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Abstract

Medical researchers are increasingly interested in knowing how the complex community of

micro-organisms living on human body impacts human health. Key to this is to understand

how the microbes interact with each other. Time-course studies on human microbiome indi-

cate that the composition of microbiome changes over short time periods, primarily as a con-

sequence of synergistic and antagonistic interactions of the members of the microbiome

with each other and with the environment. Knowledge of the abundance of bacteria—which

are the predominant members of the human microbiome—in such time-course studies

along with appropriate mathematical models will allow us to identify key dynamic interaction

networks within the microbiome. However, the high-dimensional nature of these data poses

significant challenges to the development of such mathematical models. We propose a

high-dimensional linear State Space Model (SSM) with a new Expectation-Regularization-

Maximization (ERM) algorithm to construct a dynamic Microbial Interaction Network (MIN).

System noise and measurement noise can be separately specified through SSMs. In order

to deal with the problem of high-dimensional parameter space in the SSMs, the proposed

new ERM algorithm employs the idea of the adaptive LASSO-based variable selection

method so that the sparsity property of MINs can be preserved. We performed simulation

studies to evaluate the proposed ERM algorithm for variable selection. The proposed

method is applied to identify the dynamic MIN from a time-course vaginal microbiome study

of women. This method is amenable to future developments, which may include interactions

between microbes and the environment.

Introduction

Human epithelial surfaces such as those of intestines, mouth and vagina provide rich envi-

ronment for the growth of a variety of bacteria that together constitute most of the human
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microbiome. It is now widely understood that microbiome has direct relationship to

human health. Consequently, it is important to understand how bacteria that constitute

the microbiome interact with their hosts and with each other. These bacteria interact with

each other in various forms of cooperative and antagonistic relationships, and this complex

set of interactions can be depicted in the form of a Microbial Interaction Network (MIN)

[1].

The degree of cooperative and antagonistic relationships between two types of bacteria

can be gauged from the impact that one type has over the growth and abundance of the

other. Interactions among bacteria have traditionally been inferred using microbiological

assays involving co-culturing; however not all bacteria can be cultured, and laboratory

inferred interactions may not occur in nature. In contrast, sequencing the variable regions

of 16S ribosomal RNAs directly from biological samples gives estimates of abundance of a

large variety of bacteria, which can provide a holistic and unbiased view of microbial

interactions.

Few longitudinal studies of human microbiome have been undertaken, and the initial dis-

coveries include discovery of the most abundant microbial taxa on various locations on

human body [2–5]; large inter-personal and within-subject temporal variation in microbiome

composition [3, 6, 7]; and the effect of external stimuli on microbiome [8, 9]. However, the

construction of MIN operational in human microbiota remains a major challenge due to the

high-dimensional and high-fluctuation nature of the data [1].

MIN can be constructed either by cross-sectional data [10, 11] or time-series data [12–15].

Compared with MINs constructed from cross-sectional data, MINs constructed from time-

course data can capture the dynamic relationship between different bacteria and/or external

stimuli, which arguably provide more realistic representations of the interactions of micro-

biota as they operate in nature [1, 8]. In this paper, we will focus on reconstructing dynamic

MINs based on time series data which also is technically more challenging compared to that

based on the cross-sectional data.

Many models have been proposed for constructing dynamic MIN [10–12, 15–18], includ-

ing those based on ordinary differential equation (ODE) models [13, 14]. An ODE model is

formed by taking the derivative of bacterial abundance as a function of abundance of all other

bacteria and/or external stimuli. This results in a directed network model, and the dynamic

nature of MIN is automatically captured and quantified. However, it is computationally diffi-

cult to apply ODE models to more than a dozen or so variables to simultaneously estimate sys-

tem dynamics and regulatory relationships. Furthermore, most ODE models ignore both

system and measurement errors, which in many cases have critical impact on results. In this

paper, we will explore the utility of state space model (SSM), which is an alternative to ODE

models, to capture MIN dynamics from time-course data.

A state space model (SSM) is a special case of dynamic Bayesian networks (DBNs). For sim-

plicity, we only consider linear SSM, also referred to as linear dynamic systems (LDS) [19–21],

for dynamic MINs in this study. SSMs have been extensively applied in the field of engineer-

ing, and recently, in systems biology, for noisy measurements over time, and to discover

underlying true dynamics of the system [22]. In our study, we let yt 2 R
p represent a p-dimen-

sional vector of microbial abundance of p bacterial operational taxonomic units (OTUs)

observed at time t. Here, OTU is an operational definition of bacterial species, obtained using

clustering of 16S ribosomal RNA sequences extracted from biological samples. In linear SSMs,

yt is assumed to be generated from a k-dimensional real-valued hidden state variable vector

xt 2 R
k, and the sequence of evolving xt follows a first-order Markov process, which can be
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written as [20]

xt ¼ Axt� 1 þ wt;

yt ¼ Cxt þ vt:
; t ¼ 1; . . . ;T:

(

ð1Þ

Here A is the k × k-dimensional state dynamic (autoregressive) matrix; C is the p × k-

dimensional observation matrix; and wt * N(0, Q), vt * N(0, R) are independent system

and measurement noises, respectively. Both Q and R are assumed to be diagonal in many

practical applications. The initial state vector x0 2 R
k is usually assumed to have distribution

N(μ, S).

In order to capture the dynamic MIN using state space model, it is necessary to investigate

the problem of parameter estimation and variable selection for high dimensional SSMs [23,

24]. For example, Rangel and colleagues [23] applied SSMs in which observations were

divided into a set of input (or exogenous) variables and a set of output (or response) variables,

and the dimension was determined by cross-validations; Kojima et al [24] proposed a vector

autoregression (VAR) model for the dynamic gene network. Based on the state space repre-

sentation of VAR, they investigated the problem of parameter estimation and variable selec-

tion by L1 regularization and EM algorithm. Although these publications have suggested

several useful ideas about the statistical inference of high dimensional state space model, effi-

cient algorithms for establishing MIN have not been well addressed from a computational

perspective.

In this paper, we develop a practical dynamic MIN reconstruction pipeline based on SSM

that not only incorporates many existing SSM parameter estimation and model selection tech-

niques, but also is computationally efficient and applicable for “large p, small n” data such as

16S microbiome abundance data. First, we propose a novel Expectation-Regularization-Maxi-

mization (ERM) computational framework for the SSMs, and provide a feasible implementa-

tion strategy for initialization of the ERM algorithm, i.e., to initialize the ERM algorithm from

the R step using nonparametrically estimated state variables instead of initializing the algo-

rithm from the E step, which is not feasible in the high-dimensional SSM case. Second, we pro-

pose the vectorization of the matrices in the SSM and use a concept of “pseudo-regression” to

justify the R step for L1-regularization based on which the standard LARS algorithm with

minor modifications can be carried out. Third, a new row-based algorithm is proposed in

order to reduce the memory footprint, which is a major computational cost for high-dimen-

sional data analyses. In simulation studies we demonstrate that the proposed row-based algo-

rithm performs equally well and could handle a higher dimensional model compared to a

matrix-based algorithm. Lastly, we apply the proposed method to reconstruct dynamic MIN

for normal bacterial communities in human vagina. The MINs that were constructed revealed

some previously known as well as some novel microbial relationships.

Methods

Model selection and parameter estimation of high-dimensional linear

state space models

We propose a linear SSM with an Expectation-Regularization-Maximization (ERM) algorithm

to efficiently construct dynamic MINs. Since time course abundance data for all bacteria in the

network can be obtained using next generation sequence technology, we can set the observa-

tion matrix C = Ip×p (identity matrix) in Model (1). That is, the linear SSM for dynamic MIN

High-dimensional linear state space models for dynamic microbial interaction networks
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can be written as

xt ¼ Axt� 1 þ wt;

yt ¼ xt þ vt:
; t ¼ 1; . . . ;T:

(

ð2Þ

Thus, in this model, the dimension of state vector equals the dimension of observation vec-

tor (k = p). Other assumptions remain the same as in Model (1). For simplicity, we also assume

that both Q and R are diagonal, i.e.,Q ¼ s2
Q � Ip�p and R ¼ s2

R � Ip�p.
The above model allows us to use the time-course microbiome data to construct a direct

dynamic MIN with distinguishable system noise and measurement noise. Each element aij
(denoting the ith-row and jth-column element) in p × p system matrix A represents a directed

edge in the network which is time-invariant, and reflects the interacting effect from bacterial

species j to bacterial species i. However, when p is very large, it is infeasible to directly estimate

A since we may encounter the problem of estimating a high-dimensional matrix with sparse

data that requires inverting high-dimensional matrices, which not only is computationally

intensive, but also can be numerically unstable. In addition, microbial interaction networks

are usually sparse, i.e., each bacterial species may only be impacted by a limited number of

other species. In other words, high-dimensional p × pmatrix A is a sparse matrix with many

elements being zero. It is advantageous to perform variable selections to determine the zero

elements of A while we can estimate the non-zero elements at the same time.

It is known that, from the Markov property of the state space model, the joint likelihood for

complete data for the SSM can be written as

PðyÞ ¼ Pðx1Þ
YT

t¼2

Pðxtjxt� 1Þ
YT

t¼1

PðytjxtÞ ð3Þ

where θ = (A,Q, R, μ, S). For the linear SSM (2), the joint log-likelihood of complete data can

be expressed as

logPðyÞ ¼ �
XT

t¼1

ð
1

2
½yt � xt�

0R� 1½yt � xt�Þ �
T
2

log jRj

�
XT

t¼2

ð
1

2
½xt � Axt� 1�

0Q� 1½xt � Axt� 1�Þ �
T � 1

2
log jQj

�
1

2
½x1 � m�

0
S� 1½x1 � m� �

1

2
log jSj � Tp log ð2pÞ:

ð4Þ

In the following subsections, we propose the Expectation-Regularization-Maximization

(ERM) algorithm to simultaneously determine the zero-elements and estimate the non-zero

elements of A based on the maximum likelihood principle.

Expectation-Regularization-Maximization (ERM) algorithm

When the SSM parameters are known, the Kalman filter and smoother can be used to estimate

the hidden states [25]. Assuming that model parameters are given, the Kalman filter is the opti-

mal method to estimate the state variables at time t of a linear Gaussian SSM from a sequence

of noisy observations {y1, . . ., yt, . . ., yT}. Shumway and Stoffer [26] introduced an EM algo-

rithm to estimate unknown parameters for the linear dynamic systems when the observation

matrix C is known, such as in Model (1). The EM algorithm has gradually become a standard

estimation tool for SSMs and related models [27]. In the EM algorithm, the Kalman filter is

High-dimensional linear state space models for dynamic microbial interaction networks
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employed to estimate state variables in the E step and the maximum likelihood method is used

to estimate unknown parameters in the M step.

We propose a novel three-step procedure, the Expectation-Regularization-Maximization

(ERM) algorithm, to estimate the high-dimensional sparse system matrix A, and other

parameters, as well as the state variables for linear SSMs. The procedure is outlined as

follows:

• E Step: the conditional expectation of the likelihood (4) is calculated by

Gðyjyðr� 1Þ
Þ ¼ EXjY;yðr� 1Þ ð logPðyÞÞ; ð5Þ

where θ(r−1) are the estimated parameters at the (r − 1)th iteration. In addition, the state vari-

ables (xt) and their sufficient statistics (functions of xt) required for estimating unknown

parameters in the R and M step, are also estimated through the Kalman filter and smoother

at this step.

• R Step: the L1 regularization, or the adaptive LASSO method, is employed to obtain the esti-

mate of the sparse system matrix A denoted by A(r).

• M Step: the MLE of other model parameters θ� = (Q, R, μ, S), denoted by θ�(r), is obtained

by maximizing the conditional expectation of likelihood

Gðy�jyðr� 1Þ
;AðrÞÞ ¼ EXjY;yðr� 1Þ;AðrÞ ð logPðyÞÞ: ð6Þ

For the standard SSM, the EM algorithm starts from the E Step for a given initial value of

the system matrix A based on the prior knowledge of the dynamic system. However, for the

high-dimensional linear SSM, it is not feasible to provide a good initial value for a high-

dimensional sparse system matrix A. Thus, we recommend to start the proposed ERM

algorithm from the R Step, which depends on an initial estimation of the state variable (xt)
that can be obtained by a nonparametric local polynomial or spline smoother [28] instead of

the Kalman filter. Thus, the proposed ERM algorithm should follow the order of R-M-E

steps iteratively, or one R step, then E-R-M steps iteratively, until the log-likelihood esti-

mates converge. The detailed implementation for each step is discussed in the following

subsections.

E step: Kalman filtering and smoothing. The following sufficient statistics required

for unknown parameter estimation in the R and M steps can be computed via the Kalman

filter and smoother, E(xt|y1, . . ., yT), Eðxtx0tjy1; . . . ; yTÞ and Eðxtx0t� 1
jy1; . . . ; yTÞ, which are

denoted by xTt , ðxx0ÞTt and ðxx0ÞTt;t� 1
; Var(xt|y1, . . ., yτ) by Vt

t and Covðxtx0t� 1
jy1; . . . ; ytÞ by

Vt
t;t� 1

, where τ is an arbitrary time point. The Kalman filter and smoother involve forward

and backward recursions. In the forward recursions, estimation of the current states

(filtering) and prediction of the next state are made based on the past measurements.

For the backward recursions (smoothing), the past states are estimated given all the mea-

surements up to the very last time point. Namely, the state variables are estimated by

xTt ¼ Eðxtjy1; . . . ; yTÞ. The general Kalman filtering and smoothing algorithms are given as

follows.

High-dimensional linear state space models for dynamic microbial interaction networks
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• Forward recursions: Prediction and Filtering

xt� 1
t ¼ Axt� 1

t� 1
;

Vt� 1
t ¼ AV t� 1

t� 1
A0 þ Q

ð7Þ

Kt ¼ Vt� 1
t C0ðVt� 1

t C0 þ RÞ� 1
;

xtt ¼ xt� 1
t þ Ktðyt � Cx

t� 1
t Þ;

Vt
t ¼ Vt� 1

t � KtCV
t� 1
t

ð8Þ

As we mentioned earlier, in the first iteration of the E step, Awill be estimated by an initial R

step. The initial state mean x0
0
¼ m can be replaced by a small nonzero initial vector such as

(0.1, 0.1, . . ., 0.1), and the variance matrix V0
0
¼ S can be replaced by a small diagonal

matrix, such as 10−5 × Ip×p. R, Q can be initialized by two identity matrices—these two

parameters will be updated in the M step.

• Backward recursions: Smoothing

Jt� 1 ¼ Vt� 1
t� 1
A0ðVt� 1

t Þ
� 1
;

xTt� 1
¼ xt� 1

t� 1
þ Jt� 1ðxTt � Ax

t� 1
t� 1
Þ

VT
t� 1

¼ Vt� 1
t� 1
þ Jt� 1ðVT

t � V
t� 1
t ÞJ

0
t� 1

VT
t� 1;t� 2

¼ Vt� 1
t� 1
J 0t� 2
þ Jt� 1ðVT

t;t� 1
� AV t� 1

t� 1
ÞJ 0t� 2

ð9Þ

where VT
t� 1;t� 2

is initialized by VT
T;T� 1

¼ ðI � KTCÞAV t� 1
t� 1

.

Notice that the above algorithms require p × pmatrix inverse calculations, which is compu-

tationally heavy and numerically unstable for a high dimensional system. To avoid such prob-

lem, Kojima et al [24] derived a recursive formula from the blockwise matrix inversion

theorem. Matrices Vt
t in Eq (8) and ðVt� 1

t Þ
� 1

in Eq (9) can be expressed alternatively as,

Vt
t ¼ ½C

0R� 1C þ ðVt� 1
t Þ

� 1
�
� 1
;

ðVt� 1
t Þ

� 1
¼ Q� 1 � Q� 1A½A0Q� 1Aþ ðVt� 1

t� 1
Þ
� 1
�
� 1A0Q� 1:

Note that the inverse of the matrix in brackets above are of the same form (B0ΔB + D−1)−1,

where D is a symmetric n × nmatrix, B is an arbitrary n × nmatrix, and Δ is a diagonal matrix

with diagonal elements δ1, . . ., δn. Let bi denote the ith row vector of B, i = 1, . . ., n and D0 = D,

we can use the following recursive formula,

Diþ1 ¼ Di �
1

1=diþ1 þ b0iþ1
Dibiþ1

Dibiþ1b
0

iþ1
D0iþ1

to calculate the inverse matrix (B0ΔB + D−1)−1, which is given by Dn. Thus, Vt
t and Jt−1 in Eqs

(8) and (9) can be calculated by the recursive formula without the inverse matrix calculations.

R step: L1 regularization using the adaptive LASSO. The implementation of the R Step

in the proposed ERM algorithm is critical. The adaptive LASSO estimates can be obtained effi-

ciently by using the computationally efficient LARS algorithm [29], which needs to be custom-

ized to the ERM algorithm. The extended BIC (eBIC) for large model selection proposed by

[30] is employed to select the tuning parameters in the adaptive LASSO method. This model

selection criterion is shown to be consistent under some mild conditions and also meets the

needs of variable selection for larger model spaces [30].

High-dimensional linear state space models for dynamic microbial interaction networks
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LASSO [31] is a popular L1 regularization technique for performing estimation and vari-

able selection simultaneously, which is consistent only under relatively restrictive mathemati-

cal assumptions. The adaptive LASSO proposed by [32], where adaptive weights are used for

penalizing different coefficients in the L1 penalty, enjoys the desired oracle property under

much weaker assumptions, namely, it performs as well as if the true underlying model were

given in advance and produces asymptotically unbiased estimators for the nonzero parameters

in linear regression models.

The adaptive LASSO estimates can be implemented by using the LARS algorithm [29]. In

order to modify and apply the LARS algorithm for the R Step in the proposed ERM algorithm

for linear SSMs, we need to use the vectorized matrix notations [33, 34], i.e., denote

X� ¼ ðx2; x3; . . . ; xTÞ; X ¼ vecðX�Þ; ð10Þ

Z� ¼ ðx1; x2; . . . ; xt� 1Þ
0
; Z ¼ Z� 
 Ip�p; ð11Þ

a� ¼ ða1; a2; . . . ; apÞ; a ¼ vecða�Þ; ð12Þ

e� ¼ ðw2;w3; . . .wTÞ; e ¼ vecðe�Þ; ð13Þ

where vec is the stack operator and
 is the Kronecker product; ai is the ith row vector of A; α
is the vectorized A which is a (p2 × 1) vector; e is a (p(T − 1) × 1) vector that represents mea-

surement errors.

The matrix-based ERM algorithm

In the standard EM algorithm for linear SSMs, the estimate of A, the system matrix, can be

obtained by maximizing the conditional expectation of the likelihood function (5), which is

equivalent to minimizing

GðaÞ ¼ EX;ZjY;yðr� 1ÞfðX � ZaÞ
0
ðX � ZaÞg;

in vectorized notations. This produces the MLE estimator of A as

Â ¼
XT

t¼2

ðxx0ÞTt;t� 1

 !
XT� 1

t¼1

ðxx0ÞTt

 !� 1

: ð14Þ

This estimator for the high-dimensional sparse matrix A is over parameterized and requires

that ð
PT� 1

t¼1
ðxx0ÞTt Þ is invertible. In this study, we propose to use an L1-regularized estimator of

A that minimizes

GðaÞ ¼ EX;ZjY ;yðr� 1ÞfðX � ZaÞ
0
ðX � ZaÞg þ l

X

j

ŵ jjajj; ð15Þ

where λ is a tuning parameter. This is equivalent to applying the LASSO method to the restruc-

tured state equation in (2) in a matrix pseudo-regression form

X ¼ Zaþ e; e � Nð0; IðT� 1Þ�ðT� 1Þ 
 QÞ ¼ Nð0; s2
Q � IðT� 1Þp�ðT� 1ÞpÞ: ð16Þ

We call this a pseudo-regression model since X and Z are state variables estimated from

SSMs, instead of measured response variables and covariates in a standard regression model.

Note that the elements of e are independent due to the assumption that Q is diagonal. If the

state variables were directly observable without measurement error, model (16) is a standard

High-dimensional linear state space models for dynamic microbial interaction networks
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first-order VAR model and one could simply apply the LASSO method to this VAR model [33,

34]. However, for the linear SSM, we need to use the sufficient statistics, xTt , ðxx0ÞTt , and

ðxx0ÞTt;t� 1
obtained from the E step to evaluate E(Z0Z) and E(Z0X) and the corresponding LARS

algorithm needs to be modified accordingly. If T − 1> p, the maximum likelihood estimator

of A defined in Eq (14) is root-n-consistent and can be employed to determine the adaptive

weights in the adaptive LASSO procedure as follows

ŵ ij ¼ jÂijj
� 1
: ð17Þ

For “large p, small n” problems (T − 1 ⩽ p), we adopt a method developed for sparse high-

dimensional regression in [35] by using the following marginal estimator of A instead of Â

ŵ ij ¼ j
~Aijj

� 1
; ~A ¼

XT

t¼2

ðxx0ÞTt;t� 1

 !

diag
XT� 1

t¼1

ðxx0ÞTt

 !� 1

: ð18Þ

Here diagð
PT� 1

t¼1
ðxx0ÞTt Þ is a diagonal matrix of which the diagonal elements matches those

of
PT� 1

t¼1
ðxx0ÞTt . It was shown in [35] that under mild assumptions, ~A is a zero-consistent esti-

mator of A; using ŵ ij ¼ j
~Aijj

� 1
as weight for adaptive LASSO can achieve oracle efficiency in

variable selection.

Once α is estimated by adaptive LASSO, the system matrix ÂaL, can be easily reconstructed

by “reshaping” the (p2 × 1) vector α into a (p × p) matrix. The elements in ÂaL are shrunk

toward zero as the L1 penalty parameter λ increases. Some elements are shrunk to exact zeros

when λ is sufficiently large. Thus, it is important to determine the tuning parameter λ appro-

priately. We find that the use of standard AIC, BIC, cross-validation and other classical meth-

ods for determining λ tends to select a larger model for a high-dimensional model with sparse

data, which may diminish the parsimonious property that we aim to preserve. The extended

BIC [30] is recommended since it contains an extra penalty term with the consideration of dif-

ferent prior distributions over the model space.

M step: Maximization. The estimation of the remaining parameters is straightforward.

The estimates of (Q, R, μ, S) can be obtained by maximizing the expected conditional likeli-

hood (6) with given sufficient statistics from the E step and ÂaL from the R step, i.e.,

m̂ ¼ xT
1
; Ŝ ¼ ðxx0ÞT

1
� xT

1
xT0

1
; ð19Þ

R̂ ¼
1

T

XT

t¼1

yty
0

t � x
T
t y
0

t

� �
; Q̂ ¼

1

T � 1

XT

t¼2

ðxx0ÞTt � ÂaLðxx
0Þ
T
t;t� 1

� �
: ð20Þ

The row-based ERM algorithm

Note that in the above R Step implementation, α is a (p2 × 1) vector and Z is a (p2 × p2) matrix.

Thus, it involves p2-dimensional matrix manipulations and computations. When p is large, it

requires a massive amount of computer memory to carry out these computations, which may

cause out-of-memory crashes of the proposed ERM algorithm. In this subsection, we propose

a row-based approach for the R Step in the proposed ERM algorithm. Denote Xi as the ith row

of X�, ai as the ith row of A, and ei as the ith row of e�. The adaptive LASSO estimate of A can

be obtained by equivalently applying the adaptive LASSO to a linear pseudo-regression model,

Xi ¼ Z�ai þ ei; ð21Þ
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where

Z� ¼

x11 x12 . . . x1p

x21 x22 � � � x2p

..

. ..
. . .

. ..
.

xðT� 1Þ1 xðT� 1Þ2 � � � xðT� 1Þp

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

is a (T − 1) × pmatrix. Thus, the adaptive LASSO estimate of ai (i = 1, . . ., p) is

âiaL ¼ arg min
ai
EX;ZjY;yðr� 1ÞfkXi � Z�aik

2
þ l
X

ij

ŵ ijjaijjg; ð22Þ

which only needs (p × p)-dimensional (instead of (p2 × p2)-dimensional) matrix manipula-

tions. We use the same adaptive weights as in the matrix-based algorithm. Similarly, the suffi-

cient statistics xTt , ðxx0ÞTt and ðxx0ÞTt;t� 1
from the E step are used in this step. Although we need

to repeat the above LASSO procedure for each row i = 1, 2, . . ., p, the row-based ERM algo-

rithm takes less time and less memory compared to the matrix-based algorithm. Below we

describe our simulation studies done for comparisons of the performance between the row-

based and matrix-based algorithms.

Results

Simulation studies

The proposed ERM algorithm for high-dimensional SSMs to construct dyamic MINs invovles

estimation and regularization of a large number of parameters. We designed simulation stud-

ies to evaluate the methodology and the implementation procedure. We compared the row-

based ERM algorithm to the matrix-based ERM algorithm, and we also evaluated the perfor-

mance of the row-based ERM algorithm in more detail.

The row-based algorithm was proposed to overcome the computational limitation of the

matrix-based algorithm as discussed in the previous section. We design the first simulation

study for different number of dimensions p = 8, 20, 50, and 80. Thus, the total number of ele-

ments in the system matrix A is 64, 400, 2500, and 6400, respectively. The number of nonzero

elements in A is assumed as 15, 35, 84, and 150 for the four cases, respectively. The nonzero

elements were randomly generated from ±(0.4, 0.5, 0.6, 0.7, 0.8, 0.9). We also assume the vari-

ance parameters as Q = I and R = 0.1 × I for all the cases and the number of time points T = 60.

As suggested, we applied and started the ERM algorithm from the R step to the 100 simulated

data sets (M = 100).

To evaluate the performance of the proposed ERM algorithm for variable selection, we cal-

culated the false positive rate (FP) and false negative rate (FN) of ÂaL by

FP ¼

P
ij 1fâ ij 6¼0jaij¼0gðâijÞ

N
; FN ¼

P
ij 1fâ ij¼0jaij 6¼0g1ðâijÞ

P
; ð23Þ

where P is the number of nonzero elements and N is the number of zero elements in A, and

1f�gðâijÞ is an indicator function. In this simulation experiment, we fixed Q and R as their true

values in order to have a fair comparison for the two algorithms. We report the average FP and

FN overM = 100 simulation runs in Table 1.
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Table 1 shows that both row-based and matrix-based algorithms produce reasonable

results. The matrix-based algorithm tends to yield a smaller false positive rate, but a larger false

negative rate compared to that of the row-based algorithm. The false positive rate of the row-

based algorithm is controlled very well although it is slightly larger than that of the matrix-

based algorithm. The false negative rates for both algorithms are always higher (much higher

for some cases) than the false positive rates. More importantly, a regular desktop machine run-

ning MATLAB ran out of memory estimating the 80×80 Amatrix when the matrix-based algo-

rithm is used, whereas the row-based algorithm can still perform reasonably well. Thus, we

suggest using the row-base ERM algorithm for practical applications due to its efficiency and

capability to handle high-dimensional matrices.

In the third simulation experiment, we evaluate the performance of the proposed row-

based ERM algorithm for different sample sizes and the effect of system noise Q. Since the sys-

tem noise Q and measurement noise R cannot be identified simultaneously based on the single

sequence data without replication, we decided to fix R in this simulation to avoid the identifia-

bility problem. The true system matrix for the SSM in this simulation experiment is a 41×41

system matrix A. We generated equally-spaced temporal data with the number of time points

T = 20, 50 and 100 for each bacterial OTU. We expect to see the improved estimation with

increased sample sizes. For the variance of the system noise Q, we compared the two cases:

fixed as the true value or estimated from the data. Total ofM = 100 data sets were simulated

for each scenario. The simulation results are reported in Table 2.

Table 2 shows that, as the number of time points T increased from 20 to 100, the false nega-

tive rate significantly decreased from 0.31 or 0.35 to 0.092 or 0.098 for fixed or estimated Q,

while the false positive rate roughly was stabilized at 0.015 to 0.019. Overall, for all three

choices of T, fixing the system noise Q as the true value rather than estimating Q only reduced

the false negative rate slightly, and it did not have much effect on the false positive rate. The

adaptive LASSO procedure equipped with the eBIC method for tuning parameter selection

Table 1. Simulation results: Comparisons of variable selection performance between the row-based and matrix-based ERM algorithms.

p p2 % nonzero algorithm FP FN

8 64 23.44 row 0.0459 0.0600

matrix 0.0255 0.1073

20 400 8.75 row 0.0108 0.0531

matrix 0.0095 0.0714

50 2500 3.36 row 0.0053 0.1458

matrix 0.0039 0.1760

80 6400 2.34 row 0.0060 0.2306

matrix N/A N/A

https://doi.org/10.1371/journal.pone.0187822.t001

Table 2. Evaluation of the row-based ERM algorithm for variable selection with respect to number of

time points T and Q estimation. p = 41.

T Q R FP FN

20 fixed as true fixed as true 0.0167 0.3111

estimated fixed as true 0.0192 0.3479

50 fixed as true fixed as true 0.0151 0.1617

estimated fixed as true 0.0150 0.1803

100 fixed as true fixed as true 0.0189 0.0915

estimated fixed as true 0.0180 0.0984

https://doi.org/10.1371/journal.pone.0187822.t002
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seems to have enough power to identify important state variables in the SSMs. With more

data, it becomes less conservative and selects more variables with a higher accuracy as

expected. In summary, the proposed row-based ERM algorithm produces promising results

for SSM variable selection and is computationally efficient. The false positive rate is not

affected by the system noise or measurement noise, but the false negative rate can be improved

if the true system noise or measurement noise can be accurately determined.

Applications to microbiota data

In one recent longitudinal microbiome study, mid-vaginal swabs from 32 nonpregnant, repro-

ductive-age women were obtained twice weekly, over a period of 16 weeks [4] during which

each subject’s sexual and menstrual activity was also tracked. For each of the samples, variable

regions of 16S ribosomal RNA gene were sequenced, yielding abundance estimates of bacterial

species/genera (OTUs). Although sexual activity and menses showed impact on bacterial

diversity, no clear relationships between environment and abundance of specific types or spe-

cies of bacteria were identified, suggesting a likely causal role of the inter-microbial interac-

tions. Several studies have characterized the normal bacterial communities in human vagina

[4, 36–38]. Normal vaginal flora can be clustered into five to six groups based on their compo-

sition, most of which are dominated by lactic acid bacteria, and remaining few by anaerobic

bacteria. Many members of the vaginal flora are highly specialized for the vaginal eco-niche

indicating that the vaginal microbiome generates meaningful MINs [39]. We employ the pro-

posed models to investigate the dynamic interactions among bacteria in this study, and infer

the MINs for each subject.

Based on our simulation studies, we decided to use the extended BIC [30] to preserve the

parsimonious property, and employ the row-based ERM algorithm for adaptive LASSO. As a

matter of fact, we also tried the matrix-based ERM algorithm with extended BIC for this par-

ticular data set. Whilee the matrix-based algorithm yielded reasonable results in simulation

studies, it shrank almost all the coefficients in the system matrix to zero for both subjects used

in our study, which resulted in very poor fits. In contrast, row-based algorithm produced rea-

sonable results in terms of fitting, and can be used effectively to infer MINs.

The magnitude of abundance varies widely for different bacteria. For example, for Subject

6, relative abundance of Atopobium (averaged over 27 days) is 1,542 times greater than that of

L. crispatus, which is a known important beneficial species in vagina [40, 41]. Without proper

standardization, a uniform L1 penalty is much more likely to set the edges related to less abun-

dant OTUs to zero, and results in a simplistic network dominated by a few most abundant

OTUs In order to make the results comparable, the measurements are standardized before the

row-based ERM method is applied, i.e., we define Yij ¼
~Y ij � �Y i

sdð~Y i�ÞÞ
, where ~Y ij is the jth raw measure-

ment for the ith subject, �Y i is the mean of ~Y ij, and sdð~Y i�Þ is the standard deviation of ~Y i�.

Ideally, time course microbiome data with technical or biological replicates at each time

point for each subject would allow investigators to use statistical methods to provide more reli-

able MIN structure identification and estimation. Microbiome studies often lack such repli-

cates. Our method is still useful in this scenario, although the variance of the system noise and

the measurement noise may not be estimable and identified simultaneously for such datasets.

Inference of microbial interaction networks (MINs)

We applied the ERM method to infer MINs from the data published by [4]. Although we

examined the available data for all the 32 subjects from this vaginal microbiome study, due to

space limitation, here we report the results from two subjects: subject 15 and subject 6, because

High-dimensional linear state space models for dynamic microbial interaction networks
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these two subjects cover very different vaginal microbiome profiles. For any given subject, the

abundance measurements for most bacteria are zero. For consistency and simplicity, we

selected only those bacteria for which at least 30% of the abundance measurements across the

16 weeks of study are nonzero. Based on this criterion, Subject 6 had 34 and Subject 15 had 12

bacterial OTUs which were identified for modeling.

Figs 1 and 2 present the one-step-ahead prediction for these two subjects, based on the esti-

mated SSM model. We also calculated the coefficients of determination (R2) for all the bacteria

involved in the MINs for each subject (in lower right corner of each plot in Figs 1 and 2). The

predictions look reasonable and there is no apparent evidence of overfitting, which is a com-

mon pitfall in high-dimensional data analysis.

The inferred MIN for the two subjects, are reported in Tables 3 and 4, as well as in Figs 3

and 4.

The number of edges from each bacterial OTU ranges from one to seven. There are a total

of 38 (25.7%) nonzero elements in the reconstructed system matrix A for subject 15, and 37

(3.3%) nonzero elements in the system matrix A for subject 6, both of which are sparse matri-

ces and consistent with the sparsity property of MINs. As reported in [4], we note that the

composition of vaginal flora of these two subjects differs significantly: subject 15 microbiome

is dominated by Lactobacillus iners, and that of subject 6 is dominated by many anaerobic bac-

teria. Gajer et al. [4] classified vaginal microbiota of their subjects into five community types

based on their bacterial compositions. Community types I to III were found to be dominated

by L. crispatus, Lactobacillus gasseri and L. iners, respectively. Community type IV-A were

dominated by moderate proportions of either of the many Lactobacillus species typically

Fig 1. One-step-ahead prediction for subject 15. Each cell represents prediction for a different OTU. Solid lines depict the predicted

values whereas circles indicate standardized temporal abundances of OTUs. Abbreviations for Operational Taxonomic Units: LIN

Lactobacillus iners; LCR Lactobacillus crispatus; SNE Sneathia sp.; LJE Lactobacillus jensenii; GAR Gardnerella sp.; ANA Anaerococcus

sp.; STR Streptococcus sp.; COR Corynebacterium sp.; FIN Finegoldia sp.; LOT5 Lactobacillus otu5; URE Ureaplasma sp.; LVA

Lactobacillus vaginalis.

https://doi.org/10.1371/journal.pone.0187822.g001
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found in vagina. Community type IV-B tends to be dominated by a collection of diverse bacte-

ria, all of which are present in large abundance. According to this classification, the vaginal

microbiome of Subject 15 is dominated by community state type III, and that Subject 6 is dom-

inated by community type IVB. Parts of the MINs that we obtained from these two subjects

Fig 2. One-step-ahead prediction for subject 6. Each cell represents prediction for a different OTU. Solid lines depict the predicted values

whereas circles indicate standardized temporal abundances of OTUs. Abbreviations for Operational Taxonomic Units: LIN Lactobacillus

iners; LCR Lactobacillus crispatus; ATO Atopobium sp.; PRE Prevotella sp.; PAR Parvimonas sp.; SNE Sneathia sp.; GAR Gardnerella sp.;

PEPN Peptoniphilus sp.; ANA Anaerococcus sp.; STR Streptococcus sp.; COR Corynebacterium sp.; RUM3 Ruminococcaceae 3; MOB

Mobiluncus sp.; AER Aerococcus sp.; FIN Finegoldia sp.; MEG Megasphaera sp.; GEM Gemella sp.; PEPS Peptostreptococcus sp.; LAC2

Lachnospiraceae 10; LAC11 Lachnospiraceae 11; MOR Moryella sp.; COR3 Coriobacteriaceae 3; DIA Dialister sp.; SHU Shuttleworthia

sp.; PEPT Peptococcus sp.; ALL Allisonella sp.; LAC10 Lachnospiraceae 2; POR Porphyromonas sp.; BUL Bulleidia sp.; ACT Actinomyces

sp.; COR1 Coriobacteriaceae 1; CLO12 Clostridiales 12; SEG Segniliparus sp.; BAC2 Bacteroidales 2.

https://doi.org/10.1371/journal.pone.0187822.g002
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are in agreement with some previous experimental investigations into interactions among vag-

inal bacteria, and some inferred relationships are novel and unexpected.

Subject 15. We find that in the vaginal flora of Subject 15, L. iners is not just the predomi-

nant member, but also actively inhibits the proliferation of other lactobacilli, most promi-

nently, that of Lactobacllus jensenii (Fig 3). L. iners reportedly shares reciprocal interference

with a different lactobacillus (L. gasseri), but our results indicate that this interference may be

phylogenetically more widespread [42]. We also find that L. jensenii actively aids the prolifera-

tion of Gardnerella Sp., which has been implicated in bacterial vaginosis.

Subject 6. First we infer that Finegoldia sp., an anaerobic bacterium belonging to class

Clostridia directs the growth of multiple anaerobic bacteria that are more abundant than itself.

The synergistic interactions of Finegoldia sp. with Sneathia sp. and with Anarococcus sp. were

also identified in MIN of Subject 15. In fact Finegoldia sp. seems to occupy an influential posi-

tion in both the MINs, in spite of its low abundance in both the subjects. This is one of the clas-

sical hallmarks of a “keystone” species in an ecosystem [43], and Finegoldia spp. has never been

Table 3. Interactions among bacteria for subject 15. See legend for Fig 1 for OTU abbreviations.

Bacteria Positive Effects Negative Effects

LIN LIN LJE, FIN, LOT5

LCR FIN

SNE FIN LCR

LJE SNE, GAR, FIN STR

GAR FIN SNE, ANA, STR, URE

ANA SNE, ANA, STR, FIN, URE

STR LIN FIN

COR FIN SNE, LVA

FIN SNE, GAR, ANA, STR, COR, FIN, URE

LOT5 FIN

URE FIN

LVA FIN, URE

https://doi.org/10.1371/journal.pone.0187822.t003

Table 4. Interactions among bacteria for subject 6. See legend for Fig 2 for OTU abbreviations.

Bacteria Positive Effects Negative Effects

LIN ANA, PEPS, MOR, CLO12

LCR MEG, LAC10, LAC11, SHU, LAC2

PRE LCR

PAR PEPN, AER, DIA, ACT, SEG, BAC2

SNE ALL

ANA MOB, PEPT GEM

STR STR

FIN SNE, ANA, PEPS, POR

GEM COR

PEPS ATO, RUM3

COR3 FIN, SHU

ALL PAR, BUL

LAC2 LIN, GAR, COR1 CLO12

ACT PRE

BAC2 COR3

https://doi.org/10.1371/journal.pone.0187822.t004
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noted as one before. Second, Gajer et al. [4] identified that communities dominated by L. iners
often appear to shift to one dominated by Atopobium, Prevotella, Parvimonas, Sneathia, Gard-
nerella, orMobiluncus. We find that even in a microbial community in which L. iners is a

minor component, it promotes the growth of some of these bacteria directly as well as indi-

rectly, as in the inferred MIN of Subject 6. Third, L. crispatus, an aerobic, hydrogen peroxide

producing bacterium that is normally associated with establishing normal and aerobic micro-

flora, is inferred to be promoting growth of a number of facultatively anaerobic Lachnospira-
ceae species, which is a novel and unexpected outcome of the inferred MIN, and may warrant

future experimental validations.

Discussion

Dimensionality has always been a difficulty in identifying a complex microbial interaction net-

work (MIN) due to the large number of bacteria observed in human microbiome. In this

Fig 3. Microbial interaction network (MIN) for subject 15. Blue and red arrows indicate directed positive and negative effects

respectively. Arrow width indicates effect magnitude. Circles highlight bacterial species that impact multiple other species in the MIN and

whose critical role in the MIN has either experimental support in literature (L. iners) or has never been recognized before (Finegoldia sp.).

https://doi.org/10.1371/journal.pone.0187822.g003
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article, we proposed a new Expectation-Regularization-Maximization (ERM) algorithm for a

high-dimensional linear state space model (SSM) to construct dynamic MINs from time

course microbiome data. The Kalman filters in conjunction with the adaptive LASSO variable

selection technique enable promising parameter estimation for the sparse high-dimensional

microbiome interaction matrix. The implementation of the adaptive LASSO for the SSMs in

the R step is shown to be straightforward and clean. To overcome the difficulty for large matrix

manipulations for the high-dimensional SSMs, a row-based ERM algorithm was proposed and

evaluated against the standard matrix-based algorithm. Our simulation and real data analysis

results show that the row-based algorithm performs quite well. The proposed method can be

easily adapted to accommodate data with longitudinal replicates. We successfully applied the

method to time course vaginal microbiome data to construct dynamic MINs.

Fig 4. Microbial interaction network (MIN) for subject 6. Blue and red arrows indicate directed positive and negative effects respectively.

Arrow width indicates effect magnitude. Circles highlight bacterial species that impact multiple other species in the MIN and whose critical

role in the MIN has either experimental support in literature (L. iners) or has never been recognized before (Finegoldia sp. and L. crispatus).

https://doi.org/10.1371/journal.pone.0187822.g004
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Similar VAR models with L1 regularization have been proposed for dynamic networks [33,

34]. However, the VAR model does not take measurement error into consideration. The SSMs

equipped with the proposed ERM algorithm allow us to consider the system error and mea-

surement error separately while constructing the dynamic network. Through the ERM algo-

rithm, the variance of both errors can be estimated if the longitudinal data or biological

replicates are available. A similar SSM representation with L1 regularization for dynamic gene

regulatory network construction was proposed in [24]. However, an ad hocmethod instead of

the LARS algorithm was used in LASSO estimation which may reduce its performance. Fur-

thermore, the program, or its implementation details, were not provided. In this paper, we fill

the gap to clarify the methodological issues and provide a complete and simple implementa-

tion procedure. We also discussed how to initiate the proposed ERM algorithm from a practi-

cal perspective. From the computational perspective, we validated that the row-based ERM

algorithm performs well for data analysis and recommended for practical use. Based on the

proposed SSM and ERM algorithm, we establish the MIN for vaginal microbiome of women

and some encouraging findings have been revealed.

We believe that our work is just the first step to reconstruct MIN using SSM model. Below

we list a few weaknesses of our current method and possible directions for future work.

The state-space model considers time as discrete steps instead of a continuous variable as

used in many alternative network models. As such, it is more resilient to temporal discontinui-

ties and can be used to fit granular data and data with sharp jumps (discontinuities), which is

demonstrated in Figs 1 and 2. That being said, we must point out that both system and measure-

ment noises (wt and vt in Eq (1)) are modeled as Gaussian distributions in our current model,

therefore we strongly suggest that our method should only be applied to modeling the interac-

tions between key OTUs with relatively low sparsity. It will be very interesting to incorporate a

proper discrete distribution such as the negative binomial distribution into the SSM model in

the future. Secondly, we have only considered estimating MINs for each individual subjects.

It is more meaningful to construct the common MIN for a population. This calls for more

advanced SSM methods and data with more replications and better quality. Although conver-

gence was not a big issue for the proposed algorithm in both simulations and real data analyses,

we acknowledge that the addition of the R step may change the theoretical properties of the EM

algorithm, which warrants further investigations. Exogenous variables such as gender, age, race

et al can also be included in a more complex model. Nonlinear SSM models have been widely

studied in recent years. The extension to nonlinear SSM models in conjunction with variable

selection techniques also deserve further investigation. It would be interesting to compare the

proposed model and method to alternative models and methods for dynamic network construc-

tion. Finally, we must point out that due to the large number of unknown parameters (k2 edges)

in a high-dimensional network, inevitably there will be a certain number of false positives

despite the best practice in model selection. It is therefore critical to conduct subsequent confir-

matory experiments to validate the predicted interactions. The power of high-dimensional net-

work models, such as the one proposed in this study, is that they help experimentalists generate

high-quality hypotheses and select the most promising experiments to perform.
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