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Carbohydrate-binding proteins are proteins that can interact with sugar chains but do not modify them. They are involved in many
physiological functions, and we have developed a method for predicting them from their amino acid sequences. Our method is
based on support vector machines (SVMs). We first clarified the definition of carbohydrate-binding proteins and then constructed
positive and negative datasets with which the SVMs were trained. By applying the leave-one-out test to these datasets, our method
delivered 0.92 of the area under the receiver operating characteristic (ROC) curve. We also examined two amino acid grouping
methods that enable effective learning of sequence patterns and evaluated the performance of these methods. When we applied
our method in combination with the homology-based prediction method to the annotated human genome database, H-invDB,
we found that the true positive rate of prediction was improved.

1. Introduction

Sugar chains and carbohydrate-binding proteins play impor-
tant roles in several biological processes such as cell-to-
cell signaling, protein folding, subcellular localization, ligand
recognition, and developmental processes [1]. With the
rapid increase in the amount of available glycoprotein
data (i.e., protein sequences), there is a growing interest
in the functions, physicochemical properties, and tertiary
structures of carbohydrate-binding proteins and in their
applications. Experimental work to identify carbohydrate-
binding proteins is costly and time consuming, so compu-
tational methods to predict carbohydrate-binding proteins
would be useful.

Carbohydrate-binding proteins are nonantibody pro-
teins that can interact with sugar chains, and various
keywords are used to annotate them in biological databases:
“carbohydrate-binding protein”, “lectin”, and so on. The term
“lectin” is widely used but there is no general consensus
as to its definition. The Shiga toxin B subunit, for exam-
ple, has been annotated “lectin-like” as well as “lectin.”

Furthermore, heparin-binding proteins and hyaluronic-
acid-binding proteins are also carbohydrate-binding pro-
teins, but are not usually annotated “carbohydrate-binding
protein” or “lectin.” In the work reported in this paper,
we first collected carbohydrate-binding proteins of various
kinds, including enzymes and proteins not explicitly anno-
tated as “carbohydrate-binding protein,” and specified a set
of search conditions for carbohydrate-binding proteins in
the amino acid sequence database UniProt Knowledgebase
(UniProtKB). Based on the collected proteins, we devel-
oped a carbohydrate-binding protein prediction system by
using machine learning methods, with which predicting
carbohydrate-binding proteins can be formulated as a binary
classification problem.

We used support vector machines (SVMs) [2] to cre-
ate a classifier to predict whether a target protein is a
carbohydrate-binding protein. SVMs are supervised learning
algorithms used for binary classification problems, and they
can handle noisy data and high-dimensional feature spaces.
They therefore often perform well in classification problems
such as protein secondary structure prediction [3], disorder
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Figure 1: Outline of prediction system.

prediction [4], and fold recognition [5]. To the best of
our knowledge, however, the only reported methods for
predicting carbohydrate-binding proteins are conventional
homology-based methods. Although methods predicting
carbohydrate-binding sites by using empirical rules [6] or
a machine learning method [7] have been developed and
could in principle be used to predict carbohydrate-binding
proteins, for example, by using the maximum scores of
possible binding sites, they are not designed to predict
negative instances (noncarbohydrate-binding proteins); they
are designed for predicting binding sites of proteins that
are already known as carbohydrate-binding proteins. Fur-
thermore, they generally need much computation time and
often require three-dimensional protein structure data. Our
SVM-based method uses only sequence information and
can be applied to many proteins whose structures are not
determined. It also requires less computation time and can
be used for genome-wide analysis.

The encoding of the sequences for feature extraction is an
important factor affecting the ability of SVMs to discriminate
sequences and amount of computation time required for
that discrimination. In this study we assessed two kinds of
encoding methods: direct encoding and group encoding.
In the direct encoding method, the features of the amino
acid sequences were represented by triplets of amino acid
patterns. In the group encoding method, twenty amino acids
were first grouped according to their properties and then
the features of amino acid sequences by using frequencies
of triplets of the group symbols. In both kinds of methods,
we used a 3-spectrum kernel [8] because it is a conceptually
simple and computationally efficient kernel for string of
symbols.

2. Material and Methods

Figure 1 shows an outline of our SVM-based prediction
system. We constructed the positive and negative datasets
with which the SVMs were trained.

2.1. Construction of Positive and Negative Datasets. To con-
struct the positive dataset, we defined carbohydrate-binding
proteins as proteins, other than antibodies, that can interact
with sugar chains but cannot modify them [1].

The sequences of carbohydrate-binding protein seq-
uences were collected from UniProtKB [9] by using a
sequence retrieval system (SRS) as follows. We first con-
structed intermediate datasets by writing commands in SRS
query language commands specifying the protein-retrieving
condition (Table 1). The sequences were extracted from
UniProtKB when the conditions matched the annotation
of proteins. We determined the contents of the commands,
according to the following references: [10–21]. Although
the sequences extracted were not those of all carbohydrate-
binding proteins, we intended to collect a wide range of
carbohydrate-binding proteins based on published papers.
We merged the intermediate datasets, which were retrieved
from UniProtKB with the conditions listed in Table 1, and
then removed redundancy between the sequences, yielding
the positive dataset containing 345 carbohydrate-binding
proteins sequences.

Note that the intermediate datasets contained no pro-
teins annotated “Putative” in “DE” (description) lines of
their UniProtKB entries. That annotation is based only on
sequence similarities and with little experimental evidence,
so they might not actually be carbohydrate-binding proteins
[22, 23]. In addition, the proteins in the intermediate datasets
have more than 30 amino acids and are not inferred proteins.

To remove the sequence redundancy of the positive
dataset, we first clustered sequences with BLASTClust
[24, 25]. We put the sequences into the same cluster if
the sequence identity exceeded 35% in at least one sliding
window whose width was 40% of the sequence length. Then
for each sequence we calculated the sum of evolutionary
distances from all other sequences in the same cluster. The
sequence with the smallest sum of distances was selected as
the representative sequence for that cluster. The evolutionary
distance between two sequences was calculated from pairwise
scores for the sequences by using ClustalW [26].
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Table 1: List of query commands applied for a sequence retrieval system (SRS) to create a positive dataset.

Subsets Search conditions in SRS Query Language
Number of

hits

Number of hits
in the positive

dataset

Subset 1 Lectin
which are not
enzymes

[libs = {swiss prot trembl}-Description: lectin∗] | [libs-Keywords:Lectin∗] |
[libs-Keywords:Chitin-binding∗] | [libs-Description:sugarbinding∗] !
([libs-Description:/ ÊC/] | [libs-Description:/ase$/]) ! [libs-Description:
Putative∗] ! [libs-Description:putative∗] ! [libs-ProtExist: 4∗] !
[libs-ProtExist: 5∗] ! [libs-ProtExist: 3∗] & [libs-SeqLength#30:]

2017 231

Subset 2 Lectin
which are also
enzymes

[libs = {swiss prot trembl}-Description: lectin∗] | [libs-Keywords:Lectin∗] |
[libs-Keywords:Chitin-binding∗] | [libs-Description: sugar-binding∗] &
([libs-Description: ∗Peptidase∗] | [libs-Description: ligase∗] |
[libs-Description: ribonuclease∗] | [libs-Description: ∗Protease∗] |
[libs-Description: ∗Proteinase∗] | [libs-Keywords: ∗lipase∗] | [libs-Keywords:
ribonuclease∗] | [libs-Keywords: ∗Protease∗] | [libs-Keywords: ∗Proteinase∗]
| [libs-Keywords: ∗lipase∗]) ! [libs-Description: Putative∗] !
[libs-Description:putative∗] ! [libs-ProtExist: 4∗] ! [libs-ProtExist: 5∗] !
[libs-ProtExist: 3∗] & [libs-SeqLength#30:]

37 4

Subset 3 Other
“Carbohydrate-
binding”
proteins

[libs = {swiss prot trembl}-Keywords: Carbohydrate-binding∗] |
[libs-Description:Carbohydrate-binding∗] ! [libs-Description: CUT∗] !
[libs-Description: Hydrolase∗] ! [libs-Description:lyase∗] ! [libs-Description:
Putative∗] ! [libs-Description:putative∗] ! [libs-ProtExist: 4∗] !
[libs-ProtExist: 5∗] ! [libs-ProtExist: 3∗] & [libs-SeqLength#30:]

16 15

Subset 4
Hyaluronic acid
binding proteins

[libs = {swiss prot trembl}-Description: Hyaluronate∗]
|[libs-Keywords:Hyaluronate∗] | [libs-Description: Hyaluronan∗] |
[libs-Keywords:Hyaluronan∗] | [libs-Description: Hyaluronic∗] |
[libs-Keywords:Hyaluronic∗] ! [libs-Description: lyase∗] ! [libs-Description:
synthase∗] & ([libs-Description: ∗link∗] | [libs-Description: ∗bind∗] |
[libs-Description: ∗associate∗] | [libs-Description: ∗receptor∗] |
[libs-Description: ∗mediate∗] | [libs-Keywords: ∗link∗] | [libs-Keywords:
∗bind∗] | [libs-Keywords: ∗associate∗]) ! [libs-Description: Putative∗] !
[libs-Description:putative∗] ! [libs-ProtExist: 4∗] ! [libs-ProtExist: 5∗] !
[libs-ProtExist: 3∗] & [libs-SeqLength#30:]

90 14

Subset 5
Heparin-
binding
proteins

[libs = {swiss prot trembl}-Keywords: Heparin-binding∗] |
[libs-Description:Heparin-binding∗] ! [libs-Description: Putative∗] !
[libs-Description:lyase∗] ! [libs-Description:putative∗] ! [libs-ProtExist: 4∗] !
[libs-ProtExist: 5∗] ! [libs-ProtExist: 3∗] & [libs-SeqLength# 30:]

333 60

Subset 6
Interleukin
which can bind
to sugar-chains

[libs = {swiss prot trembl}-ID: IL1A ∗] | [libs-ID: IL1B ∗] | [libs-ID: IL4 ∗] |
[libs-ID: IL1RA ∗] | [libs-ID: IL6 ∗] | [libs-ID: IL3 ∗] | [libs-ID: IL2 ∗] !
[libs-Description: Putative∗] ! [libs-Description:putative∗] ! [libs-ProtExist:
4∗] ! [libs-ProtExist: 5∗] ! [libs-ProtExist: 3∗] & [libs-SeqLength#30:]

154 7

Subset 7 FimH
adhesion of type
1 pili

[libs = {swiss prot trembl}-Description: FimH∗] | [libs-Description:
Neuraminyllactose-binding∗] | [libs-Description: S-fimbrial adhesin∗] !
[libs-Description: Putative∗] ! [libs-Description:putative∗] ! [libs-ProtExist:
4∗] ! [libs-ProtExist: 5∗] ! [libs-ProtExist: 3∗] & [libs-SeqLength#30:])

1 1

Subset 8 F-box
only protein
which can bind
to sugar-chains

[libs = {swiss prot trembl}-ID: FBX27 HUMAN∗] | [libs-ID:
FBX6 HUMAN∗]

2 1

Subset 9 Agrin.
Tenascin-C
Phospholipase
A2 inhibitor
subunit A
Neurexin

[libs = {swiss prot trembl}-ID: AGRIN HUMAN] | [libs-ID: PLIA TRIFL] |
[libs-Description: Tenascin-C] | [libs-ID: NRX1A HUMAN∗]

13 8

Subset 10
Chitin-binding
proteins

[libs = {swiss prot trembl}-Description: cbp-1] ! [libs-Description:
Centromere∗ ] ! [libs-Description: EC∗] ! [libs-Description: synthase∗] !
[libs-Description: Putative∗] ! [libs-Description:putative∗] ! [libs-ProtExist:
4∗] ! [libs-ProtExist: 5∗] ! [libs-ProtExist: 3∗] & [libs-SeqLength#30:]

4 4
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A sequence-based conserved domain search against
NCBI Conserved Domains Database (CDD) [27] v.2.21
found 273 proteins (79.1%) with E value <10−2 and 249
proteins (72.2%) with E value <10−5 in the positive dataset
to have one or more carbohydrate-binding domains. The
numbers of carbohydrate-binding domains found in the
345 proteins of the positive dataset were 149 with E value
<10−2 and 143 with E value <10−5. Since there are 185
carbohydrate-binding domains in the CDD, the positive
dataset contains about 80% of them. These carbohydrate-
binding domains include several kinds of C-type lectin
domains, galactose- or galactoside-binding lectin domains,
chitin-binding lectin domains, and so on. They are summa-
rized in Table S1 in supplementary material available online
at doi:10.1155/2010/289301.

The sequences for the negative dataset were randomly
collected from UniProtKB [9] using the same number
of sequences in the positive dataset under the following
conditions: (1) proteins in the dataset must not match any
sequence in the positive dataset; (2) the entries must not be
annotated as “Putative” in “DE” (description) lines of their
UniProtKB entries; (3) the proteins must have more than 30
amino acids; (4) the proteins are not inferred proteins. The
sequence redundancy of the negative dataset was removed
using the same clustering and selection algorithms that were
used for the positive dataset.

2.2. SVM Training and Prediction. An SVM maps feature
vectors into a high-dimensional space and classifies samples
by setting the hyperplane in this space. During training, an
SVM defines an optimal hyperplane maximizing the margin
between two classes. A maximum-margin hyperplane has
good generalization performance.

To discriminate carbohydrate-binding proteins from
noncarbohydrate-binding proteins, we trained the SVM with
three different encoding methods: a direct encoding method
(AA-20), and two grouping methods (Levitt-6 and Someya-
7). In AA-20, triplets of amino acid patterns are used
to represent the features of the amino acid sequences as
described later. In Levitt-6, twenty amino acids are assigned
to six residue groups, and the amino acid sequences are
converted into sequences of the six group symbols. This
method uses as features of the sequences the frequencies of
triplets of group symbols.

The Levitt-6 grouping method (described in Table 2(a))
is based on the polarity and the propensity of the sec-
ondary structure of each amino acid [28]. It is well known
that around the carbohydrate-binding interface there are
hydrogen bonds and a stacked arrangement of aromatic
amino acids between polar amino acids and the ligand
(carbohydrate) [29]. Carbohydrate-binding proteins also
have a variety of structures consisting of β folds [1, 30–33],
the β barrel (i.e., jelly roll), and the β trefoil. We therefore
expected Levitt-6 to be an effective means of extracting
sequence features.

As described in Section 3, there is an extremely large
difference between the cysteine frequencies of carbohydrate-
binding proteins and those of other proteins. Cysteine brings

Table 2: Amino acid grouping (Levitt-6), Amino acid grouping
(Someya-7).

(a)

Nonpolar Polar

α-Helix A, C, L, M E, H, K, Q, R

β-Strand F, I, V, W, Y T

Turn G, P D, N, S

(b)

Nonpolar Polar

α-Helix A, L, M E, H, K, Q, R

β-Strand F, I, V, W, Y T

Turn G, P D, N, S

Cysteine C

amino acids that are distant in the primary structure or
are in different polypeptides close to each other through a
disulfide bond, and some families of carbohydrate-binding
proteins contain a cysteine-rich domain [1, 34] Therefore,
in the Someya-7 grouping method we treat cysteine as a
separate group (see Table 2(b)); twenty amino acids are
categorized into seven groups and the amino acid sequences
are converted into sequences of the seven group symbols.
This method also uses the frequencies of triplets of the group
symbols as sequence features.

We used LIBSVM (http://www.csie.ntu.edu.tw/∼cjlin/
libsvm) as the SVM implementation. As an SVM kernel,
we used a Gaussian kernel, one of the radial basis function
(RBF) kernels that enable an SVM to handle nonlinear
classification. The SVM with a Gaussian kernel has two
parameters: gamma and cost (C). Gamma determines the
Gaussian kernel function, and C determines the hyperplane
softness. Parameter C and gamma are optimized by using
grid.py script, which is included in the LIBSVM package.

SVM decision values were used for the classification.
If the value was higher than or equal to a specified
threshold, the corresponding protein was predicted to be a
carbohydrate-binding protein. If a decision value was below
the threshold, the corresponding protein was predicted to
be a noncarbohydrate-binding protein. We used spectrum
kernel [8] that has been used to solve many sequence
classification problems. A sequence is considered a string
of finite set of twenty characters. The kernel can be briefly
described as follows.

Let A denote a set of finite symbols (i.e., a single letter
code of 20 amino acids or a group symbol of amino acids in
our system), and let x and y denote two strings defined on
alphabet A. The k-spectrum kernel is then defined as follows
[8].

First, we define φα(x), which represents the number of
occurrences of the k-length substring α in the sequence x, as
follows:

Φk =
(

φα(x)
)

α∈Ak . (1)

If x and y share many of the same k-length substrings, the
two strings are considered similar. The k-spectrum kernel
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of x and y is obtained by taking the dot product of the
corresponding k spectra:

K
spct
k

(

x, y
) = 〈Φk(x),Φk

(

y
)〉

. (2)

In this study, we used a normalized kernel defined as follows:

K
spct
k,norm

(

x, y
) = K

spct
k

(

x, y
)

√

K
spct
k (x, x)

√

K
spct
k

(

y, y
)

. (3)

We set k = 3. In this experiment, the number of dimensions
of the input space was 8000 (= 203) in AA-20, 216 (= 63) in
Levitt-6, and 343 (= 73) in Someya-7.

Our Gaussian kernel was constructed by using the
spectrum kernel as follows:

K
(

x, y
) = exp

[

−γ
{

K
spct
k,norm(x, x)− 2K

spct
k,norm

(

x, y
)

+K
spct
k,norm

(

y, y
)

}]

,
(4)

which was used for classification.

2.3. Performance Measurement. We assessed the discrimina-
tion ability of our prediction system by using the following
measures: accuracy (ACC), true positive rate (TPR), false
positive rate (FPR), and the Matthews correlation coefficient
(MCC). These measures were calculated as follows:

Accuracy = TP + TN
TP + TN + FP + FN

× 100,

MCC = TP× TN− FP× FN
√

(TP + FN)(TP + FP)(TN + FP)(TN + FN)
,

True positive rate (TPR) = TP
TP + FN

× 100,

False positive rate (FPR) = FP
FP + TN

× 100.

(5)

Here TP, FN, FP, and TN, respectively, represent the numbers
of true positives, false negatives, false positives, and true
negatives.

The ROC curve [35] is a two-dimensional graph in which
TPR is plotted against FPR. Therefore, each classification
threshold value θ, which corresponds to particular values of
TPR and FPR, produces a different point on an ROC curve.
ROC curves depict the tradeoff between true positive and
false positive.

To evaluate how well classifiers discriminate between
positive and negative instances, we also calculated the
area under the ROC curve (AUC), which represents the
probability of correct classification, with an AUC of 0.5
indicating a random discrimination between positives and
negatives (a random classifier) and an AUC of 1 indicating
perfect discrimination.

The performance measures described above were eval-
uated by the leave-one-out method. This method is a type
of cross-validation test where a dataset consisting of N
sequences is divided into N subsets. The classifier was trained
on N−1 subsets and tested with a subset not used for

training. The process was repeated N times, using each subset
as the test set and the rest of the subsets as the training set.
In the leave-one-out test we optimized the SVM parameters
gamma and cost (C) with each subtraining set.

2.4. Log-Odds Ratios of Amino Acid Frequencies. The log-
odds ratio of the frequency of amino acid type i between the
positive dataset and the background was calculated as

Ri = log2

fp,i

fs,i
, (6)

where fp,i represents the observed frequency of amino acid
type i in the positive dataset (p) and fs,i represents the
background frequency.

The observed frequency of amino acid type i of the
positive dataset is given by

fp,i =
∑

j∈p nj,i
∑

i

∑

j∈p nj,i
, (7)

where j represents the sequence in the dataset.
The background frequencies of 20 amino acids were

obtained from the Swiss-Prot protein knowledgebase release
56.4 statistics (http://br.expasy.org/sprot/relnotes/
relstat.html).

2.5. Homology-Based Prediction. Our homology-based
prediction method used the 345 sequence clusters of car-
bohydrate-binding proteins from which the positive dataset
was constructed as described in Section 2.1. The sequence
homology search was applied to these sequence clusters as
follows.

(1) For clusters consisting of a single sequence (167
clusters), a query sequence was compared with the
sequence by BLAST.

(2) For clusters consisting of multiple sequences (178
clusters), a position-specific scoring matrix (PSSM)
was constructed from the sequences in each cluster
and a query sequence was compared with the PSSM
by RPS-BLAST [27].

We judged a query sequence to be a carbohydrate-binding
protein when the E value of the BLAST/RPS-BLAST search
was less than a specified value (currently 10−10). We
combined the homology-based method and the SVM-based
method. In the combined prediction, Someya-7 was used
as the SVM sequence encoding method. We applied the
combined method to H-Invitational Database (H-InvDB)
[36].

3. Results

One of the main results of this study is that the
SVM classifier consistently showed an ability to cor-
rectly discriminate between carbohydrate-binding proteins
and noncarbohydrate-binding proteins. The classifier only
requires the sequence of each protein.
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Figure 2: Amino acid frequencies of carbohydrate-binding proteins.

We calculated log-odds ratios of 20 amino acid frequen-
cies of the positive dataset and the background frequencies
obtained from Swiss-Prot. The result of this calculation
(Figure 2) shows the characteristic distribution of amino
acids in carbohydrate-binding proteins, which is used for
learning of our prediction system. We also based the amino
acid grouping methods (described in Section 2.2) on this
distribution of amino acids.

The performance of our prediction system was assessed
by using the leave-one-out method and the following
measures: accuracy (ACC), true positive rate (TPR), false
positive rate (FPR), and Matthews correlation coefficient
(MCC). The ACC, TPR, FPR, and MCC vary with the
classification thresholds (decision value), while the AUC is
independent of the threshold. Therefore, we mainly used
AUC for performance evaluation.

In the direct encoding method (here denoted AA-20),
twenty kinds of amino acids were used to represent sequence
patterns directly. As group encoding methods we used the
amino acid grouping proposed by Levitt [11] (here denoted
Levitt-6) and a modification of it (proposed in this paper and
here denoted Someya-7).

Figure 3 shows the ROC curve for each method. For most
false positive rate values, Someya-7 shows a true positive rate

Table 3: List of Performance measures.

AA-20 Levitt-6 Someya-7

ACC 0.87 0.83 0.84

TPR 0.83 0.77 0.80

FPR 0.09 0.11 0.11

MCC 0.74 0.67 0.70

AUC 0.929 0.890 0.918

The performance measures are obtained through the leave-one-out method
with a classification threshold (decision value) of θ = 0 and the AUCs of AA-
20, Levitt-6, and Someya-7 grouping methods.
Abbreviations: ACC: accuracy, TPR: true positive rate, FPR: false positive
rate, MCC: Matthews correlation coefficient, and AUC: area under the ROC
curve.

almost equal to that of AA-20. The performance of each
classifier is shown by the value listed in Table 3. The AUC
values for Someya-7 and AA-20 were, respectively, 0.918 and
0.929; almost equal to each other and higher than the AUC
for Levitt-6 (0.890).

We examined a homology-based search in which a query
sequence is compared by BLAST. The most similar protein in
the dataset (excluding the query sequence) was searched and
when it is a positive (negative) sequence the query sequence
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Figure 3: Prediction performance.

is predicted as a carbohydrate-binding (noncarbohydrate-
binding) protein. The AUC value for this method is 0.848
which was lower than our SVM-based method.

Because it is very difficult to evaluate the performance of
the homology-based method when using a small test dataset,
we used it on 185,003 sequences of H-Invitational proteins
(HIPs) (Release 5.0) in H-InvDB [36]. Since H-invDB is not
fully annotated, we regarded a protein sequence as that of a
carbohydrate-binding protein (positive) if it had a sequence
identity higher than 98% to any sequence annotated with
one of the keywords listed in Table 1. In this evaluation, we
implemented a homology-based prediction method in which
a query sequence is compared by BLAST or RPS-BLAST [27]
with known carbohydrate-binding proteins. (The method
is described in detail in Section 2.5.) This method was also
combined with the SVM-based method.

Figure 4 shows ROC curves for the homology-based
method and the combined method, in which a sequence
is predicted as positive only when both the SVM-based
method and the homology-based method predict it as
positive. The combined method shows higher TPR values
than the homology-based method especially when FPR value
is low. (The performance at low FPR values is important in
practice.) When the FPR was 0.015, the combined method
predicted 3,810 sequences as positive whereas the homology-
based method predicted 5,523 sequences as positive which
contain more false positives. As shown in Figure 4, the TPR
was improved from 0.639 to 0.727. The SVM-based method
itself predicted that only 492 sequences would be those of
carbohydrate-binding proteins.

4. Discussion

The AUCs of AA-20, Levitt-6, and Someya-7 were, respec-
tively, 0.929, 0.890, and 0.918. These values show that our
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Figure 4: Performance in genome-wide prediction.

prediction system successfully discriminated carbohydrate-
binding proteins from other proteins.

We used a 3-spectrum kernel for each grouping method.
In AA-20 the number of dimensions of the input space was
large (8000 = 203) compared to the number of training
samples (766). In general, if there are too few training
samples relative to the dimensions of the space, an inappro-
priate prediction model might be constructed by overfitting
to the training data. We therefore also used the Levitt-6
and Someya-7 grouping methods, in which the numbers of
dimensions of the input spaces were, respectively, 216 (= 63)
and 343 (= 73), both much smaller than 8000 (= 203). We
expected that using these methods would help the SVMs
avoid overfitting problems.

The choice of grouping criteria directly affects the
SVMs discrimination ability. If the choice is inappropriate,
the features of carbohydrate-binding proteins will not be
detected, and performance will deteriorate even if the size of
the input space is appropriately reduced. We used the Levitt-
6 grouping, which is based on amino acids properties such as
polarity and secondary structure propensity. As described in
Section 2, polarity and secondary structure propensity seem
to be important to carbohydrate binding. Because of the high
frequency of cysteine in the positive dataset (Figure 2), we
also used the Someya-7 grouping, an extension of Levitt-
6 that treats cysteine as a separate group. This is based on
the high frequency of cysteine of the positive dataset that is
found by our amino acid frequency analysis (Figure 2). Some
families of carbohydrate-binding proteins have cysteine-rich
domains such as EG domains and LE domains which are
found in many matrix molecules. Transmembrane C-type
lectins also contain a cysteine-rich domain at the N-terminal
side.

The ROC curves in Figure 3 indicate that the discrimina-
tion ability of the Someya-7 grouping method is better than
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that of Levitt-6 method and is comparable to that of the AA-
20 grouping method. Someya-7 required less computation
time than AA-20, taking 3 hours 7 minutes to predict against
185,003 sequences of HIPs (Release 5.0) in the H-InvDB [36],
while AA-20 took 8 hours 55 minutes to complete. Although
Someya-7 was faster, the TPR of AA-20 was higher than that
of the Someya-7.

Figure 4 shows the performance for the genome-wide
prediction against HIPs. As shown in this figure, the TPR
obtained using the combined method was better than
that obtained using the homology-based method. In the
sequences predicted as positive by the combined method, the
sequences with the keywords of “adhesion,” “matrix,” and
“immunoglobulin-like” were found more frequently than
those predicted by the SVM-based method alone or the
homology-based method alone. In addition, the SVM-based
method found 492 carbohydrate-binding proteins not found
by the homology-based method. These included fibronectin
type III domain containing protein 4 precursor, heparin-
binding growth factor 1 precursor, fibronectin type III and
ankyrin repeat domains protein, interleukin 1 receptor type
II precursor, and galectin III. Precise evaluation, however, is
not yet possible because the current version of H-InvDB is
not fully annotated and might contain many carbohydrate-
binding proteins that have not been annotated. The accuracy
of the evaluation depends on the quality of the database
annotation.

In this study we used clustering to remove the sequence
redundancy of the positive dataset. Since the number of
positive samples available was small, it was difficult to
decrease the threshold value of clustering (i.e., to reduce
the redundancy of the positive dataset). Thus, the threshold
value had to be set at a level that would maintain the size
of the positive dataset and assure its nonredundancy. In the
genome-wide prediction for H-invDB, in which sequences
were regarded as positive when they had enough homology
with the sequences of the positive dataset, we showed that
the SVM-based method could detect carbohydrate-binding
proteins that could not be detected by the homology-based
method. We believe that it will be even more useful when
more positive samples become available.

5. Conclusion

We have developed an SVM-based system for predicting
carbohydrate-binding proteins from their sequences. This
system is intended to provide information to support labo-
ratory experimentation. As more data from work on high-
throughput glycol proteomics becomes available and more
knowledge is acquired, the reliability of our system’s predic-
tions should improve because SVM performance depends
on the features extracted and the quality of the training
dataset. We have also tested group encoding methods other
than ones described in this paper and they did not achieve
performance better than Someya-7 and Levitt-6. Many other
grouping methods are, however, conceivable and the analysis
of them will be part of the future work in this study. We also
implemented the homology-based method and combined
it with the SVM-based methods. Using these methods in

genome-wide analysis of H-invDB, we showed that SVMs are
useful for improving the accuracy of homology-based pre-
diction. The prediction system using SVMs is now available
on our Web site at (http://bolero.bi.a.u-tokyo.ac.jp:8201/Lec-
tin-Predictor/.)
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