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ABSTRACT
Therapeutic monoclonal antibodies and their derivatives are key components of clinical pipelines in the 
global biopharmaceutical industry. The availability of large datasets of antibody sequences, structures, 
and biophysical properties is increasingly enabling the development of predictive models and computa-
tional tools for the “developability assessment” of antibody drug candidates. Here, we provide an over-
view of the antibody informatics tools applicable to the prediction of developability issues such as 
stability, aggregation, immunogenicity, and chemical degradation. We further evaluate the opportunities 
and challenges of using biopharmaceutical informatics for drug discovery and optimization. Finally, we 
discuss the potential of developability guidelines based on in silico metrics that can be used for the 
assessment of antibody stability and manufacturability.
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1 Introduction

Monoclonal antibodies (mAbs) and antibody-based biothera-
peutics represent a unique class of biologics that have greatly 
reshaped our modern biopharmaceutical industry since the 
first mAb drug, muromonab (Orthoclone®), was approved by 
the Food and Drug Administration in June 1986. The global 
mAb market is currently valued at 152.5 billion USD and is 
projected to exhibit an annual growth rate of 14.6% in the next 
decade.1 Antibody therapeutics currently in late-stage clinical 
studies have more than tripled to 88 compared to 2010 and 
over 550 novel antibody therapeutics are currently in the early- 
stage commercial clinical pipeline.1,2 Antibody therapeutics are 
anticipated to be the key treatments in a broad range of disease 
areas, such as cancer, cardiovascular, inflammation, neurolo-
gical, autoimmune, and infectious diseases.

Biopharmaceutical informatics is the application of compu-
tational methods and bioinformatics tools toward addressing 
challenges in biopharmaceutical drug development. It also 
includes development of databases containing biophysical 
data, molecular modeling and simulations, and statistical ana-
lysis of biopharmaceutical datasets. The term 
“Biopharmaceutical Informatics” was first introduced by 
Kumar et al.3 as the umbrella term for applications of compu-
tational approaches in drug discovery and development. Here, 
we present different aspects of computational applications to 

antibody-based biopharmaceutical drug development by high-
lighting key scientific advances in the developability assess-
ment of antibody-based biologic drug candidates.

One of the first practical applications of software relevant to 
antibody informatics was the antigenic index,4 which was 
a program to generate surface contour profiles and predict 
antigenic sites from the linear amino acid sequence of proteins 
including antibodies. These techniques were the precursors of 
modern sequence- and structure-based bioinformatics tools 
used in biopharmaceutical discovery and development. The 
multitude of computational tools and algorithms now available 
have ushered in an era of high-throughput biopharmaceutical 
informatics.

This review is organized into four main sections. The first 
section outlines the databases and tools available for biophar-
maceutical informatics relevant to antibody-based drugs. In 
the second section, we discuss the role of developability at 
early-stage development and computational developability 
assessment of antibody therapeutics. The third section 
describes the application of biopharmaceutical informatics to 
identify key developability issues in antibody-based drug dis-
covery and design. The final section summarizes emerging 
trends in the use of biopharmaceutical informatics for antibody 
therapeutics. While we discuss antibody informatics tools and 
approaches for evaluating developability issues, comprehensive 
review of every developability issue was not possible within this 
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article. We have, however, cited previously published reviews 
that include more details for each developability issue in the 
respective sections below.

1.1 Creation of databases and data mining for 
comparison of biophysical attributes

The availability of larger datasets with new high-throughput 
experimental methods has improved the predictions made by 
biopharmaceutical informatics tools. The challenge of data 
scarcity is now being resolved by open-source libraries and 
public databases of biopharmaceutical data. Data in biophar-
maceutical informatics are highly heterogeneous and interre-
lated. Consequently, it is not possible to capture these broad 
ranges of properties in a single algorithm. Datasets currently 
used to assess the biophysical properties of antibodies are 
curated from internal releases by pharmaceutical companies 
or data points from scientific papers.5–7 Experimental data 
sourced from scientific papers might not be comparable with 
one another because of differences in experimental setups, the 
plethora of developability assays, and different antibody for-
mats tested. Additional data sources that potentially contain 
much antibody-engineering knowledge are patents, where one 
needs to scan the documentation for primary sequence 
information.8 Altogether, there is currently much yet- 
untapped data in the public domain, but these are often hard 
to curate and not immediately compatible and useful without 
much earlier pre-processing.

Further advantages from curating antibody databases to 
learn biophysical properties of antibodies can be obtained by 
linking information from heterogeneous sources. Current pre-
dictive approaches typically use either structural or sequence 
data rarely linking information from different sources (e.g., 
structural, and next-generation sequencing (NGS)). Collating 
information from different sources, however, can augment 
information available in heterogeneous sources. For instance, 
structural modeling can provide a conformational dimension 
to millions of sequences drawn from NGS,9 whereas contrast-
ing naturally sourced and therapeutically developed molecules 
can provide insights on commonalities and divergences 
between the two sources.10 A good example of such an inte-
grated approach is the INDI database,11 which contains data 
for antibody-cognate nanobodies (single-domain antibodies 
VHH) collected from all major public sources, encompassing 
patents,8 NCBI GenBank, Protein Data Bank (PDB), and NGS/ 
AIRR12 supplemented by manual curation from the scientific 
literature. The sequences and structures of antibodies from 
these heterogeneous sources are linked with textual informa-
tion into an antibody-specific database. Integrating the hetero-
geneous sources in this manner facilitates searching and 
creation of custom datasets of nanobodies. Extrapolating such 
data integration approaches to antibodies should allow 
researchers to focus more on the machine learning/statistical 
approaches addressing the prediction of biophysical properties 
of these molecules.

Norman et al.13 have previously provided an overview of 
available databases and tools for computational antibody ana-
lysis. However, our specific focus here is on computational 
developability assessment tools and databases. Table 1 provides 

a list of relevant databases and datasets for antibody-based 
drugs that can be used for training, validation, and assessment 
of biopharmaceutical informatics tools.

1.2 Relevance of biopharmaceutical informatics tools

Biopharmaceutical informatics tools are widely used for in 
silico screening of biophysical properties in an antibody library. 
These antibody informatics approaches have been used to 
evaluate key biochemical and biophysical properties such as 
solubility, stability, viscosity, charge profiles, posttranslational 
modifications (PTMs), pharmacokinetic and pharmacody-
namic (PK/PD) profiles, and hydrophobicity to rank the can-
didates. The prediction of protein tertiary structure is 
accomplished by either homology modeling approaches, fold 
recognition, or ab initio modeling approaches when similar 
sequences with known structures are absent. Several studies 
have implemented homology modeling to calculate the bio-
chemical and biophysical properties of a mAb library.16–18 

Specific homology modeling algorithms for antibodies have 
been developed for better accuracy and representation.19–21 

In general, antibody sequences and structures are well con-
served except for the complementarity-determining regions 
(CDRs). The CDRs, except for CDR-H3, can be classified into 
a set of limited conformations called canonical structures22–24 

that can be predicted from sequence key residues, enabling 
sub-ångström accuracy in structure prediction. However, pre-
dicting conformations of CDR-H3 is still challenging because it 
is the most diverse both in sequence and structure.25 Sequence- 
structure correlations identified for CDR-H3 have been used as 
geometric constraints in simulations for structure 
prediction.26,27

The antibody modeling tools provide an integrated compu-
ter-aided molecular design platform that can be used to access 
liabilities and optimize the affinity, solubility, and stability of 
antibody-based drug candidates. Several other biopharmaceu-
tical informatics tools for various developability issues depend 
on protein sequence features that are based on amino acid 
physicochemical properties. There have been increasing efforts 
to compile these tools for integrated antibody sequence and 
structure management, analysis, and prediction. For instance, 
a large number of tools for antibody informatics are compiled 
under the abYsis database, abYmod antibody modeling pro-
gram, and abYbank database. abYsis28 incorporates a wide- 
ranging species-specific analysis of residue frequencies that 
can be combined with residue clustering to identify either 
hydrophobic or unusual patches that are likely to be important 
for the stability and immunogenicity of antibodies. The Scratch 
suite of predictors29 also provides a set of comprehensive tools 
to evaluate the physicochemical properties of mAbs, such as 
the solvent accessibility, secondary structure, tertiary structure, 
contact maps, protein antigenicity, and domain locations. The 
Oxford Protein Informatics Group (OPIG) also maintains sev-
eral webservers and databases relevant to antibody informatics. 
An up-to-date list of antibody-related resources is maintained 
at http://naturalantibody.com/tools. Table 2 provides a list of 
biopharmaceutical informatics tools for the developability 
assessment of antibody therapeutics.
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Table 1. Relevant databases and datasets for biopharmaceutical informatics.

S. No. Database Name Application Link

Sequence Databases

1. Observed Antibody Space 
(OAS)

Annotated immune repertoires of over a billion Ab sequences across 
diverse immune states and organisms.

http://opig.stats.ox.ac.uk/webapps/oas/

2. International 
Immunogenetics 
Information System 
(IMGT)

IMGT® provides common access to sequence, genome, and structure 
Immunogenetics data.

http://www.imgt.org/

3. Patented Antibody 
Database

The Patented Antibody Database contains sequence information 
found in patent documents for 267,722 antibody chains from 
19,037 patent families.

https://www.naturalantibody.com/pad

4. iReceptor Antibody/B-cell and T-cell receptor repertoire data from multiple 
independent repositories.

https://gateway.ireceptor.org/login

5. abYsis Integrated antibody sequence and structure management, analysis, 
and prediction

http://www.abysis.org/

6. EMBLIg Antibody sequences automatically extracted from EMBL-ENA http://www.abybank.org/emblig/
7. Antibody Knowledge Graph A framework for collecting antibody data from all major public 

sources.
https://www.naturalantibody.com/antibody- 

knowledge-graph/
8. Integrated Nanobody 

Database for 
Immunoinformatics (INDI)

Database with structure data and sequence information of 
nanobodies created using an integrated curation approach from 
several sources.

http://research.naturalantibody.com/nanobodies 
11

Structure Databases

9. Protein Data Bank (PDB) 3D structure data for large biological molecules (proteins, DNA, and 
RNA).

https://www.rcsb.org/

10. Structural Antibody 
Database (SAbDab)

An online resource containing all the publicly available antibody 
structures annotated with several properties.

http://opig.stats.ox.ac.uk/webapps/newsabdab/ 
sabdab/

11. Thera-SAbDab Variable domain sequences and structural representations of all 
antibody therapeutics recognized by the WHO INN lists.

http://opig.stats.ox.ac.uk/webapps/newsabdab/thera 
sabdab/search/ 
14

12. SACS Summary of antibody crystal structures in the PDB http://www.abybank.org/sacs/
13. AbDb Information on redundancy and structures solved with and without 

antigens for Fv fragments extracted from PDB files.
http://www.abybank.org/abdb/

14. PyIgClassify A database of antibody CDR structural classifications http://dunbrack2.fccc.edu/PyIgClassify/
15. AAAAA An automatic modeling and analysis tool for structural alignment of 

antibody and T cell receptor sequences.
https://plueckthun.bioc.uzh.ch/antibody/index.html

Immunogenicity

16. Immune Epitope 
Database (IEDB)

Experimental data on antibody and T cell epitopes. https://www.iedb.org/

17. T Cell Epitope Database 
(TCED™)

Database of CD4+ T cell epitopes derived from T cell epitope mapping 
studies.

https://abzenaprod.wpengine.com/development- 
services/immunology/immunogenicity-assessment 
/itope-and-tced/

18. MHCBN 4.0 A database of MHC/TAP binding peptides and T-cell epitopes. http://crdd.osdd.net/raghava/mhcbn/
19. Bcipep Database of B-cell epitopes. https://webs.iiitd.edu.in/raghava/bcipep/info.html
20. Leadscope Toxicity 

Database
The Leadscope Toxicity Database contains over 180,000 chemical 

structures with over 400,000 toxicity study results.
https://www.leadscope.com/product_info.php?pro 

ducts_id=78

Antibody–antigen binding/Protein–protein interactions

21. PCLICK Antibody–antigen structures from a dataset of 403 antibody–antigen 
complexes using CLICK method.

http://mspc.bii.a-star.edu.sg/minhn/cluster_pclick. 
html

22. AB-Bind: Antibody binding 
mutational database

Experimentally determined changes in binding free energies for 1101 
mutants across 32 antibody–antigen structures.

https://github.com/sarahsirin/AB-Bind-Database 
15

23. SKEMPI 2.0 Database of binding free energy changes upon mutation for 
structurally resolved protein–protein interactions.

https://life.bsc.es/pid/skempi2/

24. AntigenDB Database of antigens from several pathogenic species containing 
structural, sequence, and binding data

http://crdd.osdd.net/raghava/antigendb/

25. AntiJen Database containing quantitative binding data for peptides http://www.ddg-pharmfac.net/antijen/AntiJen/anti 
jenhomepage.htm

General Information, Regulatory

26. Tabs – Therapeutic Antibody 
Database 
(Commercial-use)

Data on 5,400+ antibodies, 1,350+ antigens, and 1,550+ companies, 
linked to clinical trials, patents, papers, news, and regulatory 
agencies.

https://tabs.craic.com/static_pages/4

27. AbMiner Database to match commercially available antibodies to their 
respective genomic identifiers.

https://discover.nci.nih.gov/abminer/

Databases suggested for use in biopharmaceutical informatics relevant for antibody-based drugs. These databases have been selected by authors from several other 
available databases for general proteins.
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2 Computational developability assessment using 
biopharmaceutical informatics

Novel criteria based on biochemical and biophysical properties 
of mAbs are being increasingly used to select a mAb candidate 
from the early discovery to the development stage. 
Computational developability assessment approaches are now 
becoming a routine step in the drug discovery and development 
process. Developability assessments at the early stage of devel-
opment can significantly de-risk development pipelines, thus 
saving valuable time and resources. Incorporating developability 
assessments in early-stage development provides an opportunity 
to re-engineer the molecule to mitigate any sequence or struc-
tural liabilities, or to select alternative molecules of similar 
potency, but with more favorable developability profiles. 

Previous studies have summarized various experimental plat-
forms and computational tools to identify developability issues 
in therapeutic antibodies and antibody-like molecules.35,36

In the past decade, applications of techniques such as phage 
display, cell surface display, yeast display, hybridoma, and NGS 
have revolutionized biomedical research with the successful dis-
covery of several therapeutic antibodies. Although most anti-
body libraries focus on maximizing library diversity, there are 
growing concerns regarding the developability of the selected 
antibodies for successful commercialization.6 Therefore, frame-
works and procedures are being developed for the design of 
antibody libraries with improved developability and 
manufacturability.37 In silico engineering and design of biologics 
using rational design principles has emerged as a faster and 
economic alternative to traditional methods of lead generation 

Table 2. Relevant biopharmaceutical informatics tools.

Software Name Application Link

Antibody modeling

abYmod Homology modeling, molecular simulations and structural bioinformatics http://abymod.abysis.org
ABangle A tool for calculating and analyzing the VH-VL orientation in antibodies. http://opig.stats.ox.ac.uk/webapps/newsabdab/ 

sabpred/abangle/
ABodyBuilder Homology modeling, molecular simulations, and structural bioinformatics http://opig.stats.ox.ac.uk/webapps/abodybuilder
PIGS Homology modeling, molecular simulations, and structural bioinformatics https://bio.tools/pigs
MODELLER Homology modeling, molecular simulations, and structural bioinformatics https://salilab.org/modeller/
MOE Homology modeling, molecular simulations, and structural bioinformatics https://www.chemcomp.com/Products.htm
RosettaAntibody Homology modeling, molecular simulations, and structural bioinformatics https://new.rosettacommons.org/docs/latest/applica 

tion_documentation/antibody/antibody- 
applications

LYRA Homology modeling, molecular simulations, and structural bioinformatics http://www.cbs.dtu.dk/services/LYRA/index.php
Repertoire Builder Structural modeling of B cell/T cell receptors from their amino acid sequences https://sysimm.org/rep_builder/

Solubility and aggregation

CamSol CamSol method constitutes three algorithms to rationally design protein variants with 
enhanced solubility.

http://www-cohsoftware.ch.cam.ac.uk

Protein-Sol A web tool for predicting protein solubility from the sequence. https://protein-sol.manchester.ac.uk/
SODA Prediction of protein solubility from disorder and aggregation propensity. http://old.protein.bio.unipd.it/soda/
SOLpro Protein Solubility predictors http://scratch.proteomics.ics.uci.edu/explanation. 

html#SOLpro
SOLart A structure-based method to predict protein solubility and aggregation using 

solubility-dependent potentials.
http://babylone.ulb.ac.be/SOLART/

SAP Aggregation Prediction 
Spatial aggregation propensity

30

Solubis A webserver to reduce protein aggregation through mutation http://solubis.switchlab.org/ 
31

GAP Aggregation Prediction https://www.iitm.ac.in/bioinfo/GAP/
AGGRESCAN 3D Aggregation Prediction http://bioinf.uab.es/aggrescan/ 

32

AggScore Aggregation Prediction https://www.schrodinger.com/science-articles/aggre 
gation-prediction-protein-surface-analyzer

PASTA 2.0 Aggregation Prediction http://old.protein.bio.unipd.it/pasta2/
TANGO Aggregation Prediction http://tango.crg.es/

Posttranslational modifications/Stability

MusiteDeep A deep-learning based webserver for protein posttranslational modification site 
prediction and visualization.

https://github.com/duolinwang/MusiteDeep_web

PTM prediction 
tools survey

Collection of publicly available PTM web resources, databases, and classification/ 
prediction servers.

http://www.cbs.dtu.dk/databases/PTMpredictions/

MUpro Prediction of protein stability changes for single-site mutations http://mupro.proteomics.ics.uci.edu
FindMod Tool to predict potential protein posttranslational modifications https://web.expasy.org/findmod/
SIDEpro Prediction of protein side-chain conformations http://sidepro.proteomics.ics.uci.edu/
SCWRL4.0 Prediction of protein side-chain conformations http://dunbrack.fccc.edu/scwrl4/SCWRL4.php
PEARS Prediction of protein side-chain conformations http://opig.stats.ox.ac.uk/webapps/pears

Molecular docking

DockThor Molecular docking, Affinity maturation https://dockthor.lncc.br/v2/
SwissDock Molecular docking, Affinity maturation http://www.swissdock.ch/
HADDOCK Molecular docking, Affinity maturation https://wenmr.science.uu.nl/haddock2.4/
MEGADOCK 4.0 Molecular docking, Affinity maturation https://www.bi.cs.titech.ac.jp/megadock/

(Continued)
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such as hybridoma and phage display. Figure 1 provides a visual 
representation of the recommended biopharmaceutical infor-
matics tools for computational developability assessment of anti-
body therapeutics and antibody-based drugs.

2.1 De-risking biopharmaceutical development using 
developability assessments

Developability assessment is used to systematically evaluate 
mAb candidates that have the lowest risks for development to 
the final product. Previous studies have demonstrated the 
utility of the developability assessment of mAb lead candidates 
for screening out mAbs with low solubility and stability, low 
potency, high aggregation propensity, and high immunogeni-
city risk.38 Any such predictions will inevitably reject some 
antibodies that could have made excellent drugs, but not 
using such approaches comes with huge financial risk.

The general biophysical properties of approved mAbs can 
serve as a reference for the design of new mAb candidates. 
Several databases of biophysical properties of these approved 
mAb candidates have been reported such as the Jain dataset6 

and TheraSabDab.14 The Jain dataset provides biophysical 
characterization across 12 different platforms for 137 clinical- 
stage and approved antibodies.6 This benchmarking with 
approved mAbs provides an estimate of the acceptable ranges 
of the biophysical properties that can be considered in the 
developability assessments for new antibody candidates. Xu 
et al. have outlined some generally preferred quality attributes 
of a panel of approved and clinical stage mAb products.39 The 
general concept of examining the properties of successful anti-
body-based drugs has been exploited by Raybould et al.5 result-
ing in Therapeutic Antibody Profiler (TAP) developability 
guidelines that are derived from the values of 377 post-Phase 
1 clinical-stage antibody therapeutics. It relies on the hypoth-
esis that antibodies that have deviating biophysical properties 

Table 2. (Continued).

Software Name Application Link

RosettaDock Molecular docking, Affinity maturation https://new.rosettacommons.org/docs/latest/applica 
tion_documentation/docking/docking-protocol

FTDock 2.0 Molecular docking, Affinity maturation http://www.sbg.bio.ic.ac.uk/docking/ftdock.html
AbAdapt Antibody-specific epitope prediction https://sysimm.org/abadapt/

Immunogenicity

ANTIGENpro Protein Antigenicity predictor http://scratch.proteomics.ics.uci.edu/explanation. 
html#ANTIGENpro

COBEpro Continuous B-cell epitope predictor. http://scratch.proteomics.ics.uci.edu/explanation. 
html#COBEpro

BEpro (PEPITO) Discontinuous B-cell epitope predictor. http://pepito.proteomics.ics.uci.edu
DiscoTope Prediction of discontinuous B cell epitopes from protein three-dimensional structures http://www.cbs.dtu.dk/services/DiscoTope/
ElliPro Antibody epitope prediction http://tools.iedb.org/ellipro/
SVMTriP A tool to predict linear antigenic epitopes http://sysbio.unl.edu/SVMTriP/
AbAdapt Antibody-specific epitope prediction https://sysimm.org/abadapt/
EpiPred Antibody-specific epitope prediction http://opig.stats.ox.ac.uk/webapps/newsabdab/ 

sabpred/epipred/
RANKPEP Immunogenicity risk assessment http://imed.med.ucm.es/Tools/rankpep.html
ProPred Immunogenicity risk assessment http://crdd.osdd.net/raghava/propred/
NetMHCIIpan Immunogenicity risk assessment http://www.cbs.dtu.dk/services/NetMHCIIpan/
MHCEpitopeEnergy Rosetta-based biotherapeutic deimmunization platform https://new.rosettacommons.org/docs/latest/rosetta_ 

basics/scoring/MHCEpitopeEnergy
Hu-mAb Antibody humanization tool http://opig.stats.ox.ac.uk/webapps/newsabdab/ 

sabpred/humab
TOPKAT in silico toxicology assessments https://www.toxit.it/en/services/software/topkat
MetaDrug in silico toxicology assessments https://support.clarivate.com/LifeSciences/s/article/ 

MetaDrug-Uses-and-benefits?language=en_US

Biophysical properties

Abpred Prediction of biophysical performance https://protein-sol.manchester.ac.uk/abpred
QikProp ADME prediction tool https://www.schrodinger.com/products/qikprop
Delayed HIC 

retention time 
Prediction tool

Model for prediction of delayed HIC retention times directly from sequence. 33

General developability

Therapeutic 
Antibody 
Profiler (TAP)

Developability guidelines check and Identification of sequence liabilities http://opig.stats.ox.ac.uk/webapps/newsabdab/ 
sabpred/tap

Developability 
Index

Developability Index is a function of an antibody’s net charge and the spatial 
aggregation propensity, calculated on the complementarity-determining region 
structure.

34

abYsis Integrated antibody sequence and structure management, analysis, and prediction http://www.abysis.org/
NaturalAntibody 

AbMapper
A data-driven suite of analytics to improve research decision support in screening and 

rational design of antibody therapeutics.
https://naturalantibody.com/antibody-analytics/

Biopharmaceutical informatics tools for assessment of developability issues. Most of the tools listed are free for academic use or available on request. Some tools may 
have an upgraded commercial version for users. These tools have been selected by authors from several other available antibody informatics tools for general 
proteins.
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from clinically tested therapeutic mAbs are likely to have poor 
developability profiles. TAP can be used to analyze several 
properties linked to poor developability for any candidate 
mAb with known heavy and light chain variable domain 
sequences.

In addition, Abpred40 can be used to predict the biophysical 
performance on 12 commonly used developability assessment 
assays with just the amino acid sequence input. In Abpred, 
machine learning methods have been trained on heavy and 
light chain variable domain sequences from the Jain dataset 
using the amino acid composition and 15 sequence-derived 
features to represent physicochemical properties of antibodies. 
Other developability assessments using machine learning 
approaches have been used to predict and select the antibodies 
with optimal pH and thermal stabilities from 77 antibodies in 
development at Pfizer.41 Lonza Biologics has also demonstrated 
the use of aggregation propensity screening along with other 
computational approaches during early drug development to 
select molecules with reduced risk of aggregation and optimal 
developability properties for screening several anti-interferon γ 
antibody variants.7 Pfizer has implemented in vitro assays that 
correlate with in vivo human studies to differentiate mAbs at 
high risk for rapid clearance from those with favorable PK.42 

Finally, molecular dynamics simulation has also implemented 
a high-throughput developability workflow on a panel of 152 

human or humanized mAbs.43 Here, physicochemical properties 
of these 152 mAbs were evaluated from multiple biophysical 
assays – size exclusion chromatography for aggregation, reverse- 
phase chromatography and sodium dodecyl sulfate capillary 
electrophoresis for purity, differential scanning fluorimetry for 
thermostability, hydrophobic interaction chromatography 
(HIC) for hydrophobicity, affinity-capture self-interaction nano-
particle spectrometry for self-interaction and capillary isoelectric 
focusing for isoelectric point (pI) and charge variant analysis. 
These examined biophysical properties and key assay endpoints 
were also predictive of key downstream process parameters in 
development and clinical manufacturing.43

2.2 Design of antibody libraries with improved 
developability

Screening libraries of antibodies is a commonly used strategy in 
antibody drug discovery. There are two main approaches to 
library design: creation of (1) a highly diverse library poten-
tially containing binders to varied targets or (2) a library 
focused on potential binders to a specific antigen or set of 
antigens. The ideal library contains genetically varied antibo-
dies with the potential for high affinity and activity, but this can 
result in the generation of increasingly large libraries to achieve 

Figure 1. Biopharmaceutical informatics tools for computational developability assessment of antibody therapeutics. These tools have been selected by authors from 
several other available antibody informatics tools for general proteins. 
Figure 1. Venn diagram of tools listed under different developability categories.
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high diversity. With the huge amount of available sequence 
data and increased understanding of developability prediction, 
methods are being investigated for the optimal design of anti-
body libraries with high functionality and desired biophysical 
properties.

2.2.1 Natural
Methods using B-cell receptor (BCR), i.e., antibody repertoires 
from antigen-exposed animals or humans (“immune libraries”, 
to generate antigen-specific libraries) or from non-exposed 
humans (“naïve libraries”, to generate functionally diverse 
libraries) try to capture the capabilities of the natural immune 
response in making functional, highly expressed and low 
immunogenicity antibodies. However, not all naturally occur-
ring antibodies are suitable drug candidates owing to other 
developability concerns, such as aggregation.5 Libraries can 
aim to combat this by selecting for genes with known favorable 
characteristics using native heavy and light chains for 
improved specificity.44–46 Limitations to natural-repertoire 
approaches also include the inherently biased nature, meaning 
diverse antibodies may be missed owing to sequence space 
restrictions. Nevertheless, available sequence space might not 
be as constrained as previously expected, as multiple clinical- 
stage therapeutics have high sequence-identity matches in 
naturally sourced antibody repertoires.10 Another way to select 
antibodies is by considering the “structural space”. For exam-
ple, a library of antibody structures identified in the repertoires 
of multiple individuals was found to contain structures highly 
similar to clinical-stage therapeutic antibodies47 and may sug-
gest antibodies with functionality and low likelihood of 
immunogenicity.

2.2.2 Synthetic
Synthetic libraries introduce diversity, often at defined regions 
of an antibody, to generate novel and varied sequences. Such 
methods can produce antibodies with higher affinity than 
natural repertoires,48 but a proportion of the library may be 
non-folding or immunogenic. To reduce nonfunctionality, 
methods such as position frequency analysis (PFA) and deep 
learning have been applied. PFA introduces mutations based 
on the amino acid frequencies found at each CDR position in 
natural antibody repertoires, often using identical or only 
a small number of framework regions.49,50 Such methods do 
not account for correlations between residues at different sites. 
A different approach has used a database of antibodies with 
known functionality and interchanged CDR regions, assuming 
CDR regions are modular and can be interchanged without 
negative impact. In doing so, they achieved high 
functionality.51

2.2.3 Deep learning
Deep learning models aim to utilize the stability of natural 
repertoires and capture higher-order dependencies, missed by 
PFA, to avoid producing nonfunctional proteins. However, 
current limitations of deep learning approaches include 
a focus on only CDR regions or heavy chains, with a lack of 
experimental validation of predicted properties. For instance, 
74% antigen binding was achieved in a mouse library designed 
by a variational autoencoder that generated novel CDR-H 

regions, but such an approach ignores non-CDR region con-
tributions to the paratope, and the diversity of the sequences in 
this library is unknown.52 Other generative approaches such as 
Generative Adversarial Networks can be trained on natural 
human antibody repertoires and biased via transfer learning 
(further training on antibodies with known properties such as 
solubility, stability and predicted immunogenicity) to generate 
sequences predicted to have the desired biophysical 
properties.53 However, more information is needed to under-
stand how such properties influence the overall developability 
of the antibody. Additionally, experimental validation of the 
predicted properties is necessary, as has been conducted for an 
enzymatically active protein library54 and a nanobody library 
created by a generative deep neural network-powered autore-
gressive model trained on a native llama repertoire.55

Previous work has demonstrated the use of mammalian 
display libraries for the selection of antibody variants with 
optimal biophysical properties, reduced polyreactivity, and 
immunogenicity.56 Here, they have described the use of 
a nuclease-directed integration system to generate antibody 
variants with differing biophysical properties based only on 
the display level achieved on the mammalian cell surface. 
Other studies have demonstrated the use of machine learning- 
guided directed evolution on the combinatorial sequence 
space.57 Recently, a machine learning pipeline has been for-
mulated to predict the developability of a library of 2400 anti-
bodies from sequence alone.58 These advances in 
bioinformatics and in silico methods have enabled the efficient 
development of commercially viable antibodies. Thus, anti-
body library variants of an antibody candidate are designed 
to exhibit better developability than the parent molecule.

2.3 Mitigating aggregation and post-translational 
modifications in biopharmaceuticals

2.3.1 Aggregation
Aggregation of antibody-based drugs can lead to precipitation 
and decreased shelf-life of drugs before administration, while 
aggregation in vivo can increase the immunogenicity of the 
drug. The aggregation propensity is a critical attribute corre-
lated with product failure.59 Indeed, aggregate levels in the final 
drug product are key quality indicators.60,61 Seeliger et al. have 
highlighted four key factors that must be avoided to minimize 
aggregation, many of which can be predicted computationally: 
(1) the number of “reactive sites”, such as those susceptible to 
oxidation, deamidation, or proteolysis, should be minimized; 
(2) thermodynamic stability should be high to minimize pro-
tein unfolding; (3) the structure should not contain hydropho-
bic or charged surface patches; and (4) the sequence should not 
contain cross-beta-sheet aggregation hotspots.62

Van der Kant et al. showed that mutating residues in pre-
dicted aggregation hotspots could reduce aggregation and 
found that those hotspots having the largest impact on thermo-
dynamic instability are frequently found in the CDRs.63 The 
solubility can be improved in mAbs having aggregation-prone 
regions (APRs) by inserting glycosylation sites near these 
APRs.64,65 Several other studies have used protein- 
engineering approaches to reduce self-association and aggrega-
tion to achieve high solubility and low viscosity.66–69 A specific 
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prediction of the tendency to aggregation is the AggScore,70 

which uses structural modeling to identify patches at risk of 
driving aggregation. Several methods have been developed to 
create so-called “developability indices” for antibodies and 
these tend to focus on aggregation propensity. For example, 
Lauer et al. used data from the storage of 12 IgG antibodies for 
periods of up to 2 y to examine aggregation. They then com-
bined net charge (at a given pH using a calculated pKa) with 
a “spatial aggregation propensity” (SAP) score (derived from 
accessibility and residue hydrophobicity and calculated over 
a molecular dynamics simulation) to create their developability 
index and correlated this with the experimental aggregation 
propensity.34 Developability Index34 is a well-known tool for 
estimating the developability of a candidate antibody. 
However, a potential drawback of the Developability Index is 
that it is based only on the full-length antibody’s net charge and 
the SAP of the CDR region, and, therefore, may ignore other 
indicators of developability.

The Therapeutic Antibody Profiler (TAP) has been demon-
strated to be very useful in selectively highlighting antibodies 
with expression or aggregation issues.5 Further, Lonza’s aggre-
gation prediction tool7 has been instrumental in the selection 
of lead antibody candidates from combinatorial libraries with 
improved developability. abYsis28 incorporates a wide-ranging 
species-specific analysis of residue frequencies that can be 
combined with residue clustering to identify either hydropho-
bic or unusual patches that are likely to be important for the 
stability and immunogenicity of biopharmaceuticals. 
Therefore, using these computational aggregation prediction 
tools can identify aggregation issues early in biopharmaceutical 
development and avoid expensive late-stage product failures.

2.3.2 Post-translational modifications

PTMs can lead to several issues encountered with the develop-
ment of antibodies. By their nature, PTMs lead to heterogene-
ity, something that generally concerns regulators since variants 
must be considered in risk assessments and during character-
ization to assess the impact on product quality, safety, and 
efficacy. This includes potential effects on antigen binding, 
immunogenicity, and Fc-mediated effector functions.

In antibodies, the N-terminal glutamate or glutamine is fre-
quently cyclized by nucleophilic attack of the lone pair of electrons 
from the backbone terminal NH2 onto the sidechain carboxy or 
amide, forming a five-membered lactam ring known variously as 
pyroglutamic acid (pyroGlu), pyrrolidone carboxylic acid (PCA), 
5-oxoproline, or pidolic acid, and this has been shown to occur 
in vitro.71–73 The N-terminus is comparatively close to the antigen 
binding site, so the difference in charge could have an effect on 
antigen binding, particularly for large antigens that may approach 
close to this part of the antibody. In addition to N-terminal 
heterogeneity, “clipping” frequently occurs at the C-terminus of 
the heavy chain. The last three residues of the heavy chain are Pro- 
Gly-Lys; the proline is the last residue of the CH3 domain, and the 
glycine and lysine form the CHS region. The C-terminal lysine is 
mostly clipped posttranslationally by endogenous carboxypepti-
dases during cell culture, or by endogenous serum carboxypepti-
dase B once the antibody is administered to a patient.74 However, 
this PTM is unlikely to have any serious effect on the in vivo 

performance of antibody-based drugs since the C-terminus is 
remote from any functional sites. That said, C-terminal clipping 
has been shown to be required for optimal complement activation 
and the presence of the lysine can affect the blood circulation 
time.75 The third major PTM in antibodies is the N-linked glyco-
sylation present in the CH2 domain. While these are the three 
best-known PTMs present in the vast majority of antibodies, 
many other sequence-specific PTMs are also observed, all of 
which lead to heterogeneity potentially affecting charge, pI, aggre-
gation, and binding. Heterogeneity as a result of PTMs and their 
effects are reviewed by Liu et al.,76 while a comprehensive analysis 
of charge heterogeneity in adalimumab (Humira®) was performed 
by Füssl et al.77

Asparagine and aspartate residues form hot spots susceptible 
to deamidation and isomerization.39,78 In addition to the effect of 
antibody deamidation, there have been reports of deamidation in 
protein antigens in severe diseases such as anthrax.79 Oxidation of 
methionine and tryptophan residues is another sequence liability 
that can lead to low potency, decreased thermal stability, and high 
aggregation propensity.80,81 Disulfide scrambling due to cysteine 
residues is another phenomenon causing configurational changes 
in the hinge region of antibodies, thus impeding antigen binding 
and mAb functionalities.82,83 The variable domains of mAbs may 
also contain N-glycosylation sites, which may cause variable 
domain glycosylation that results in the formation of Fab- 
associated oligosaccharides with α1,3-galactose that are known 
to cause immunogenicity.84–86 These PTMs often lead to low 
potency, immunogenicity, and instability of circulating mAbs.87 

Consequently, suitable developability assessment protocols must 
be designed to capture these sequence liabilities.

abYsis28 (http://www.abysis.org) provides screens for 
a number of these PTMs for optimization of therapeutic anti-
bodies. It also annotates residues as being exposed, buried, or 
intermediate based on averaged information from several hun-
dred known structures and can be used in concert with 
abYmod (http://abymod.abysis.org) to build an antibody 
model from which more detailed exposure information can 
be obtained. As described, PTMs could seriously hamper the 
safety or efficacy of therapeutic antibodies and this safety con-
cern calls for an immediate need for appropriate tools to relate 
a biophysical property to a single, or a set of, molecular 
sequence-structural motifs in biologic drugs. In summary, 
biopharmaceutical informatics tools are used to locate the 
amino acids critical for certain biophysical properties that are 
in undesirable ranges.

2.4 Biopharmaceutical informatics for drug safety and 
in vivo performance

2.4.1 Drug safety
A strategic framework for using computational tools for pre-
dicting chemical degradation sites in biologic drugs has been 
presented in a previous study by Sandeep et al.3 Several com-
putational tools for predicting the toxicity of antibody-based 
drugs are now available.88 A critically important step in drug 
development for establishing clinical safety is the identification 
of adverse drug reactions (ADRs). Computer-aided prediction 
of ADRs provides an alternative to recognize ADRs before 
clinical trials. Kuang et al. have reviewed and compared the 
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computational models available for predicting ADRs.89 Here, 
among the topological features of drug-ADR association net-
works, the Jaccard coefficient (a measure of the relationship 
between the neighborhood set of homology nodes) was the 
most important feature for the prediction of drug-ADR asso-
ciations. Consequently, the Jaccard coefficient of drug-ADR 
association networks is an important topological feature that 
should be used in models designed for prediction of antibody 
drug safety.

Previous computational approaches have estimated in vivo 
performance descriptors such as the PK, PD, and immuno-
genicity of biologics.42,90–93 Avery et al. have demonstrated 
a combinatorial triage approach on in vitro assay parameters 
and categories for screening therapeutic mAb candidates with 
desirable PK properties and minimal non-target-related PK 
risk.42 Here, threshold values of in vitro assays reflecting 
nonspecific interactions and self-association were established 
to define criteria for avoiding the selection of mAbs with 
rapid in vivo clearance. Grinshpun et al. have also analyzed 
biophysical and sequence-based in silico properties that are 
predictive of PK properties such as clearance for a panel of 64 
clinical-stage mAbs.94 They have concluded that experimen-
tal poly-specificity assay results and in silico estimated pIs 
were the best predictors to estimate clearance in therapeutic 
antibodies.

2.4.2 Antigen–antibody interactions

General protein–protein interaction prediction tools for pro-
teins frequently do not work well for antigen–antibody inter-
actions because antibody–antigen binding is a rather distinct 
mechanism. Unlike normal protein interfaces, the epitope on 
an antigen has evolved to be an exposed region rather than to 
be involved in a protein–protein interface. Consequently, other 
computational techniques such as epitope mapping are used to 
identify the regions of an antigen likely to form the epitope 
before docking. B-cell Epitope (BCE) mapping tools can 
broadly be divided into linear epitope predictors, which 
attempt to identify epitopes consisting of continuous amino 
acid primary sequences, and conformational epitope predic-
tors, predicting discontinuous epitopes in three-dimensional 
(3D) space.13 However, like other protein–protein interfaces, 
antibody–antigen interactions involve a combination of non-
polar van der Waals interactions, hydrogen bonding, charge 
interactions, and the hydrophobic effect. Consequently, along 
with these epitope prediction tools, several docking algorithms 
such as Megadock, Haddock, RosettaDock, and Piper are being 
actively used to understand the binding between an antibody 
and the target. However, their performance is often poor com-
pared with general protein–protein docking.

2.4.3 Immunogenicity
The presence of T-cell and B-cell epitopes influences the 
immunogenicity of antibody therapeutics, and, therefore, 
bioinformatics approaches to avoid immunogenicity fall into 
two major categories: T-cell epitope prediction and B-cell 
epitope prediction. Computational tools for immunogenicity 
risk assessment provide an alternative to in vitro or in vivo 

immunogenicity assays. The use of in silico tools to identify 
lead candidates with a reduced risk of immunogenicity is an 
important step in biologic drug development.

T-cell epitope prediction, which is relatively well estab-
lished, requires predicting linear peptides within a protein 
sequence that will bind to the Major Histocompatibility 
Complex (MHC). MHC molecules present peptides to T cells, 
which trigger T-cell immune responses. MHC molecules can 
be classified into class I and class II. MHC class I molecules 
present peptides derived from intracellular proteins, whereas 
MHC class II presents peptides from extracellular proteins. 
Since antibodies are extracellular, the focus is on the prediction 
of peptide binding to MHC class II molecules. These tools 
usually examine the primary sequences of candidate antibodies 
to identify binding motifs of MHC class II allotypes or for 
similarity to epitopes known to elicit an immune response. 
Several MHC class II binding predictors are available and the 
overall prediction performance is generally good.95,96

For example, some tools such as RANKPEP,97 Propred,98 

Tepitope,99 and NetMHCII100 make predictions based on algo-
rithms trained on MHC class II binding assay data. Other tools 
such as NetMHCIIpan and IEDB (Consensus)101 are based on 
sequence alignments with MHC class II binding peptide data-
bases. Overall, studies have established that NetMHCIIpan, 
Propred, IEDB (Consensus), and MULTIPRED102 were the 
best predictors of MHC class II binding and these are the 
most commonly used tools in the industry for the prediction 
of MHC class II binding. Other previous studies compared 
nine different MHC class II binding prediction tools and six 
different methods showing that NetMHCIIpan was the best 
method to predict peptide binding to MHC class II epitopes 
with an updated version, having improved predictions, now 
available.103,104 While less important for antibody-based drugs, 
computational tools for determining binding to MHC class 
I molecules require locating motifs that bind to the binding 
groove. Prediction methods for interrogating peptide binding 
to MHC class I alleles include NetMHC-3.0,105 NetMHCpan- 
1.0, the Kernel-based Inter-allele peptide binding prediction 
system,106 and Adaptive Double Threading.107 Based on this 
predicted T-cell epitope information, Yachnin et al. recently 
developed a Rosetta-based platform to deimmunize therapeu-
tic proteins.108 They incorporated a new score term utilizing 
predicted or experimentally identified T-cell epitope informa-
tion into the scoring function so that computational protein 
design calculations can be guided based on the epitope infor-
mation as well as the energetic stability.

In contrast to the prediction of T-cell epitopes, a much 
harder task is B-cell epitope (BCE) prediction – predicting 
sites where the patient antibodies will bind to the drug. Such 
approaches have not been very successful, mostly owing to the 
discontinuity of antigen binding sites. As mentioned above, the 
problem is made harder by the fact that B-cell epitopes are, by 
their nature, regions of a protein surface that have not evolved 
to be involved in protein–protein interactions. Consequently, 
they do not have clearly recognizable features that are bound 
by antibodies.109 Nonetheless, some regions will be more likely 
to interact with an antibody than others, but making mutations 
to remove a dominant B-cell epitope can simply result in the 
immune response switching to a less dominant epitope.
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Several predictors have been produced that work at either 
the sequence level or the level of 3D structure. The earliest BCE 
prediction methods attempted to predict linear epitopes (i.e., 
a continuous stretch of amino acid sequence) using sequence 
features such as hydrophilicity,110 amino acid composition,111 

and predicted accessibility and mobility.112 An early evaluation 
showed that no single sequence feature performed well, leading 
to attempts to combine features.113 However, machine learning 
efforts114 and additional features such as sequence 
conservation115 have provided limited improvements to BCE 
prediction. In general, conformational epitope predictors such 
as CBTOPE, BETOPE, CEP, and DISCOTOPE are more accu-
rate than linear epitope predictors such as LBTope, SYMTriP, 
and ABCored.116–118

The performance of computational epitope prediction 
tools and tools for predicting immunogenicity has been 
reviewed previously to establish guidelines for the deimmu-
nization of protein therapeutics.119 It is worth nothing that 
epitope databases are not exhaustive because of the hetero-
geneity of proteins involved in the immune response across 
the human population.90 This variability of immune response 
for the same antigen limits the utility of in silico immuno-
genicity assessment methods as stand-alone tools. Therefore, 
this key limitation of immune response diversity needs to be 
captured by the forthcoming immunogenicity prediction 
tools.

2.5 Guidelines for the design of developability assessment 
protocols

Assessment of developability by biopharmaceutical infor-
matics protocols at an early stage in a development pipeline 
reduces the costs of development failures. Companies using 
transgenic mice to produce antibodies can generate as 
many as a million sequences a week (after cleaning the 
high-throughput sequence data) and it is impractical to 
take all these through to experimental validation. Even 
computational evaluation requires significant computing 
resources and optimization. If each sequence takes 1 s to 
analyze, a million sequences will require ~11.5 days of 
computer time. Consequently, it makes sense to use 
a triaging pipeline that performs evaluations that can be 
done quickly first and leave more computer-intensive eva-
luations to be performed only on those sequences that have 
survived the initial rapid triages.

A screening paradigm used in the industry for selecting 
mAbs with desirable PK properties during mAb discovery 
and lead selection has been demonstrated in a previous 
study.42 This staged approach for developability assess-
ment involves using the high-throughput assays first 
when hundreds of mAbs are available for screening. 
Here, mAbs scoring above assay thresholds or having 
results outside the acceptable range are deprioritized 
because they have unfavorable physicochemical properties. 
Next, additional physicochemical properties such as ther-
mal stability are evaluated for only the mAbs that have 
passed the previous stage. These additional screens include 
assays measuring properties such as biological activity, 
expression, stability that are often low-throughput and 

need higher quantities of mAbs. Finally, a combinatorial 
triage approach is used that ranks and classifies the mAbs 
based on the aggregate result of all the assays. It is very 
important to combine results of multiple assays together 
since individual developability assays can have some false- 
positive results. This ensures that mAbs with desirable 
physicochemical properties advance to scale-up and costly 
preclinical and clinical development. A Computational 
Developability Assessment (CDA) workflow should follow 
a similar strategy where a panel of high-throughput com-
putationally undemanding tools is applied first to a mAb 
library followed by specific computationally intensive anti-
body informatics tools as per the required objective, such 
as those for immunogenicity assessment. The final step in 
the CDA workflow as shown in Figure 2 is to use 
a combinatorial triage approach to combine scores and 
rankings from multiple tools together and classify the 
mAbs based on the aggregate result of all the informatics 
tools.

Together with previously discussed approaches to asses-
sing developability, Raybould et al. have described five 
computational developability guidelines for therapeutic 
antibody profiling: (1) total CDR length, (2) patches of 
surface hydrophobicity (PSH) metric across the CDR vici-
nity, (3) patches of positive charge (PPC) metric across the 
CDR vicinity, (4) patches of negative charge (PNC) metric 
across the CDR vicinity, and (5) structural Fv charge sym-
metry parameter.5 Overall, local charge and global charge 
asymmetry between the CDR and the framework have been 
correlated with higher aggregation and poor developability. 
Here, the approach was to look at the characteristics of 
clinically successful antibodies and rank candidate antibo-
dies by ensuring they stay within these bounds. This is 
conceptually similar to Lipinski’s rules used in small- 
molecule drug design.120 An efficient high-throughput 
developability workflow was also demonstrated by Bailly 
et al. on a panel of 152 mAbs for rank ordering of mole-
cules during early-stage discovery screening.43 Here, they 
have demonstrated that key physicochemical properties 
from multiple biophysical assays correlated well with 
major downstream process parameters.

As above, most types of analysis performed for develop-
ability assessment include identification of PTM sites, ana-
lysis of likely aggregation propensity (largely through 
examining surface hydrophobicity), pI, prediction of stabi-
lity, and identification of T-cell epitopes/B-cell epitopes 
together with humanness scoring or unusual surface 
patches. Other considerations that can be included early 
in the pipeline (as they are fast to evaluate) include check-
ing for the presence of the standard two cysteines present 
in antibody variable domains, the Trp-Gly motif present 
immediately after CDR-H3, and the length of CDR-H3 
since unusually long CDR-H3 loops have been correlated 
with poor developability.121 However, each tool relies on 
different interpretations and weighting of the essential fea-
tures that determine developability. Therefore, an orthogo-
nal combination of conceptually different algorithms should 
be used in computational developability assessment proto-
cols to reduce method-specific biases.
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3 Applications of biopharmaceutical informatics

3.1 Biopharmaceutical informatics for solubility 
predictions

Solubility is one of the key biophysical properties that under-
pins developability potential, as high solubility typically trans-
lates into high expression yields, low aggregation, and provides 
the opportunity of formulating products at high concentra-
tions while retaining a good shelf life.

Identifying antibodies with low solubility and high 
aggregation propensity from combinatorial libraries 
remains a hurdle for antibody development. Several in silico 
predictors have been reported that are now able to predict 
solubility or aggregation propensity accurately in many 
cases, a feature that makes them highly competitive with 
experiments.37,122–124 These solubility predictors include 
CamSol, Protein-Sol, SOLpro, SODA, Aggrescan, SAP, and 
Solubis. They have been shown to be effective at predicting 
solubility and aggregation propensity of diverse antibody 
libraries.122,124

As an example, the CamSol method of predicting solubility 
relies on a combination of physicochemical properties of 
amino acids. These include charge, hydrophobicity, and pro-
pensity to form secondary structure elements, which are first 
considered at the individual residue level, then averaged locally 
across sequence regions, and finally considered globally to yield 
a solubility score.124,125 In particular, while a structural model 

is necessary to identify aggregation hotspots, the solubility 
prediction itself is performed using only the amino acid 
sequence. This aspect makes computational calculation signif-
icantly faster and makes the method readily applicable to the 
screening of antibody libraries without the need for structural 
modeling, and thus it is fully independent of model accuracy. 
For example, CamSol was used to rank the solubility of hits 
from a phage-display library from MedImmune.125 The mAbs 
that were analyzed differed by up to 32 mutations in the Fv 
region, and the correlation between prediction and experi-
ments of PEG-precipitation was R ~ 0.97 after one outlier 
was removed (p < 10–4), which is fully consistent with the 
R ~ 0.98 reported for a nanobody in the original report.124 

Similarly, a statistically significant correlation (R ~ 0.71 to 0.93) 
between CamSol predictions and solubility measurements was 
also reported for mutational variants of a troublesome mAb.126 

In a study on a library of 17 mAbs from Novo Nordisk, CamSol 
predictions were compared with a battery of commonly used 
developability assays and one measurement of relative solubi-
lity, and the correlations between CamSol and these experi-
mental readouts were on a par with those seen between the 
assays.127 Notably, all these measurements were carried out 
with different experimental techniques, on widely different 
molecules, and in different laboratories. Taken together, these 
strong correlations suggest that CamSol predictions can greatly 
facilitate the screening of solubility and hence of developability 
potential. In particular, at the initial stages of antibody 

Figure 2. Computational developability assessment workflow for screening mAbs with optimal biophysical properties. An orthogonal combination of conceptually 
different algorithms is used to reduce method-specific biases. High-throughput antibody informatics tools are implemented first to an antibody library. mAbs scoring 
above assay thresholds or having results outside the acceptable range are deprioritized. Next, more computationally intensive antibody informatics tools are applied to 
evaluate additional developability issues. The final step in the CDA workflow is to use a combinatorial triage approach to combine scores and rankings from multiple 
tools together and classify the mAbs based on the aggregate result of all tools. 
Figure 2. Funnel flowchart with mAbs shown in blue dots and tools listed for each stage of developability assessment.
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discovery campaigns, when numbers of candidates can be very 
high while yield and purity are often low, such predictions may 
entirely replace experiments.

Kingsbury et al. have previously predicted the solution 
behavior of a diverse dataset of 59 mAbs, including 43 
approved antibodies, using a comprehensive array of 23 mole-
cular descriptors categorized as colloidal, electrostatic, confor-
mational, hydrodynamic, and hydrophobic.128 They have 
shown that the diffusion interaction parameter (kD), 
a measure of colloidal self-interaction is the key parameter 
that is most predictive of solution viscosity and opalescence 
for mAbs. So, they have postulated that computational devel-
opability assessment protocols should use a threshold value of 
the diffusion interaction parameter, kD (10 mM histidine-HCl 
buffer at pH 6.0) to screen antibodies with optimal antibody 
solution behavior.

3.2 Biopharmaceutical informatics for predicting protein 
stability and interactions

There can be opportunities to address the underlying balance 
of biophysical forces that drive interactions when developing 
models to predict the properties of biopharmaceutical candi-
dates. Two such examples are discussed here, one relating to 
the measurement of hydrophobic interactions and the other to 
the protein structural basis of hydrophobic interaction between 
proteins. Several machine learning methods to predict the HIC 
retention time from antibody sequence input have been 
reported previously in the literature.33,40,129 Assessment of 
aggregation propensity using HIC was the best-predicted bio-
physical property across 12 models produced using Abpred 
(www.protein-sol.manchester.ac.uk/abpred), one for each of 
the 12 biophysical properties measured across a set of 
antibodies.40 Even so, there was a marked reduction in perfor-
mance of the model for antibodies with higher retention times 
in HIC, leading to a model in which the salt gradient that is 
used to modulate hydrophobic interaction strength also affects 
interactions between charged proteins. A revised scheme was 
derived in which charge interactions play a role alongside 
hydrophobic effects in the HIC method. In this scheme, pro-
teins with higher net charge repel more within the column 
when salt concentration (ionic strength) is lower, and are 
eluted faster, than proteins with lower net charge but the 
same hydrophobicity.

In this second example, another set of HIC data for 24 
antibodies was used.130 Here, aromatic sidechain content of 
CDRs correlated well with the experimental data, but the 
equivalent correlation was much lower for the solvent- 
accessible surface area calculated for nonpolar atoms in the 
CDRs131 and it was concluded that hydrophobic interaction 
strength may be dependent on nonpolar surface shape as well 
as surface area, consistent with thermodynamic measurements 
made for mutations in an antibody–antigen interface.132 These 
examples demonstrate that models rooted in biophysical 
descriptions of protein stability and interactions, and bench-
marked against experimental data, can both provide predictive 
insight for biopharmaceuticals and further the understanding 
of the underlying biophysical mechanisms.

3.3 Biopharmaceutical informatics for preclinical 
immunogenicity risk assessment

A key concern with any biologic drug is immunogenicity, the 
effects of which range from simply having an immune 
response, meaning that the drug is rapidly cleared from the 
body when administered, through to the possibility of anaphy-
lactic shock. As described above, methods can be applied to 
predict T-cell epitopes and (to some extent) B-cell epitopes, but 
a more practical approach has been to ensure that antibody- 
based drugs are as human as possible and this has become one 
of the main aims in producing antibody-based drugs. As 
described earlier, the first monoclonal antibody-based drug to 
be approved was a mouse antibody (muromonab). However, 
since then, efforts have gone into making antibody-based drugs 
less immunogenic, first by producing chimerics (where the 
variable domains are from the donor species while constant 
domains are human) and then by “humanization” (where the 
CDR loops that form the antibody combining site are from the 
donor species and the rest of the variable domains is predomi-
nantly human, as well as human constant domains).133 

A halfway step between chimerics and humanization to reduce 
immunogenicity has been “resurfacing” of chimeric antibodies 
in which surface residues of the variable domain, away from 
the CDRs, are mutated to human residues.134 This is done to 
remove primarily B-cell epitopes on the antibody surface. 
Many antibody-based drugs are now “fully human”, being 
produced by phage display, using transgenic mice, or by iden-
tifying antibodies from recovering patients. However, antibo-
dies produced by such methods can still be immunogenic. For 
example, adalimumab (Humira®, the world’s top-grossing 
drug), while “fully human” (produced by guided phage dis-
play), elicits an immune response in >25% of patients with only 
4% of these patients having sustained remission, compared 
with 34% of patients who did not have antibodies against 
adalimumab.135

Thus, even with fully human antibodies, computational 
BCE and TCE predictors can be used to predict B-cell 
epitopes and T-cell epitopes, which can also be experimen-
tally identified through proteomic assays.136,137 It is then 
desirable to remove these potentially immunogenic regions 
in advance of clinical trials. As well as the application of 
BCE and TCE predictors, various “humanness” scores have 
been proposed based on sequence information of human 
antibodies, enabling the in silico assessment of human- 
likeness given sequences of antibodies.138–140 Recently, 
Schmitz et al. developed a computational method that 
maps the sequence of a given antibody onto human B-cell 
repertoires comprising 326 million sequences of human 
antibodies.141 Chin et al. built a machine learning-based 
predictive model that distinguishes human antibody 
sequences from non-human ones, which was trained on 
large-scale repertoire dataset.142 These human-likeness 
scoring approaches will be useful when assessing how 
much given antibodies are close to human repertoires; the 
more human-like antibodies are, the less immunogenic they 
are expected to be. As described above, another approach is 
to identify patches of unusual residues on the protein sur-
face that may lead to an immune response.
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4 Future perspectives in biopharmaceutical 
informatics

4.1 Decoding human antibody gene repertoires and their 
role in target validation and drug discovery

New high-throughput sequencing methods have generated 
a vast amount of antibody sequence data, with over 
one billion antibody sequences publicly accessible in 
repositories.12,28,143–148 A sequenced human B-cell receptor 
(BCR, i.e., antibody) repertoire provides a snapshot of the 
BCRs present, typically those circulating in the blood, at 
a given time. BCR sequence and structure datasets can be 
used to investigate immune system mechanisms for improved 
library design, understand disease pathogenesis and identify 
antibodies for potential therapeutic development.149

4.1.1 Immune system mechanisms
The diversity of BCR repertoires can be used to develop an 
understanding of the mechanisms underlying the immune 
system. Typical BCR repertoire profiling includes sequence- 
based analysis, such as clonotyping. Clonotyping involves clus-
tering sequences into clones, usually based on identical V and 
J genes and high CDR-H3 identity.150 Such analysis can reveal 
dominant antibody sequences, potentially indicative of 
a response to an antigen, e.g., after vaccination. The availability 
of large datasets has been useful in characterizing the response 
to antigens and estimating true antibody genetic diversity,151 

though these are still far from fully understood. Sequence- 
based analysis has revealed that the immune systems of unre-
lated individuals have similarities; an estimated 0.02% of clones 
are “public” – shared across multiple individuals.152 However, 
differences identified between identical twins indicate the com-
plexity of the immune response and the importance of epige-
netics and environmental factors.153 Understanding such 
mechanisms is useful for antibody drug development, for 
example, to design antibody libraries for drug discovery.

4.1.2 Understanding disease pathogenesis
Immune responses to disease, and also therapies, can be pro-
filed using BCR repertoires to investigate B cell subtype invol-
vement and levels of antibody response. Using such analysis, 
we can distinguish between healthy and disease repertoires and 
learn about disease mechanisms, particularly those associated 
with B cells, such as autoimmune diseases, chronic lymphoid 
leukemia, and other cancers.154,155 In the future, such informa-
tion will hopefully be used to improve patient outcomes by 
identifying the most at-risk patients, tracking disease progres-
sion and monitoring response to therapies. A better under-
standing of the immune system involvement in disease may 
also indicate targets for potential therapeutic intervention, and 
even suggest antibody drug candidates present in the BCR 
repertoires of patients with the disease.

4.1.3 Therapeutic antibody candidate identification – using 
sequence information
BCR sequence repertoires can be used to suggest suitable 
candidates for drug development. A previous study has con-
textualized the sequence and structural properties of clinical- 

stage antibodies with human immunoglobulin datasets (Ig-seq) 
to evaluate the extent of humanness/originality of antibodies in 
clinical investigation.5 While not all naturally occurring anti-
bodies make good drug candidates, 29 clinical-stage therapeu-
tic antibodies were found to share 100% CDR-H3 identity with 
a BCR sequence from a healthy human repertoire.10,152 By 
looking for antibody sequences frequently found after expo-
sure to an antigen, we can identify those that might bind 
specifically to that particular antigen. When assessing indivi-
duals with the same disease or who have been exposed to the 
same antigen (either through infection or vaccination), these 
sequence-convergent responses can be a useful starting point 
for a potential therapeutic. Evidence to support this approach 
for drug discovery comes from vaccine studies156 and more 
recently SARS-CoV-2-infected individuals, where convergent 
antibodies had sequence similarity with identified SARS-CoV 
-2-binding antibodies.157 In addition to being potential bin-
ders, public clones may also have low immunogenicity, making 
them attractive as drug candidates.47

If existing binders are already known, likely drug candidates 
can be identified from a BCR repertoire by comparing with 
known antibodies binding to the desired antigen. Identification 
can be based on sequence identity, such as clonotyping,158 or 
prediction of similar binding properties.159 As such, sequence 
data from BCR repertoires can be useful starting points for 
suggested therapeutic antibody candidates, with or without 
knowledge of existing binding antibodies.

4.1.4 Therapeutic antibody candidate identification – 
incorporating structural information
While most examination of immune repertoires focuses on 
sequence analysis, utilizing available structural information 
may also be important when identifying potential therapeutic 
antibody candidates. Conventional antibody modeling tools are 
inefficient for building 3D models of entire repertoires of BCRs, 
with the fastest taking seconds per antibody model via homology 
modeling methods20,160 or ~285 CPU hours161 with ab initio 
methods. Therefore, structural modeling methods have been 
developed specifically for large-scale BCR or TCR repertoire 
data analysis. Incorporating structural information from models 
can allow prediction of antibody properties in a repertoire and 
we may be able to predict antibody domain binding by perform-
ing structural clustering of antibody models with known- 
function antibody datasets, such as CoV-AbDab.162,163

A high-throughput alternative to modeling utilizes struc-
tural annotation to rapidly predict antibody CDR loop shapes, 
based on sequence identity matching to a template.164 

Repertoires can be evaluated based on predicted CDR struc-
tures, for example, to identify over-represented CDR-H3 tem-
plates or clusters of templates that may represent a response to 
an antigen, and therefore be a useful starting point in thera-
peutic antibody design. Using structural prediction tools with 
BCR repertoire sequence data can reveal antibody drug candi-
dates not seen using sequence-only analysis.

Current limitations for utilizing BCR repertoire data in drug 
development include the major challenges of predicting anti-
body–antigen binding and affinity. In addition, existing BCR 
sequencing datasets often contain only heavy chain 
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information, and methods for obtaining BCR repertoires and 
binding affinities are varied and lack standardized protocols 
and analysis pipelines. With the development of high through-
put methods for single-cell sequencing and antigen specificity 
mapping,165 increased amounts of high quality, antigen-labeled 
antibody data might enable new accurate and reliable compu-
tational methods for drug discovery.

4.2 Biopharmaceutical informatics for design and 
optimization of next-generation biotherapeutics

The spectrum of biological activities accessible to antibody 
therapeutics is being expanded by exploring novel mechanisms 
of action. For example, bispecific antibodies can be created by 
engineering different specificities into each arm of the anti-
body, and multi-specific antibodies can be created by adding 
further VH/VL domains on the heavy and light chains or as 
a single-chain Fv (scFv) appended on the N- or C-terminus. In 
addition, novel binding functions can be created using scFvs or 
nanobodies (heavy-chain only), often combined in tandem for 
higher avidity or multi-specificity. Other technologies include 
antibody–drug conjugates (ADCs) created by conjugating 
cytotoxic drugs (payloads) for site-specific delivery. These 
novel antibody constructs are often collectively referred to as 
“next-generation antibodies”166 and are emerging as potential 
therapeutics with unique properties.

The sequences of these antibody formats may differ substan-
tially from those of immune-system-derived immunoglobulins, as 
extensive engineering is typically required to bring about the 
desired functionality. It is often the case that engineering addi-
tional functionality comes at the expense of other important 
properties that underpin developability, including conformational 
and colloidal stability, solubility, immunogenicity, and PK. 
Therefore, the successful development of next-generation biother-
apeutics presents additional challenges, which are usually system- 
specific. For example, ADCs are complex molecules that require 
careful attention to various components, including the mAb, the 
engineered drug conjugation sites, the selected linker, the payload, 
and the drug load distribution.167–169 Similarly, multi-specific 
antibodies require the selection of multiple binding domains 
that must be successfully combined to ultimately yield 
a homogeneous product with the desired functionality and suita-
ble developability profile.166

In general, the computational prediction of the developabil-
ity potential of these novel antibody-based formats presents 
two overarching challenges. The first is that there is no guar-
antee that combining together components with suitable prop-
erties will translate into a final therapeutic that has desirable 
characteristics. For example, a bispecific antibody obtained by 
combining two Fvs with good developability profiles may pre-
sent unexpected liabilities, such as increased oligomerization 
brought about by cross interactions between its components. 
Therefore, while the tools described here may be used to pre- 
select or engineer binding domains and mAbs with optimal 
characteristics, when these are combined in a multi-specific 
format the resulting construct may not necessarily be well 
behaved. The second challenge lies in the combinatorial nature 
of combining multiple constructs, which amplifies prediction 
errors and hence the risk of failure, even assuming that 

different components behave independently. As an example, 
consider a computational predictor of a “good” characteristic 
(such as having good solubility) with precision, or “positive 
predictive value” (PPV) of 0.9 that implies a false discovery rate 
(FDR = 1-PPV) of 0.1 (i.e., of the positive predictions, 90% of 
them are correct, or in other words, one in ten antibodies that 
are predicted as good are actually poor). If we apply this 
method to select two distinct Fvs for a bispecific antibody, 
then the probability of introducing at least one liability in this 
construct is given by 1-(PPV),2 i.e., 0.19 or 19%. Similarly, for 
a tri-specific construct, such as nanobodies in tandem, the 
probability of introducing a “poor” binding domain becomes 
27.1%. Therefore, even when neglecting the first challenge and 
considering the different components as fully independent of 
each other, the accurate prediction of the developability profile 
of next-generation biotherapeutics will require exceedingly 
precise methods.

Some of the databases that can be used for the analysis 
of nanobody-derived therapeutics are the Single Domain 
Antibody Database170 (sdAb-DB), Integrated Nanobody 
Database for Immunoinformatics11 (INDI Nanobodies 
DB), Non-redundant Nanobody database171 and database 
of Institute Collection and Analysis of Nanobodies172 

(iCAN). These databases host large collections of natural 
and synthetic camelid single-domain antibody sequences 
from literature sources and other online repositories. Each 
of these databases further provides unified annotation and 
integrative analysis tools for describing various single- 
domain antibodies.  
Overall, computational predictions of developability poten-
tial can already be used to aid the development of next- 
generation biotherapeutics. However, further developments 
are required before these methods will become highly com-
petitive with experimental readouts in terms of accuracy 
and reliability. To accelerate innovation in this area, it 
will be essential that experimental data of developability 
are published together with the antibody sequences used 
in the experiments, including any engineered modifications. 
We anticipate that, just as the Jain et al. study6 and 
others43,173 spurred the development of several computa-
tional predictors,5,40 similar investigations using next- 
generation biotherapeutics will enable such methods to be 
refined, or new approaches to be developed, to yield accu-
rate predictions of the developability profiles of these 
constructs.

4.3 Applications of artificial intelligence and machine 
learning toward antibody discovery, development, and 
manufacturing

Machine learning algorithms have been used for classification, 
regression, or clustering of biopharmaceutical experimental 
datasets. Machine learning models have been used for the 
prediction of protein secondary structure,174,175 relative solvent 
accessibility,176–179 protein folding,180–183 protein–protein 
interactions,184–188 and PTMs.189–192 Machine learning meth-
ods have also been applied to the prediction of aggregation 
using a classification tree ensemble with sequence-derived 
physicochemical properties.7,193 Other machine learning 

e2020082-14 R. KHETAN ET AL.



approaches such as gradient-boosting machines have been 
used for the prediction of CDR structure from protein 
sequence, particularly CDR-H3.194,195 The most common 
strategy used by these algorithms is the use of biophysical 
propensity scales as input features for machine learning meth-
ods to characterize the structural and functional properties of 
proteins.196

Narayanan et al. have reviewed the application of machine 
learning approaches in predicting the developability of anti-
body-based biologics.197 A machine learning algorithm has 
been shown to predict antibody developability solely by 
sequence using a dataset of 2400 antibodies.58 Here, 
a support vector machine model trained on physicochemical 
features with multiple sequence alignment emerged as the best 
machine learning pipeline combination to capture antibody 
developability from the sequence.

Deep learning approaches for antibody design and 
engineering are also becoming popular.198 Several deep 
learning models have been described for predicting para-
tope regions in antibody sequences,199 epitope-specific 
paratope identification,200 predicting antibody/antigen 
binding,201 CDR-H3 region optimization,202 and virtual 
screening for therapeutic antibody optimization.203 Deep 
learning algorithms offer the ability to capture key bio-
physical features and properties for any developability 
objective without the need to create complex theoretical 
functions. Consequently, deep learning approaches are 
ideal for cases where mechanistic understanding of the 
underlying developability issue is not fully understood. 
However, deep learning algorithms generally require 
large amounts of data, and so can be unsuitable for smal-
ler datasets.

The choice of the machine learning algorithm is decided 
by the dataset availability and the objectives of the applica-
tion. Supervised machine learning methods such as support 
vector machines, random forests, and conditional random 
fields are usually more appropriate for balanced datasets.191 

Although machine learning-based methods lack the physi-
cal transparency of other approaches, their practical appli-
cation is remarkably successful. Therefore, given that the 
amount of available training data across biological and 
structural databases is rapidly increasing, and that machine- 
learning algorithms are constantly improving, these meth-
ods are destined to play key roles in shaping the future of 
biopharmaceutical informatics.

5 Conclusion

The past two decades have seen transformational advances 
in the biomedical sciences. In particular, the Human 
Genome Project has triggered the development of NGS 
technologies, which are enriching biological databases 
with millions of sequences of proteins, including antibo-
dies from myriad different sources. Furthermore, improve-
ments in the pace and accuracy of protein structure 
determination techniques are contributing unprecedented 

amounts of high-quality structural data, comprising large 
numbers of antibody–antigen complexes.204–206 The 
increasing use of quantitative methods in biology has 
gradually transformed the way biological observations are 
made, and it is now possible to assemble large datasets of 
highly accurate measurements of antibody biophysical 
properties. Finally, computers able to perform complex 
calculations quickly are available, and extremely powerful 
algorithms for data mining and machine learning are 
constantly being developed. Taken together, these 
advances are enabling the antibody community to address 
questions that were essentially intractable a decade ago, 
including the development of highly accurate computa-
tional methods to streamline the development of 
biotherapeutics.

Here, we have described numerous metrics for compu-
tational developability assessment and established that no 
single tool or biophysical parameter can be used for pre-
dicting the developability potential of a biotherapeutic. 
The orthogonal combination of conceptually different 
algorithms should be used in developability assessment 
protocols to reduce method-specific biases. However, as 
stated by Narayaram et al.,197 “one common disadvantage 
of such in silico tools is that they use only protein 
sequences or structure-based information as input and 
usually do not consider the impact of formulation condi-
tions”. The biophysical solution behavior is also influenced 
by the excipients and solution conditions of the formu-
lated product. Therefore, the developability assessment 
algorithms will have more real-life practical applications 
if they also consider the solution conditions and formula-
tion parameters in the algorithms. In addition, minimal 
information has been provided in the available literature 
on the validation of these tools in the industrial setting. 
Therefore, it is important that biopharmaceutical infor-
matics approaches are uniformly applied across the indus-
try to expand and accelerate their potential for 
biotherapeutics development.

Biopharmaceutical informatics can also be a valuable guide 
for the commercialization and licensing of antibody-based 
drugs. The insights from computational developability assess-
ments can aid the due-diligence activities performed during 
licensing and acquisition transactions.207 The application of 
biopharmaceutical informatics tools is likely to increase in the 
future as new accurate and faster software are becoming avail-
able for generating antibody structure from the sequence for 
mAbs. Recently, AlphaFold,208 a neural-network-based algo-
rithm that was recognized as the optimal solution to the protein- 
folding problem at the Critical Assessment of protein Structure 
Prediction (CASP) competition, has received wide media atten-
tion, but its efficacy in modeling antibodies remains unproven. 
The recent success of AlphaFold at predicting protein structures 
demonstrates the power of bioinformatics applications. With 
increasing efforts devoted to data curation and method develop-
ment as described here, biopharmaceutical informatics holds the 
potential to play a leading role in selection and engineering of 
safe therapeutics.
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6 Abbreviations

ADC Antibody–drug conjugate
ADR Adverse drug reaction
APR Aggregation-prone region
BCE B-cell epitope
BCR B-cell receptor
CDA Computational developability assessment
CDR Complementarity-determining region
HIC Hydrophobic interaction chromatography
MHC Major histocompatibility complex
NGS Next-generation sequencing
PD Pharmacodynamic
PDB Protein data bank
PFA Position frequency analysis
PK Pharmacokinetic
PPV Positive predictive value
PTM Posttranslational modification
SAP Spatial aggregation propensity
ScFv Single-chain variable fragment
SEC Size exclusion chromatography
TAP Therapeutic antibody profiler
TCR T-cell receptor
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