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Abstract

Several studies have shown that soil microorganisms play a key role in the success of plant invasion. Thus,
ecologists have become increasingly interested in understanding the ecological effects of biological invasion on soil
microbial communities given continuing increase in the effects of invasive plants on native ecosystems. This paper
aims to provide a relatively complete depiction of the characteristics of soil microbial communities under different
degrees of plant invasion. Rhizospheric soils of the notorious invasive plant Wedelia trilobata with different degrees
of invasion (uninvaded, low-degree, and high-degree using its coverage in the invaded ecosystems) were collected
from five discrete areas in Hainan Province, P. R. China. Soil physicochemical properties and community structure of
soil microorganisms were assessed. Low degrees of W. trilobata invasion significantly increased soil pH values
whereas high degrees of invasion did not significantly affected soil pH values. Moreover, the degree of W. frilobata
invasion exerted significant effects on soil Ca concentration but did not significantly change other indices of soil
physicochemical properties. Low and high degrees of W. trilobata invasion increased the richness of the soil fungal
community but did not pose obvious effects on the soil bacterial community. W. trilobata invasion also exerted
obvious effects on the community structure of soil microorganisms that take part in soil nitrogen cycling. These
changes in soil physicochemical properties and community structure of soil microbial communities mediated by
different degrees of W. trilobata invasion may present significant functions in further facilitating the invasion process.
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Introduction
interest.
Biological invasion is an important element of global change

communities have recently received increased research

[1-4]. Invasive species have become a serious problem in the
global scope because these invaders exert multiple effects on
the structure and/or functions of their surrounding ecosystems
[1-5]. In recent decades, ecologists have become increasingly
interested in successful mechanisms of plant invasion to
determine why some plants are strongly invasive while others
are not [6,7]. Numerous studies have found that some plants
successfully invade certain environments because these
species can accelerate the succession of soil microbial
communities in their rhizosphere and then strengthen the
metabolic activities and community structure of the soil
microorganisms to facilitate their further invasion [5,8-11].
Thus, considering the continuing increase in anthropogenic
activities, the effects of plant invasion on soil microbial
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Gradual succession occurs after invaders are transported
from their natural habitat and progressively establish
populations in invaded ecosystems [12-14]. Invasive plants
exert different degrees of invasion in affected areas [14], and
the community structure of soil microorganisms may be
significantly affected by plant invasion along different stages of
succession. Thus, understanding the effects of different
degrees of plant invasion on soil microbial communities is
important in elucidating the mechanism underlying the success
of plant invasion. Unfortunately, existing studies on plant
invasion mainly focus on the impacts of invasive plants on
native ecosystems; such studies often ignore the invasion
degrees of invading species or do not discuss the effects of
different degrees of plant invasion on the community structure
of soil bacteria and fungi.
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The present study was carried out using cross-site
comparisons to provide a relatively complete depiction of the
responses of soil microbial communities to different invasion
degrees mediated by Wedelia trilobata. W. trilobata is a
creeping, mat-forming perennial herb native to the tropics of
Central America, which has invaded many areas of tropics and
subtropics [15,16]. It has been listed as one of the most
malignant weeds listed by the International Union for
Conservation of Nature and Natural Resources (IUCN) [17]. In
the 1970s, W. trilobata was introduced to China as an
ornamental and groundcover plant, and rapidly escaped from
gardens to roadsides and plantations [15,16]. W. trilobata has
become recognized as a notorious weed in southern China
[15,16,18]. The characteristic such as high nutrient cycling
rates [especially soil nitrogen (N)] is invoked to explain the
successful invasion of W. trilobata [19,20]. This study aims (1)
to examine the effects of different degrees of W. ftrilobata
invasion on soil physicochemical properties and (2) detect the
effects of different degrees of W. trilobata invasion on the
community structure of bacteria and fungi in soil subsystems.
We hypothesize that (1) increasing degrees of W. trilobata
invasion enhance soil nutrient element concentrations
(especially soil N) because invasive plants have high nutrient
cycling rates, especially for N [6,8,14,19-22], and that (2) low
degrees of W. trilobata invasion significantly increases the
richness of the soil bacterial community whereas high degrees
of W. trilobata invasion significantly increases the richness of
the soil fungal community because soil microbial communities
are dominated by bacteria in early succession and by fungi in
late succession [23].

Materials and Methods

Site description

Samples were obtained from five areas, namely, Haikou
(19°32'-20°05'N, 110°10-110°41'E), Tunchang (19°08'-
19°37'N, 109°45'-110°15'E), Sanya (18°09'-18°37'N, 108°56'-
109°48'E), Qionghai (18°568'-19°28'N, 110°07'-110°40'E), and
Danzhou (19°11'-19°52'N, 108°56'-109°46'E); all areas were
located in Hainan Province, P. R. China, with an area of 35 400
km? and an altitude of 1 811.6 m. The study areas feature a
subtropical humid climate, with an annual mean temperature of
approximately 24 °C and an annual precipitation of
approximately 1 500 mm. The samples were collected from
public land. No specific permissions were required to obtain
samples from these locations, and details on why this area was
chosen need not be provided. Ethical approval to conduct the
present study was not required because we did not handle or
collect animals considered in any animal welfare regulations,
and no endangered or protected species were involved in our
sampling or experiments.

Experimental design

In August 2010, rhizospheric soil samples with different
degrees of W. trilobata invasion were collected from the five
aforementioned areas. One sample area was divided into three
sites according to the degree of W. trilobata invasion, i.e.,
uninvaded (0%, CK), low degree (<35%, LD), and high degree
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Table 1. Degrees of W. trilobata invasion in the fifteen
samples used in the present study.

Invasion situation No. of sample site Degree of invasion Sample area

Uninvaded 1 0% Haikou
4 0% Tunchang
7 0% Sanya
10 0% Qionghai
13 0% Danzhou
Low-degree invasion 2 34% Haikou
B 10% Tunchang
8 6% Sanya
11 10% Qionghai
14 1% Danzhou
High-degree invasion 3 99% Haikou
6 90% Tunchang
9 97% Sanya
12 90% Qionghai
15 92% Danzhou

doi: 10.1371/journal.pone.0085490.t001

(>75%, HD) using the coverage of W. trilobata in the invaded
ecosystems. Five soil samples within an approximately 5 cm
radius of W. trilobata rhizosphere from each invasion degree in
each site were collected. A total of fifteen treatment
combinations were obtained: 5 sample areas x 3 invasion
degrees (the related information is shown in Table 1).

All soil samples were stored in sealed sterile bags and
immediately transported back to the laboratory. The soil
samples were passed through a 2 mm sieve to remove leaves,
plant roots, and gravel. All soil samples from one site were
homogenized by thorough mixing and then stored in a
refrigerator at 4 °C for further processing. Sieving and
homogenization steps were carried out to decrease the
discrepancies brought about by the inhomogeneity of soil
contents and reduce the effects of serendipitous foreign
materials on parameter determination.

Determination of soil physicochemical properties

Soil pH values were measured using a glass electrode (1:5
soil-water ratios) after shaking the samples for approximately
30 min to equilibrate [24]. Soil moisture was determined by
sampling 5 g of soil and then drying it at 105 °C for 24 h to
achieve a constant weight. Soil organic matter was analyzed
using the method of K,Cr,0,-H,SO, oxidation. Soil N
concentration was determined by the Semimicro-Kjeldahl
method. Soil phosphorus (P) concentration was determined
using the Mo-Sb antispetrophotography method. Soil
potassium (K) concentration was determined with the NaOH-
melt method. The concentrations of iron (Fe), manganese
(Mn), calcium (Ca), and magnesium (Mg) were determined
through atomic absorption spectrophotometry.
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Determination of genetic diversity in soil microbial
communities

Genetic diversity in the soil microbial communities in the
rhizospheres of W. trilobata was analyzed by denaturing
gradient gel electrophoresis (DGGE). 16S rRNA and 18S rRNA
genes were amplified with the universal bacterial primers 341F/
907R [25] and the universal fungal primers NS1/Fung [26,27],
respectively. A 40-base pair G + C-rich sequence (GC-clamp)
was attached to the 5' end of the forward primers to prevent the
complete separation of the strands during DGGE. PCR
amplification was performed with 25 pL of 2 x Power Taq PCR
MasterMix (Invitrogen, USA), 1 pL of each primer (10 uM), 1 uL
of DNA extract, and 1 uL of BSA (10 mg mL™"); sterile ultrapure
water was used to adjust the mixture to a final volume of 50 pL.
PCR amplification was run on a MyCycler thermal cycle (Bio-
Rad, USA). PCR amplification of 16S rRNA was performed as
follows: initial denaturation at 94 °C for 5 min, followed by 35
cycles of denaturation at 94 °C for 40 s, annealing at 55 °C for
50 s and an extension at 72 °C for 50 s, and a single extension
at 72 °C for 7 min; the program was ended at 25 °C. The 18S
rRNA PCR program was carried out with an initial denaturation
step at 94 °C for 5 min, followed by 35 cycles of denaturation at
94 °C for 30 s, annealing at 55 °C for 30 s and elongation at 72
°C for 40 s; a final elongation step at 72 °C was performed for 7
min and the program was ended at 4 °C.

DGGE was carried out using a Dcode universal mutation
detection system (Bio-Rad, USA). PCR samples (30 pL)
containing approximately equal amounts of PCR amplicons
were loaded onto the 1 mm thick 8% (w/v) polyacrylamide gels
in 1 x TAE buffer using a denaturing gradient ranging from 30%
to 80% for bacterial PCR samples and 10% to 50% for fungal
PCR samples (100% denaturant was defined as 7 M urea and
40% deionized formamide). Electrophoreses were performed at
60 °C and 120 V for 12 h. After staining with SYBR Green |
nucleic acid gel stain (Molecular Probes, Carlsbad, CA, USA),
the gels were scanned and analyzed with QuantityOne
software (version 4.5, Bio-Rad, USA).

All recognized DGGE bands were excised under UV light,
and a bead beating method was applied to extract DNA from
the gel slices [25]. After purification with a DNA fragment
purification Kit (Toyobo, Osaka, Japan), the eluted DNA was
used for re-amplification with the original primer set (without the
GC clamp). PCR products were sequenced by Sangon Biotech
(Shanghai) Co., Ltd. (Shanghai, P. R. China). The sequences
were submitted to National Center for Biotechnology
Information (NCBI, http://www.ncbi.nlm.nih.gov/) for BLAST to
determine their phylogenetic affiliation, and the closest relatives
were identified for phylogenetic analysis.

Analysis

DGGE banding profiles of both bacterial community and
fungal community were digitized after average background
subtraction for the entire gel using QuantityOne (version 4.6.2,
Bio-Rad, USA). The relative intensity of a specific band was
transformed according to the sum of the intensities of all bands
in a pattern [28]. Bands with relative contributions below 1%
were discarded from the analysis, and the Shannon-Wiener
diversity (H') and Pielou evenness (E,) indices were used to
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estimate the community structure of the soil microorganisms. H'
was determined by the following equation: H'=-ZPInP; [29],
where P, is the importance probability of the bands in a track. P,
was calculated as follows: P=n/N, where n, is the band
intensity for individual bands and N is the sum of the intensities
of all of the bands in a single lane [30]. E, was calculated as
follows: E,=H'/InS [31], where S is defined as the band amount
present in a single lane [32,33].

A phylogenetic tree of the relationship between the
sequences of the predominant DGGE bands and those in
GenBank determined by BLAST was created through the
Neighbour-joining method using Molecular Evolutionary
Genetics Analysis (MEGA, version 5.1).

All data were checked for deviations from normality and
homogeneity of variance before analysis. The effects of the
degree of W. trilobata invasion on soil microbial communities
and Shannon-Wiener diversity (H') and Pielou evenness (E,)
indices of soil microorganisms were determined by analysis of
variances (ANOVA) with site considered as a block effect using
Statistical Product and Service Solutions (SPSS, version 17.0).
Statistical significance was set at P <0.05.

Results

Soil physicochemical properties

Low degrees of W. trilobata invasion significantly increased
soil pH values (Table 2, P < 0.05) whereas high degrees of W.
trilobata invasion did not significantly affect soil pH values
(Table 2, P > 0.05). Low and high degrees of W. trilobata
invasion increased soil moisture; the difference between the
effects of high and low degrees of invasion on soil moisture
was not significant (Table 2, P > 0.05).

Soil Ca concentration under low degrees of W. trilobata
invasion was significantly higher than that under high degrees
of W. trilobata invasion (Table 2, P < 0.05). K concentrations
decreased significantly with increasing degree of W. ftrilobata
invasion (Table 2, P < 0.05). Both low and high degrees of W.
trilobata invasion did not significantly change soil organic
matter, N, P, Fe, Mn, and Mg concentrations (Table 2, P >
0.05).

The ANOVA results revealed that the degrees of W. trilobata
invasion significantly affected the soil Ca concentration (Table
3, P < 0.05). However, the degrees of W. trilobata invasion did
not pose obvious effects on other indices of soil
physicochemical properties (Table 3, P > 0.05).

DGGE pattern and soil microbial communities’
structure

The community structures of soil microorganisms were
compared based on DGGE analysis of 16S rRNA and 18S
rRNA gene fragments. The DGGE patterns showed remarkable
differences in composition among the five sample areas
(Figures 1A and 1B). A significant difference was observed
between Shannon—Wiener diversity of soil bacterial community
and that of soil fungal community under uninvaded and low
degrees of W. trilobata invasion but not under high degree of
W. trilobata invasion (Figure 2A). The degrees of W. trilobata
invasion significantly effected Shannon—Wiener diversity of soil
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fungal community (Figure 2A; Table 3, P < 0.05). However,
both low and high degrees of W. trilobata invasion did not pose
significant effects on Shannon-Wiener diversity of soil bacterial
community (Figure 2A; Table 3, P > 0.05) or on Pielou
evenness of both soil bacterial community and soil fungal
community (Figure 2B; Table 3, P > 0.05).

A total of 51 DGGE bands were sequenced, including 21
predominant 16S rRNA gene-based DGGE bands for soil
bacterial community and 30 predominant 18S rRNA gene-
based DGGE bands for soil fungal community (Figures 1A and
1B). The relationships of the 21 predominant 16S rRNA gene-
based DGGE bands and the 30 predominant 18S rRNA gene-
based DGGE bands are shown in the phylogenetic tree in
Figures 3A and 3B. Obvious differences in the soil microbial
communities (especially for the soil bacterial community) were
observed among sites with different degrees of W. trilobata
invasion (Figures 3A and 3B). For example, low degrees of W.
trilobata invasion significantly increased the abundance of
bands 1 and 5 of the soil bacterial community in Haikou as well
as the abundance of band 5 of the soil bacterial community in
Tunchang (Figures 1A and 3A). Increasing degrees of W.
trilobata invasion increased the abundance of bands 1 and 5 of
soil bacterial community in Sanya (Figures 1A and 3A). Both
low and high degrees of W. trilobata invasion decreased the
abundance of band 5 of the soil bacterial community in
Qionghai (Figures 1A and 3A). Bands 1 and 5 of the soil
bacterial community were respectively identified as Nitrobacter
and Nitrosomonadaceae through BLAST (Figure 3A).

Discussion

Soil physicochemical properties

Previous studies have shown that plant invasion significantly
elevates soil pH values [34-37]. This result may be mainly
attributed to the fact that invasive plants have high nitrate
uptake rates, which elevate soil pH values because the
decrease in soil nitrate are known to elevate soil pH values
[34,38]. Similar values are only obtained under low degrees of
W. trilobata invasion in the present study. High degrees of W.
trilobata invasion did not significantly affect soil pH values. In
previous studies, the metabolic activities and community
structure of soil microorganisms were highly correlated with soil
pH values [39-41]. Thus, we believe that changes in soil pH
values mediated by low degrees of W. trilobata invasion can
enhance the succession of soil microbial communities in the
rhizosphere and facilitate further invasion. Changes in soil pH
values may play a minor role in the invasion process under
high degrees of W. trilobata invasion.

Soil moisture is an important driver of plant invasion [42,43].
Many studies have revealed a positive correlation between soil
moisture and the degrees of plant invasion [44,45]. Other
researchers have found that invasive plants positively affect
soil moisture in the invaded ecosystem [37,46] and that soil
moisture is a major factor that influences the metabolic
activities and community structure of soil microorganisms
[47-49]. Therefore, changes in soil moisture induced by
invasive plants can affect the changes in soil microbial
communities in the rhizosphere and enhance plant
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Table 3. ANOVA of the effects of the degree of W. trilobata invasion on the soil physicochemical properties and Shannon—
Wiener diversity (H') and Pielou evenness (E,) indices of soil microorganisms.

Soil pH  Soil moisture Organic matter N P K Fe Mn Ca Mg H-B H-F Ey-B En-F
F 3.373 0.245 0.017 0.040 0.326 2.620 0.451 0.496 3.953 0.148 0.697 4.364 3.152 0.445
P 0.069 0.786 0.983 0.961 0.728 0.114 0.647 0.621 0.048" 0.864 0.517 0.038" 0.079 0.651

" indicates significant differences at the 0.05 probability level. P values equal to or lower than 0.05 are in boldface. Legend: H'-B, H' of soil bacterial community; H'-F, H' of

soil fungal community; E4-B, En of soil bacterial community; Ex-F, Ep of soil fungal community.

doi: 10.1371/journal.pone.0085490.t003

Figure 1.
rRNA gene fragments of soil fungal community (B).

(ol 13 14 15

DGGE fingerprints of amplified 16S rRNA gene fragments of soil bacterial community (A) and amplified 18S
Straight lines indicate the DGGE bands for which the sequence was

determined. Arabic numerals lies above the figure represent sample sites.

doi: 10.1371/journal.pone.0085490.g001

invasiveness. However, in the present study, both low and high
degrees of W. trilobata invasion did not significantly affect soil
moisture. This result indicates that W. trilobata invades
ecosystems via pathways other than through soil moisture
changes.

Accumulated evidence suggests that invasive plants have
high rates of nutrient cycling, especially for N [6,8,14,19-22],
and higher soil P availability is often correlated with the
invasion degrees of plants [50,51]. Thus, we hypothesize that
W. trilobata invasion can enhance soil nutrient element
concentrations (especially soil N and P) with increasing
invasion degree. Differing from our initial hypothesis, however,
the results of the present study showed that both low and high
degrees of W. trilobata invasion did not exert significant effects
on soil N, soil P, and soil organic matter concentrations. This
result is consistent with a previous study [52] that found neutral
effects of plant invasion on soil N or P. Other study [53] found
no difference in soil N concentrations with and without the
invasion by Phalaris arundinacea in wet prairie vegetation. The
neutral effect of plant invasion on soil N may be because of the
compensation of increased N demand with increased N supply
[54]. As such, we believe that W. trilobata invades ecosystems
via pathways other than through high rates of nutrient cycling.

PLOS ONE | www.plosone.org

Structure of soil microbial communities

Several studies have shown that plants successfully invade
some environments because these species can accelerate the
succession of soil microbial communities in their rhizosphere
and promote microbial functions, which facilitate invasion
process [5,8-11]. Thus, with continuous increases in
anthropogenic activities causing accelerated rates of biological
invasion, considerable interest in understanding the ecological
effects of plant invasion on soil microbial communities has
grown [5,9,55-57]. Some investigators have suggested that
invasive plants trigger the changes in the structure of biological
communities in invaded ecosystems [1,13,14,58,59], especially
soil microbial communities [5,9,55-57], in a way that results in
positive feedback for the invading plants and negative
feedback for the native plant communities [5,60-62]. Recent
studies have confirmed that bacteria dominate soil microbial
communities in early succession and that fungi dominate these
communities in late succession [23]. Based on this finding, we
hypothesized that low degrees of W. trilobata invasion
increased the richness of soil bacterial community whereas
high degrees of W. trilobata invasion increased the richness of
soil fungal community. Results obtained in the present study
are only partly consistent with our hypothesis. Both low and
high degrees of W. trilobata invasion significantly increased the
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Figure 2. Shannon-Wiener diversity (H') (A) and Pielou evenness (E,) (B) indices of the soil microbial communities under
different degrees of W. trilobata invasion. Symbols: open bars, soil bacterial community; filled bars, soil fungal community. Error

bars indicate standard errors (SE, n = 3).
doi: 10.1371/journal.pone.0085490.g002

richness of soil fungal community. However, the richness of soil
fungal community showed no significant difference between
low and high degrees of W. trilobata invasion. Moreover, both
low and high degrees of W. trilobata invasion did not exert
significant effects on the richness of soil bacterial community.
Thus, the results of the present study show that different
degrees of plant invasion can trigger changes in the richness of
soil fungal community but not in soil bacterial community. This
finding indicates that soil fungal community play an important
role in the invasion process of invasive plants. Changes in the
soil fungal community mediated by W. trilobata invasion may
be attributed to changes in the soil physicochemical properties
after plant invasion [1,13,59]. Differences in soil characteristic
may also contribute to differences in the invasion degrees of
invasive plants as well as the community structure of soil
microorganisms. The results of the present study are partly
inconsistent with those presented in a previous study [63],
which found that Acacia dealbata invasion can lead to
significant increases in the richness of soil bacterial community
and significant reductions in the richness of soil fungal
community in grassland ecosystems. Differences in results
may be attributed to differences in the soil physicochemical

PLOS ONE | www.plosone.org

properties studied, plant species used, time span of plant
invasion, and the time scale of the studies.

Invasive plants often feature faster growth rates and respond
more opportunistically to nutrients (especially N) [64]. Several
studies [65,66] show that the invasion degree induced by
plants is positively correlated with soil nutrients (especially N).
Thus, invasive plants may maximize their invasiveness by
accelerating soil nutrient cycling (especially N cycling) [67-70],
particularly through the changes in the community structure of
functional microorganism, such as soil microorganisms that
take part in N cycling (i.e., N-fixing bacteria, nitrifying bacteria,
nitrosifying bacteria, ammonia oxidizing bacteria, and
denitrifying bacteria) [68,69,71-74]. Low degrees of W. trilobata
invasion significantly increased the abundance of Nitrobacter
and Nitrosomonadaceae in Haikou as well as the abundance of
Nitrosomonadaceae in Tunchang. W. trilobata invasion also
increased the abundance of Nitrobacter and
Nitrosomonadaceae in Sanya but decreased the abundance of
these bacteria in Qionghai. This finding indicates that invasive
plants show altered invasiveness through changes in
community structure of soil microorganisms that take part in N
cycling.
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Figure 3. Phylogenetic tree showing the relationship of the 21 predominant 16S rRNA gene-based DGGE bands (A) and
the 30 predominant 18S rRNA gene-based DGGE bands (B). Numbers at the node are bootstrap values based on 1000 re-
samplings. The scale bar represents percentage similarity. Genbank accession numbers are shown in parentheses.

doi: 10.1371/journal.pone.0085490.g003

The present study sought to determine the effects of different degrees of W. trilobata invasion can trigger changes in soil
degrees of plant invasion on soil microbial communities to physicochemical properties. Both low and high degrees of W.
better understand the mechanism of plant invasion. Different trilobata invasion significantly increased the richness of soil
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fungal community but not that of soil bacterial community.
Invasive plants can induce changes in the community structure
of soil microorganisms that take part in N cycling. Changes in
the soil physicochemical properties and community structure of
soil microbial communities mediated by W. ftrilobata invasion
may play an important role in facilitating further invasion.
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