spectral
library or database searches) or any independent information
one wishes to combine. The key factor that makes combining
search methods possible is to have common statistics standard
among methods/information of interest. Such a common
statistics standard may be obtained by a universal protocol for
statistical calibration developed earlier4 or by other means that
can assign meaningful database P-values for each candidate
peptides reported by each search method.

When comparing the results in Figure 2 to their counterparts
using profile data (see Figure 8 in Appendix A), it seems
consistently true that more true positive hits were found from
profile data compared to centroid data for every search method
even though most search methods are designed for searching
using centroid data. This identification rate increase should be
further checked by more tests. If it turns out to be generally
true, it might be attributed to the fact that the profile data
contains more information than the centroid data and may
motivate software developers to emphasize profile mode
database searching in their future development.

Accurate peptide identification may benefit significantly
protein identification, one of the most important problems in
proteomics. As far as how one may maximize protein identi-
fication through having accurate statistics at the level of peptide
identification, it remains an open and interesting problem that
deserves a separate, thorough investigation.

In our method correlation studies, we had focused on
studying the average correlation between a pair of methods
over a large number of spectra. However, it has not escaped
our attention that it may also be fruitful to calculate for each
spectrum the correlation between a pair of methods and use
it to modify the strategy of combining search results. This idea,
although interesting, is beyond the scope of the current paper
and should be investigated in the near future.

Figure 7. Examination of the combined E-value when using the centroid data (A1-A4 subsets of the ISB data). In every panel, the
average cumulative number of false hits is plotted against the combined E-value. Within the E-value range investigated, the final
combined E-value is mostly within a factor of 5 of the theoretical value, represented by y ) x lines. As before, each method is represented
by its first letter in the figure legend.

Figure 8. ROC curves for the seven database search methods tested when using the profile data. Each search method is abbreviated
by its first letter in the figure legend. ROC curves of the first type are displayed in panel A, while the ROC curves of the second type
are displayed in panel B. Since the total number of spectra in this subset is about 7000, in panel B, the displayed highest number of
false positives, 3000, corresponds approximately to E-value of 0.4. We did not show ROC curves of the second type to larger FP value
because users probably will not be too interested in the large E-value regime.
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Appendix A

In the appendix, we show the results from using the profile
data.

Panels A and B of Figure 8 show, respectively, ROC curves
of the first and the second type when spectral data are collected
in profile mode. In Figure 9, panel A displays the ROC curves
of the first kind resulting from the profile data, while panel B
documents the ROC curves of the second kind resulting from
the same data. In Figure 10, panel A displays the ROC curves
of the first kind resulting from the profile data, while panel B
documents ROC curves of the second kind resulting from the
same data.

The two ratios, RC and PFfT, introduced in the main text
as a function of the cutoff E-value Ec are plotted for every
possible pairwise combinations of search methods in Figure
11 when using the profile data.

Analogous to Table 2, Table 3 documents the average
correlation and its standard error between any two methods
when using the profile data. Most pairwise correlation has
mean close to 0 and size much smaller than its associated
standard error. This implies that the average correlation

strength between any pair of method are at most weak, which
was also observed in ref 2.

In Figure 12, we plot the combined E-value along the
abscissa and the average number of false positives along the
ordinate when using the profile data. The curves plotted mostly
band together within the 5-fold range of the theoretical line;
that is, they mostly fall between the two straight lines param-
etrized by y ) 5x and y ) x/5.

Appendix B

To elucidate the behavior of the combined P-value formula
expressed in eq 6, we consider three cases.

Case A: First, p1 ) p < 1 and p2 ) 1, we obtain the combined
P-value to be p[1 + ln(1/p)]; second, p1 ) p < 1, p2 ) 1, and p3

) 1, when combining these three P-values together, we obtain
a larger value, p[1 + ln(1/p) + (ln(1/p))2/2], than the first case.
This is intuitively reasonable: the latter case has more evidence
for the hit to be insignificant and thus should be assigned a
larger P-value. To avoid potential confusion, let us comment
on the large L limit that constitutes our cases B and C.

Figure 9. ROC curves for the seven pairwise combinations giving rise to seven largest AUC, values shown in panel A, when using the
profile data. Each search method is abbreviated by its first letter in the figure legend. ROC curves of the first type are displayed in
panel A for the profile data. For the same data, panel B shows ROC curves of the second type. Since the total number of spectra in this
subset is about 7000, in panel B, the displayed highest number of false positives, 3000, corresponds approximately to E-value of 0.4.
We did not show ROC curves of the second type to larger FP value because users probably will not be too interested in the large
E-value regime.

Figure 10. ROC curves for the seven triplets giving rise to seven largest AUC, values shown in panel A, when using the profile data.
Each search method is abbreviated by its first letter in the figure legend. ROC curves of the first type are displayed in panel A. Panel
B shows ROC curves of the second type. Since the total number of spectra in this subset is about 7000, in panel B, the displayed
highest number of false positives, 3000, corresponds approximately to E-value of 0.4. We did not show ROC curves of the second type
to larger FP value because users probably will not be too interested in the large E-value regime.
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Case B: Apparently, when Lf ∞, the series ∑n)0
L-1 {[ln(1/τ)]n/

n!} becomes exp[ln(1/τ)] ) 1/τ. That is, if one were to hold τ ≡
∏i)1

L pi constant while letting L approach infinity, our formula
will render the final combined P-value to be τ × 1/τ ) 1. This

result, however, is exactly what one would have anticipated.
Recall that each P-value is in the range (0, 1]. Holding τ
constant while letting L f ∞ is possible only if the following

Figure 11. Method correlations evaluated using profile data. Each search method is abbreviated by its first letter in the figure legend.
The panels on the first row display the RC ratio, CTP(E e Ec)/CFP(E e Ec), described in eq 11 as a function of the cutoff E-value. The
panels on the second row display the likelihood of mistaking a common false hit as a significant hit, see eq 12.

Figure 12. Examination of the combined E-value when using the profile data. In every panel, the average cumulative number of false
hits is plotted against the combined E-value. Within the E-value range investigated, the final combined E-value is mostly within a
factor of 5 of the theoretical value, represented by y ) x lines. As before, each method is represented by its first letter in the figure
legend.

Table 2. The Correlations among Different Search Methods
When Using the Centroid Dataa

O I X R P M S

O -0.13 0.02 0.02 -0.45 0.01 0.06
I (0.16 -0.08 0.03 -0.26 -0.12 -0.01
X (0.12 (0.28 0.03 -0.01 0.03 -0.04
R (0.29 (0.19 (0.11 0.04 0.02 0.02
P (0.12 (0.13 (0.07 (0.42 -0.07 -0.04
M (0.17 (0.27 (0.27 (0.14 (0.12 -0.01
S (0.18 (0.25 (0.22 (0.16 (0.17 (0.28

a The upper right triangle of the matrix documents the average
pairwise method correlations, while the lower triangle of the matrix
documents the standard error associated with each method pair. As
before, each method is represented by its first letter in the figure legend.

Table 3. The Correlations among Different Search Methods
When Using the Profile Dataa

O I X R P M S

O -0.06 0.08 -0.04 -0.22 0.07 0.08
I (0.29 -0.01 0.01 -0.12 -0.18 -0.09
X (0.30 (0.42 0.08 0.03 0.10 0.13
R (0.25 (0.22 (0.19 -0.20 0.06 0.07
P (0.26 (0.19 (0.1 (0.22 -0.04 -0.01
M (0.35 (0.41 (0.45 (0.28 (0.20 0.04
S (0.31 (0.37 (0.37 (0.28 (0.20 (0.42

a The upper right triangle of the matrix documents the average
pairwise method correlations, while the lower triangle of the matrix
documents the standard error associated with each method pair. As
before, each method is represented by its first letter in the figure legend.
Note that the size of the average correlations are in agreement within the
standard errors across different data types, see Table 2.
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two conditions hold true: (a) only finite number of methods
report P-values smaller than 1, and (b) infinitely many methods
report P-values to be 1. Violation of these two conditions will
result in diminishing τ as L increases to infinity. In the context
of peptide identifications, this corresponds to the scenario that
we have infinitely many methods reporting a peptide to be
totally insignificant (with P-value 1) while only a finite number
of methods reporting that peptide to be potentially significant
(with P-value less than 1). Therefore, the final ruling that the
peptide considered is totally insignificant (with P-value 1) is
natural and intuitively correct. In case C, we address a more
subtle large L limit.

Case C: For a more realistic case, let us assum that the
geometric average of the P-values reported stays a constant
less than 1 in the limit Lf ∞. That is, we assume that the limit

p ≡ lim
Lf∞

[∏
i)1

L

pi]1⁄L

exists and with p < 1. Note that in case B, one would have
obtained p ) 1 as the limit.

We then have τ ) pL and ln(1/τ) ) L ln(1/p). Because τ f 0
as L f ∞ here, one should not use the series expansion to
investigate the asymptotic behavior, instead we use the integral
in eq 6

F(τ))∫ln(1⁄τ)

∞
e-t tL-1

(L- 1)!
dt

)∫0

∞
e-t tL-1

(L- 1)!
dt-∫0

ln(1⁄τ)
e-t tL-1

(L- 1)!
dt

) 1- 1
(L- 1)!∫0

L ln(1⁄p)

e-ttL-1 dt

Note that as long as ln(1/p) > 1, the saddle point of the
integrand is enclosed in the integral range, and thus, the
remaining integral will have value close to (L - 1)!/(L - 1)! )
1 making the final F(τ)f 0. In other words, if there are infinitely
many methods reporting P-values whose geometric mean is
smaller than 1/e ≈ 0.36788, then the combined asymptotic
P-value will become 0 in our formulation. However, if the
geometric mean of the P-values remains larger than 1/e, the
integral in the above expression diminishes as L f ∞ and F(τ)
f 1 similar to case B. That is, as L f ∞, depending on the
geometric mean of the P-values, the combined P-value reaches
either 1 or 0 in the manner of a step function. In other words,
the probability of obtaining a combined P-value other than 0
or 1 diminishes as L increases, implying that one should expect
a crispier combined P-value (or a better separation of true from
false positives) if for each candidate peptide there are more
and more independent and accurate P-values available.
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