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Abstract

We study the question of how to represent or summarize raw laboratory data taken from an 

electronic health record (EHR) using parametric model selection to reduce or cope with biases 

induced through clinical care. It has been previously demonstrated that the health care process 

(Hripcsak and Albers, 2012, 2013), as defined by measurement context (Hripcsak and Albers, 

2013; Albers et al., 2012) and measurement patterns (Albers and Hripcsak, 2010, 2012), can 

influence how EHR data are distributed statistically (Kohane and Weber, 2013; Pivovarov et 

al., 2014). We construct an algorithm, PopKLD, which is based on information criterion model 

selection (Burnham and Anderson, 2002; Claeskens and Hjort, 2008), is intended to reduce and 

cope with health care process biases and to produce an intuitively understandable continuous 

summary. The PopKLD algorithm can be automated and is designed to be applicable in high

throughput settings; for example, the output of the PopKLD algorithm can be used as input for 

phenotyping algorithms. Moreover, we develop the PopKLD-CAT algorithm that transforms the 

continuous PopKLD summary into a categorical summary useful for applications that require 

categorical data such as topic modeling. We evaluate our methodology in two ways. First, we 

apply the method to laboratory data collected in two different health care contexts, primary versus 

intensive care. We show that the PopKLD preserves known physiologic features in the data that 

are lost when summarizing the data using more common laboratory data summaries such as mean 

and standard deviation. Second, for three disease-laboratory measurement pairs, we perform a 

phenotyping task: we use the PopKLD and PopKLD-CAT algorithms to define high and low 

values of the laboratory variable that are used for defining a disease state. We then compare the 
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relationship between the PopKLD-CAT summary disease predictions and the same predictions 

using empirically estimated mean and standard deviation to a gold standard generated by clinical 

review of patient records. We find that the PopKLD laboratory data summary is substantially 

better at predicting disease state. The PopKLD or PopKLD-CAT algorithms are not meant to be 

used as phenotyping algorithms, but we use the phenotyping task to show what information can 

be gained when using a more informative laboratory data summary. In the process of evaluation 

our method we show that the different clinical contexts and laboratory measurements necessitate 

different statistical summaries. Similarly, leveraging the principle of maximum entropy we argue 

that while some laboratory data only have sufficient information to estimate a mean and standard 

deviation, other laboratory data captured in an EHR contain substantially more information than 

can be captured in higher-parameter models.
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Electronic health record; Kullback-Leibler divergence; Summary statistic; phenotyping; 
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1. Introduction

Electronic health record (EHR) data offer us the opportunity to carry out clinical research on 

a broad population relatively quickly while minimizing both the financial and human costs 

because the data are collected for health care. However, because these data are collected 

for health care and not research they actually represent our observation and actions on 

the patient rather than the patient him- or herself. Data tend to be collected when patients 

are ill, for example. We therefore must transform the raw EHR data to a form that is 

useful for clinical research. One approach is called phenotyping [10,1], which maps the raw 

data to intermediate states like inferred clinical conditions that are then used in research. 

Phenotyping may be done manually as a set of rules or queries that assert a state based 

on raw data [10–14], or it may be automated using machine learning [15–19]. Continuous 

values like creatinine levels and glucose levels are measured longitudinally, usually at 

irregular, sparse intervals with a very wide variation among patients in number and spacing 

of measurements. Providing input to phenotyping algorithms is a challenge because each of 

the many laboratory and other continuous measurements can be seen as multidimensional 

(one dimension for each feature) with the number and timing varying among patients. 

Moreover, many machine learning techniques such as topic modeling only accept ordinal 

or categorical variables as input, usually focusing on note content and the presence of 

laboratory measurements. Laboratory data, are important to include in phenotyping because 

they contain relatively objective information. And while the mere presence of a test has a 

good deal of information, the addition of a quantification of the magnitude of the test is also 

important because the magnitude of many laboratory tests are the diagnostics used to define 

many diseases. A number of simple summarization techniques have been employed, such 

as using the presence, last value, the median, the mean, the standard deviation, or similar 

variations. These summaries assume that the important information in the measurements 

can be conveyed in one or two parameters (e.g., mean and standard deviation). The 

best summary may depend upon the variable, yet it is unclear how the summaries used 
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in phenotyping are currently selected or what should be selected. For high-throughput 

phenotyping the selection of a summary technique would have to be automated given the 

number of potential variables and phenotypes.

Our ultimate goal is to develop an algorithm that can summarize the raw, continuous, 

inherently noisy, outlier-ridden, biased EHR data such that it emerges as a low-dimension 

summary that is free of biases, outliers, and other complexities, ready to be used by 

current machine learning techniques. Moreover, because the point is to help advance high

throughput phenotyping, we also address the problem of scalability. For example, when 

a problem related to a specific continuous variable is studied, the data from normal and 

diseased individuals can be studied, thresholds can be extracted from clinical guidelines, and 

physiologic understanding can used to devise a summary of the laboratory variable. When 

thousands of variables or diseases are studied at once, then a more automated approach is 

necessary. The problem is especially challenging when we consider that the variables may 

be non-Gaussian, that there may be subpopulations beyond the two primary ones—normal 

and diseased—and that groups of patients may be measured in different clinical contexts.

Our motivation for devising a method for automatically summarizing laboratory data to 

be used in computational tasks such as phenotyping evolved from four directions: (i) 

our work on health care process and phenotyping where we observed and documented 

how the health care influences, confounds, and highlights features that are observable 

from EHR data [4,1,20,2,21,5,22]; (ii) our Bayesian approach to estimating personalized, 

time dependent hazard functions that predict the onset of chronic kidney disease—the 

functions used to model and represent the data were chosen to be Weibull rather than the 

more standard Gaussian distributions because of the properties of EHR data [18]; (iii) our 

intuition that the processes generating health care data are relatively sparse [23] and may be 

summarized and modeled by large contributions from a few dominant features rather than 

a small contributions from all possible features; and (iv) our work translating phenotypic 

information to clinical settings where it became clear to us that more simple representations 

of data, e.g., via single, parameterized families, are more understandable and hence more 

useful for clinicians than black box prediction [24,25]. In essence, we wanted to find a 

way to minimize garbage in for machine learning methods, to translate laboratory data to a 

summary that was simple, faithful, interpretable all while minimizing the amount of human 

effort necessary to clean and summarize the data and therefore minimizing the resources 

needed to use EHR data in a high throughput setting.

While we followed the above path to this paper we are certainly not the first or only 

people using complex medical data, or complex data generally [26–29]; there are many other 

data preprocessing approaches and issues that we don't address here that are important to 

discuss, including data transformations, preprocessing using clinical knowledge or practice, 

temporal information, and the use of raw EHR data for phenotyping. Transforming data to 

a more convenient coordinate system or distribution is one common method used to make 

complex data easier to handle and more likely to produce more robust results. The Box-Cox 

transformation [30], which is a power transform [31], is an early method for transforming 

non-normal data to more normal data so that statistical analysis such as linear correlation 

can be done more reliably and with less bias. Similarly, general linear models [32,33] 
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depend on transforming the response variables into a space that allows for a linear model 

to be estimated from diverse predictor variables. In the biomedical domain some researchers 

have devised more complex transformations of complex medical data to concepts such as 

anchors [15,16] that are likely to generalize across institutions. While it is common for 

authors to detrend the data in relatively standard ways [34,35,21], clinical knowledge is 

sometimes used to preprocess data in a relatively automated way. For example, some have 

used clinical patterns to discover nominal values [6], while others have worked to devise 

methods for finding normal ranges of laboratory data [36] and used that information to 

transform the data into a more practically useful format [37]. Similarly, clinical insight 

is sometimes used to adjust and transform ICU data in a laboratory-measurement-specific 

manner [38]. Sometimes data preprocessing is done in a particularly disease-specific way, 

e.g., [39,40]. Another approach is to standardize data format and quality, e.g., OHDSI [12] 

represents an effort to create world-wide and standardized health care data bases. These 

efforts address general data quality and standards but may not address health care process 

biases explicitly. Time is a crucial property of laboratory data. One issue is whether or not to 

include time at all. Most early EHR studies to not, and its inclusion depends largely on the 

questions be asked, the systems generating the data, and the data being used. Another issue 

is how to represent or parameterize time [41,19], a preprocessing choice that can have a 

significant impact on what results can be found [42]. But because all EHR data have missing 

values in time, an ever-present issue is how to incorporate time [43], a question often 

addressed by framing the data through the lens of missingness [44–47] or imputation and 

interpolation. For example, some authors use missingness of data as a feature [48,49,7] that 

can be used to define phenotypes. But more often researches focus on imputation schemes, 

or methods for interpolate missing values [50,51,21,52-54]. And finally, some phenotyping 

methods just use essentially raw, unaltered EHR data [55,19,56] with the assumption that the 

models are flexible enough to manage and model the data complexities automatically.

Together these results point to two high-level choices when preparing EHR data for 

phenotyping or related applications: use pre-processed or raw data; how and whether to use 

time in the analysis. In this paper we address the first choice. We do come down on the side 

of using preprocessed data—the method developed in this paper is a time agnostic method 

for summarizing laboratory data automatically based on EHR data, producing a numeric 

or categorical summary that can then be used in phenotyping or similar applications. Our 

method generates a laboratory variable summary that reveals useful information about the 

variable despite clinical subpopulations, varying contexts, and bias due to the health care 

process.

2. Methods and materials

2.1. Data sources

The study was carried out using two cohorts from different contexts. The first includes EHR 

data collected during a stay in a neurological intensive care unit (ICU) from patients who are 

comatose and tube-fed. The second cohort (AIM) comprises the entire longitudinal record of 

patients who visit regularly the Ambulatory Internal Medicine outpatient clinic, and includes 

all outpatient visits, hospital visits, ICU stays, emergency department visits, etc. The health 
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care processes underlying these data are very different: in the ICU cohort the glucose data 

are sampled at approximately regular intervals with noise largely independent of the overall 

health state of patients, while in the AIM cohort the data are sampled primarily during visits, 

distributed through time as patients gets sick, or as part of screening and chronic disease 

monitoring.

AIM—We extracted approximately 14,000 patient records from the NewYork-Presbyterian 

Hospital (NYPH) clinical data warehouse restricted to patients that have visited the 

NYPH Ambulatory Internal Medicine clinic at least 3 times between September 1990 and 

September 2010. The full longitudinal records including all inpatient, including ICU, and 

outpatient data for these patients were gathered. From these records we collected a set of 64 

frequently ordered laboratory tests.

ICU—We selected 814 patients who were in the neurological ICU, were comatose, tube 

fed, and had at least 25 measurements. We restricted this data set to include only the time 

spent in the ICU. In this setting we only consider glucose measurements. In the ICU glucose 

measurements are generally collected between four and six times a day so 24 measurements 

represents between four and six days.

2.2. Information criterion-based model selection

Our algorithm is based on information criterion model selection method [57,8,9] relying on 

the Kullback-Leibler divergence (KLD) [58]:

KL(p, q) = ∫ p log p
q dμ (1)

where p and q are probability densities and μ is the Lebesgue measure. Intuitively, the KL

divergence between p and q is interpreted as the information lost when p is approximated 

by q. The KL-divergence is used in many formulations of model selection, including Akaike 

information criterion and Watanabe-Akaike information criterion [57,8,9].

The PopKLD algorithm begins with a non-parametric probability distribution estimate, 

the kernel density estimate (KDE), p, of the population laboratory data, Up. The KDE, 

being non-parametric, has hundreds of parameters with no clear interpretation and therefore 

represents the data very well without summarizing the data any more compactly than the 

data themselves. Next we approximate p with a parameterized probability distribution, 

for example, a log-normal distribution, creating the approximation distribution, q, with 

two or three meaningful parameters. Finally, we use the KL-divergence to quantify what 

information is lost when we approximate the non-parametric distribution p with the 

parametric summary distribution q. Summarizing, the PopKLD algorithm uses the KL

divergence to select the parametric models that minimize the loss of information lost when 

approximating the non-parametric model p with the parametric model q. Similar methods 

are used to derive Akaike information criterion and other IC techniques [8]. The list of 

parametrized models we use in this paper are described in the Appendix.
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2.3. Population to individual KL-divergence model selection methodology

The primary goal of this paper is to construct an automated, generalizable algorithm for 

computing a patient laboratory data summary that is insightful and interpretable, minimizes 

the information lost by parameterizing the data while minimizing or accounting for bias due 

to the health care process [1,2,4–6,59]. Our algorithm, the PopKLD algorithm, algorithm has 

seven steps and is shown in Fig. 1. First, select a set of families of parametrized models. 

Second, estimate the parameters of each model using the population data. Third, estimate the 

probability density function (PDF) of the population data non-parametrically using a kernel 

density estimate (KDE). Fourth, estimate the KL-divergence between each parameterized 

model of the population laboratory data and the KDE of the population laboratory data. 

Fifth, identify the families of distributions that minimize the KL-divergence and select a 

parameterized family for creating the summary. Sixth estimate the model parameters for 

every individual in the population, taking care to exclude individuals whose parameter 

estimates do not converge. And seventh, use the model parameters as patient summaries for 

the given laboratory variable.

Algorithmic output—The output of the PopKLD algorithm includes three collections of 

estimates. The first collection includes the parameter estimates for a set of 11 parameterized 

families, e.g., a GEV, a Gaussian, etc., listed in the appendix, for a population of laboratory 

values. The second collection includes the KL divergence between the parameterized 

estimate of population of laboratory data and Kernel Density Estimate of the same data. 

We use these estimates to select the summary distribution. And the third collection is the 

summary: the parameter estimates of the selected distribution, e.g., location, shape and scale 

if the selected model is the GEV, for every individual in the population. These parameters 

act as a summary for the patient using the model that best resembles the population.

The output of the PopKLD-CAT is a discretization of the output of the PopKLD algorithm. 

For example, consider the situation where the PopKLD algorithm selected the Gaussian as 

the most representative parametric model and the PopKLD-CAT discretization specified two 

categories, high and low, or above and below the 50th percentile. In this case the PopKLD 

algorithm would generate an estimate of the mean and variance for every individual and 

the PopKLD-CAT algorithm would discretize the 2-tuple of mean and variance from a 

continuous value to one of four pairs of categories indicating whether the mean and variance 

were above or below the 50th percentile of the distribution of mean and variance.

2.4. Algorithmic assumptions and limitations

At a high level, EHR data come into existence, or are generated, by two noisy, nonstationary 

processes, (i) physiology or health, including pathophysiology, and (ii) the health care 

process that intervenes and measures the individual. Usually we do not know very much 

about the state of these processes, e.g., we do not have measurements that can determine, 

to a high degree of accuracy, detailed physiology, and we not have a good way of 

characterizing how people are measured, e.g., ICU measurements are a mix of clinical 

need and clinical protocols. Moreover, for a given person these processes can change, e.g., 

measurement and intervention happen very differently in an ICU than in an outpatient 

setting.

Albers et al. Page 6

J Biomed Inform. Author manuscript; available in PMC 2018 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Nevertheless, when we use these data we generally consider these processes to be 

represented by a model; in the most simple case we represent EHR lab data by simple 

parametric model, e.g., Glucose measurements represented by a Gaussian. But we know 

that the chosen model is not measured the same all the time, and we know that the model 

parameters must change because health changes. Furthermore, we know that as health 

changes, and model parameters, e.g., mean and variance, change, measurement can change 

as well—people get sick, are measured frequently, then they get better and are measured 

infrequently. Even further, we know the population can be diverse, e.g., the EHR could 

capture a person only in a healthy state such as a person whose measurements begin in 

their 20s and end in their 40s without a serious injury or change in health state. What 

this all means in the simplest case is that for single variables, e.g., glucose, in the EHR 

include a mixing of unknown models, e.g., distributions, that change in ways only sparsely 

measured according to measurement processes that themselves are represented by a similar 

mix of complex and simple processes, e.g., inpatient versus outpatient measurement patterns 

or measurement patterns driven by different health states. When modeling these data, it is 

useful to consider the processes that generate these data, and the assumptions we make when 

we model those data. Relative to the simple situation where we focus on a single laboratory 

measurement type we assume that there are four broad mixing scenarios for EHR data:

1. The EHR is a mixture: every individual'ss data are generated by wildly different, 

but distinct individual distributions; e.g., every individual can be represented by 

a single, unique, distinct distribution, e.g., a Gaussian with a particular set of 

parameters, but no individual is the same.

2. The EHR is a mixture: every individual?s data are generated by different mixture 

different distributions; e.g., a given person can be represented by a distinct and 

unique a mixture of distributions, but no individual is the same mixture.

3. The EHR is not a mixture: every individual?s data are generated by roughly the 

same distinct individual distribution; e.g., every individual can be represented by 

one distribution and with relatively similar parameters.

4. The EHR is not a mixture: every individual?s data are generated by the same 

mixed distribution; e.g., every individual can be represented by the same mixture 

of distributions with roughly similar parameters.

EHR data can potentially be at least any of these above cases and any transition or mixing of 

these cases. We don't know the nature of the mixing or how complex the generating function 

is given today's measurement capabilities.

The reason why the mixing of distributions is important here is that mixing distributions can 

both create the same distribution or it can create a distribution of a different or larger class 

of distributions; e.g., mixing exponential distributions with random parameters can result in 

both a different exponential distribution or more likely a distribution that is a super-class 

of exponential distributions, a gamma distribution. Implying that a the best model for a 

population is not necessarily the best model for the individuals making up that population. 

Moreover, that mixing distributions or generating processes does not necessarily retain 

the same distribution or generating process gives us leverage to understand the generating 
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processes and formulate hypotheses for productive ways to model and use EHR data. For 

example, we know that when cases (1) and (2) are extremely diverse and varied, it is likely 

that the population model and the individual models will not be the same. Cases (3) and 

(4), the population models will be the same as the individual models, but the population 

and individuals will not be well represented by a single parameterized model for case (4). 

The grey areas are the transition between cases; e.g., the transition between cases (1) and 

(2) where the population is not very diverse to cases (3) and (4) where the population 

is somewhat diverse may be modeled by models for either scenario. Our hypothesis or 

assumption, is that EHR data are often close enough to case (3) that our algorithm will work 

for summarizing laboratory data—that we can represent a given laboratory variable with 

a single distribution, and that while there is variation within the population due to many 

factors, there is not so much variation that the population model that it isn't also a relatively 
good model of the individual. While it is likely that partitioning the data by the contexts of 

collection will make our hypothesis more true, and while we can construct counterexamples 

to our intuition, here we are interested in the high-throughput case where we can automate 

an algorithm that is usually sensible. It is not possible to test our assumptions explicitly 

because we want to leverage the large number of sparsely measured people in an EHR, 

and most individuals are measured too sparsely to accurately draw distinctions between 

what distribution best represent them. Instead, we are left evaluating the sensibility of 

the assumptions by evaluating the effectiveness and face-validity of our method. But it is 

important to understand the assumptions that underly our algorithm because it will help 

understand when the algorithm is likely to fail. E.g., it is likely that algorithm will not work 

well when the population is particularly diverse, but we do not know how much diversity 

is too much. However, given the results in this paper, it is likely the algorithm can handled 

substantial diversity.

2.5. Transforming PopKLD summaries into categorical variables

Some machine learning methods that are used to automate the task of defining phenotypes or 

cohorts require discrete or categorical variables. Therefore, to be useful in this circumstance 

the PopKLD algorithm must allow for a mapping to categorical variables. We translate the 

continuous PopKLD summary into an ordinal summary using the PopKLD-CAT algorithm, 

shown in Fig. 2, in four steps. First, choose a method for translating continuous model 

parameters into ordinal categories such as deciles [60]. Second, given the distribution 

of parameter estimates, calculate the category boundaries. Third, for individuals whose 

parameter estimates converged, map each parameter to the category, here decile, it falls 

under; e.g., if the mean is in the 1st decile and the standard deviation is the 8th decile, then 

the individual would be represented by the 2-tuple vector (1,8). And fourth, use the new 

categorical representation of the patient for the chosen task such as topic modeling.

2.6. Maximum entropy for evaluation

The concept of entropy maximization in the context of machine learning is generally used 

for selecting a probability distribution that best represents data according to the principle 

of maximum entropy. The principle of maximum entropy states, subject to data and various 

technical assumptions, that the distribution that maximizes entropy is the distribution that 

represents the current system most accurately with the fewest assumptions. In this way, 
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the maximum entropy is just another property, like maximizing log-likelihood, minimizing 

mean square error or KL-divergence, etc., that can be used to select a model or estimate 

optimal parameters. But, the entropy maximization has an intuitive interpretations that most 

other metrics do not have and we will leverage two of these interpretations our evaluation. 

First, the maximum entropy model is the model that minimizes the use of assumptions used 

to estimate the model parameters. Intuitively this means the maximum entropy model is 

the least overfit model we could use while maximizing the information we do have about 

the system. Second, many natural systems are observed to maximize entropy, implying that 

nature has found the best way to select a probability distribution is using the maximum 

entropy principle. We use these ideas in the following way: if the PopKLD algorithm, 

which is not using the principle of maximum entropy, either selects or rejects the maximum 

entropy model choice, this helps us interpret the meaning of the PopKLD selection process 

and the process generating the data.

The maximum entropy distribution for a data with one constraint, a mean, is the uniform 

distribution. The maximum entropy distribution with two constraints, a mean and a 

standard deviation, is a Gaussian distribution. The maximum entropy distribution with three 

constraints, mean, standard deviation, and a linear relationship between mean and standard 

deviation [61] is a Gamma distribution. For most of our laboratory data, assuming we know 

nothing about the data but are able to estimate a mean and a standard deviation from data, 

maximum entropy predicts that a Gaussian distribution will be the best distribution to use 

for representing the data. There is one special exception to the prediction that a Gaussian 

distribution will be the most useful: we know from physiology that glucose dynamics have 

a linear dependence between mean and standard deviation [62,63], imply that for glucose, 

maximum entropy predicts that the Gamma distribution will be the best distribution to use 

for summarizing glucose.

We use the predictions from entropy maximization as a guidepost for understanding the 

meaning of the PopKLD model selection by comparing adherence or deviation from the 

maximum entropy prediction. For example, if the PopKLD algorithm selects a distribution 

that has a parameter for the tails of a distribution, e.g., the generalized extreme value 

distribution (GEV) [64], then that implies that the data include more than just information 

about the mean and standard deviation, but information about higher order features of the 

distribution such as information about the tail of the distribution. In contrast, if the PopKLD 

algorithm selects a Gaussian distribution, it is likely that the data mostly contain information 

limited to estimating two parameters, mean and standard deviation.

2.7. Evaluation of the population KL-divergence model selection method

We evaluate the PopKLD algorithm in two ways, by testing that the PopKLD selected 

models preserve physiologic relationships we know a priori are present and by performing 

a phenotyping task were we use the PopKLD-CAT algorithm to identify patients with 

diabetes using glucose, patients with chronic kidney disease using creatinine, and patients 

with pancreatitis using lipase all compared against a gold standard created by an physician 

review of patient records. It is important to note that while we use a phenotyping task 
to evaluate the PopKLD algorithm, the PopKLD algorithm is not meant to be used as a 
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phenotyping algorithm. We use the phenotyping task as an evaluation because it directly 

reveals how the PopKLD algorithm works and is a rigorous evaluation because it requires 

the PopKLD algorithm to perform without the aid of other information normally used in 

machine-learning-based phenotyping algorithms.

2.7.1. Evaluation one PopKLD summary's preservation of known physiology 
and comparison with principle of maximum entropy predictions for 
intravascular glucose—The first evaluation of the PopKLD model selection algorithm is 

a demonstration that the PopKLD algorithm preserves known physiologic relationships that 

are hidden using more common summaries of laboratory data such as mean and standard 

deviation. Physiologic relationships within a single laboratory variable are not always easy 

to come by so this evaluation technique cannot be applied to all laboratory variables, but 

when it can be, it is powerful. We further reinforce this evaluation by applying the PopKLD 

algorithm in multiple contexts—here we apply the PopKLD in two contexts, the EHR and 

the ICU for the same laboratory variable. By doing this we achieve two goals. First, we can 

observe how measurement context, how mixing measurement contexts, or potentially how 

the health care process, may impact the laboratory measurements collected. Second, we can 

observe and quantify how the PopKLD algorithm copes with and adapts to biases such as 

mixing measurement contexts or the health care process—validating the robustness of the 

PopKLD algorithm relative to changes in data collection context.

The physiologic relationship we leverage here is related to glucose: when carefully 

measured, the mean glucose should be linearly related to the standard deviation of 

glucose [65,66,3,62]. In this situation, because of the linear relationship between mean 

and standard deviation, we have an additional independent model selection that will help 

buttress our results, maximum entropy. Given the linear relationship between mean and 

standard deviation, maximum entropy predicts that best parameterized model will be the 

gamma distribution [61]. Armed with this prediction we gain two extra insights. First, 

if the PopKLD selects the same model that maximum entropy predicts, the consistency 

is reassuring and suggests that PopKLD is selecting a meaningful model to generate a 

summary. Second, if PopKLD does not select the same model that maximum entropy 

predicts, this may implicitly imply that the measurement function is dependent both on 

physiology and the health care process. Nevertheless, showing an explicit dependence on the 

health care process requires more work as the deviation from maximum entropy distribution 

may also be due to other factors.

2.7.2. Evaluation two: using PopKLD and PopKLD-CAT for a phenotyping task
—The first evaluation is a deep analysis into the modeling of a single laboratory variable, 

but it does not address generalizability, application of the method to categorical or ordinal 

variables, or demonstrate practical usefulness or clinical tasks such as phenotyping or 

cohort selection. The second evaluation is designed to address these limitations by applying 

the PopKLD algorithm to more than 62 laboratory variables, applying the PopKLD-CAT 

algorithm to the results to generate categories, and then evaluating the usefulness of the 

categorical summaries on three different laboratory variables.

Albers et al. Page 10

J Biomed Inform. Author manuscript; available in PMC 2018 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The second evaluation focuses on evaluating the PopKLD-CAT algorithm in the context 

of identifying phenotypes and for this we restricted the evaluation to AIM data. We begin 

with three disease and laboratory data pairs, diabetes and glucose, chronic kidney disease 

and creatinine, and pancreatitis and lipase. In a real phenotyping setting, we would use 

many more variables and data; this evaluation is not about phenotyping but about evaluating 

what information can be gained in a phenotyping task by using the PopKLD laboratory 

summaries compared with mean and variance of the same laboratory variable. We then 

evaluate how successful the PopKLD selected model is at summarizing an individual 

patient's raw laboratory data by using the PopKLD summary to identify patients with a given 

disease for diseases that are defined by laboratory values that are elevated. This evaluation is 

carried out in five steps.

Step one: We apply the PopKLD algorithm using three models to summarize the data, 

generalized extreme value (GEV), log-normal, and empirical mean and standard deviation. 

We selected the GEV and the log-normal distributions because for glucose, lipase, and 

creatinine, the PopKLD algorithm selects the GEV as the best model distribution, followed 

by the log-normal distribution. The empirical mean and standard deviation are used in 

comparison because they are often used to summarize laboratory values from phenotype 

studies, cohort selection, etc. So, the comparison is between the summary provided by the 

PopKLD algorithm and the state of the art.

Step one outcome: The outcome of step one is a set of summary parameters for three 

models, GEV, log-normal, and empirical mean and standard deviation for every AIM 

individual whose model estimate converged in maximum likelihood, organized by decile.

Step two: We ordered patients according to parameter deciles and then collected two groups 

of patients per model (three for the GEV) according to having all parameters in either the 1st 

or 10th deciles. For the GEV we split each of those sets of patients into two more categories 

according to whether the shape parameter was positive or negative; the shape parameter 

controls the direction of the tail of the distribution.

Step two outcome: The outcome of step two is a collection of sets of patients who had high 

and low values of the laboratory summary variables.

Step three: Beginning with the groups of patients collected in step two, we selected 15 

random patients from each subgroup for manual gold standard curation by the clinician. For 

example, we selected 15 patients whose mean and standard deviation were both in the 10th 

deciles.

Step three outcome: The outcome of step three is a subset of patients for manual review 

and subsequent creation of a gold standard to evaluate the PopKLD methodology.

Step four: We gave a clinician the 30 patients for each model category randomly ordered 

and blinded and had the clinician manually review the patient's record and identify whether 

the patients had or did not have one of the given diseases.
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Step four outcome: The outcome of step four was the creation of the gold standard used to 

evaluate the PopKLD algorithm.

Step five: We estimated the cluster purity [67] of each 15-patient group to evaluate how pure 

each of the 15 patient groups were relative a given disease. For example, for the log-normal 

distribution for glucose, the 10th decile group had 15 out of 15 patients with diabetes, 

achieving a purity of 1; cf. Table 2 for the results.

Step five outcome: The outcome of step five is a quantitative evaluation of the PopKLD 

algorithm against a gold standard for a broad EHR population.

3. Results

3.1. Summary models for laboratory data types identified by the PopKLD algorithm

The results from the PopKLD algorithm for 64 common laboratory values are found in 

Table 1; the laboratory values included are split into clinically relevant groupings, including 

metabolic, blood gasses, whole blood, differential, hepatobiliary, lipids, anemia, cardiac, 

hormone, inflammatory, vitamin and urinary laboratory values. Recall that all of the 

laboratory values were collected in the AIM clinic with the exception of one, the ICU 

glucose. The ICU-restricted glucose is included in an attempt to isolate the data generated 

primarily due to physiology and with relatively minimal health care process bias due to 

collection context.

Within Table 1 we would like to focus on five observations. First, there is no obvious general 

rule of thumb for picking a best or most representative distribution for all laboratory data 

types. All parametric models have laboratory variables that they represent particularly poorly 

as characterized by a comparatively large KL-divergence while still being among the best 

to represent other laboratory variables. Second, there is diversity in how many models can 

reasonably model given laboratory data. Some laboratory types have a clear winner among 

models, e.g., AST and ALT are best approximated by the GEV because the KL-divergence 

is smaller for the GEV compared to all other models an order of magnitude or more, while 

others laboratory variables have many models that can represent them well, e.g., urinary pH 

and T4 have several models whose KL-divergence agrees out to 2 orders of magnitude or 

more. Third, most but not all laboratory measurements deviate from the normal distribution 

in a substantial way. Only a few laboratory measurements are well represented by the normal 

distribution. Because of this, assuming normality with laboratory values is generally not 

a good idea. Moreover, because of the deviation from the maximum entropy prediction, 

most laboratory variable data have more information than is contained in the mean and 

variance alone. Fourth, often when the laboratory measurements are well modeled by a 

normal distribution they are also well modeled by several other parameterized models. This 

may imply that these laboratory measurements have among the least structure or constraints 

imposed by their generating process—this interpretation is again motivated by ideas from 

maximum entropy. And fifth, one interpretation of model selection is that the selected model 

is the model most similar to the generating process of the data. In other words, if the 

PopKLD algorithm selects the GEV, the interpretation would be that the process generating 

the data is some kind of extreme value process such as measurement restricted to acute 
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illness. While there may be something to this interpretation, we must be careful about 

drawing too strong a conclusion from this result for two reasons. First, the real generating 

process may not be well represented by any of the 11 models even by approximation. And 

second, without a explicit mechanistic reasons and understanding that predicts a particular 

model selection, we must use care in extrapolating implications of a given model being 

selected as the most representative. This is important because it relates to our first evaluation 

methodology and why we buttress our first evaluation of the PopKLD algorithm with other 

evaluation techniques.

3.2. Evaluation one: PopKLD summary's preservation of known physiology and 
comparison with principle of maximum entropy predictions for intravascular glucose

When EHR data are not influenced by collection context or other health care processes, they 

should represent the physiology of the patient. In this setting, the PopKLD should select 

the distributions that preserve physiologic features. To test this we evaluate the PopKLD 

algorithm in two data collection contexts. First we apply PopKLD to glucose data collected 

in the ICU, a single context data source. We hypothesize that the ICU data represent 

mostly physiology because the measurements such as glucose in an ICU are collected 

largely independent of the state of the patient compared with other EHR data collection 

contexts. Second, apply PopKLD to glucose from the EHR limited to patients who visit 

the Ambulatory Internal Medicine clinic, or the AIM clinic. These data represent a mixed 

context data source because these data include all data for AIM patients, including ICU data, 

but primarily contain outpatient data. We hypothesize that the AIM data represent a mix 

of physiology and HCP. In both contexts we show that the PopKLD produces laboratory 

summaries that preserve know physiology. Specifically, that for glucose, mean and standard 

deviation are linearly related.

In the case of the ICU data, we can further evaluate the PopKLD algorithm because we can 

make a prediction. The maximum entropy distribution for any system with the constraint 

that mean and standard deviation are linearly related is the gamma distribution. Therefore, in 

the context of the ICU, if the ICU data are primarily representative of physiology, we predict 

that the PopKLD algorithm will select the gamma distribution to best summarize glucose.

3.2.1. PopKLD of glucose collected in a single context—PopKLD selects the 

lognormal and the gamma distributions as the best summaries for glucose. In both cases 

the known physiologic relationship was revealed and both PopKLD and the independent 

maximum entropy predictions agree. Fig. 3 shows the relationship between the empirical 

mean and standard deviation, both raw and truncated by hand, meaning we removed all 

cases where the standard deviation was greater than 2000, the mean-like and standard

deviation-like quantities for the log-normal distribution, the gamma distribution and the 

GEV distribution. We include the GEV because it is the PopKLD selected distribution 

for the broad EHR data that we will discuss in the following section and we wanted to 

show the contrast. The empirical mean and standard deviation reveal no relationship in 

their raw forms; when we remove the outliers of the mean and standard deviation by hand, 

the physiologic relationship we seek appears (cf “truncated standard deviation in Figs. 3 

and 4). This by-hand treatment is not useful in a high-throughput setting and shows how 
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the mean and standard deviation can fail to cope with the health care process. Moreover, 

this figure is allows for direct observation of the effects outliers have on the robustness 

of mean and standard deviation estimates. The log-normal and GEV models automatically 
reveal the physiologic relationship we know is present. The gamma parameters, the model 

predicted by maximum entropy to be the most representative model, reproduce the strongest, 

cleanest physiologic relationship. The other model the PopKLD selected also reproduced the 

physiologic signal we know to be present, as did the GEV. This implies that a good-enough 

PopKLD score may be enough to justify using a given model to summarize data.

3.2.2. PopKLD summary of glucose collected in a mixed context—In the mixed 

context setting PopKLD selects the GEV distribution to summarize glucose because it 

minimizes the KL-divergence, but the lognormal remains a plausible summary distribution 

because it is not far from the minimum KL-divergence. In contrast to the ICU data setting, 

the gamma distribution—the distribution that we would expect to be selected assuming 

only physiology—is not among the models selected by the PopKLD to summarize glucose. 

Fig. 4 shows the relationship between the empirical mean and standard deviation, both raw 

and truncated by hand where we again removed all cases where the standard deviation 

was greater than 2000, the mean-like and standard-deviation-like quantities for the GEV, 

the log-normal distribution, and the gamma distribution. The empirical mean and standard 

deviation again reveals no relationship in their raw forms; when we truncate by removing 

the outliers of the mean and standard deviation, the physiologic relationship we seek appears 

in a much more pronounced way compared to the ICU data. Again, this by-hand treatment 

is not useful in a high-throughput setting. The GEV and log-normal models automatically 
reveal the physiologic relationship we know is present. In contrast, and as predicted, the 

gamma parameters only very weakly reproduce the physiologic relationship—the gamma is 

not a good model for summarizing glucose using mixed context EHR data.

In the AIM data context, the PopKLD-selected the model is not the model we would have 

picked based on knowledge of glucose physiology, the gamma distribution, but it is the 

one that preserves physiologic relationship between mean and standard deviation of glucose 

the most clearly. Moreover, PopKLD, while preserving the physiology, did not select the 

maximum entropy model. This deviation may be because the generating process is no longer 

governed by glucose physiology in a dominant way—that the HCP and measurement noise 

may be contributing in nontrivial ways to the data in addition to the biology we observe. The 

empirical mean and standard deviation are unstable, obscure the physiology, and are largely 

useless as was the case with the single context ICU data. We hypothesize that the reason 

the log-normal and GEV worked better than the gamma is that the GEV and log-normal 

distributions are handle outliers very well, while the gamma is lost in outlier havoc, but this 

remains a hypothesis.

3.3. Evaluation two: using PopKLD and PopKLD-CAT for a phenotyping task

The results of evaluation two, the phenotyping task, are shown in detail in Table 2. We 

would like to focus on six results. First, PopKLD appears to work well for selecting a 

parameterized model to summarize laboratory data for use in the task of phenotyping 

patients or identifying cohorts of patients with a laboratory-definable disease. Again, the 
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PopKLD algorithm is meant as a data preprocessing algorithm instead of an algorithm 

for phenotyping, but the PopKLD summary of laboratory data does appear to supply the 

information needed identify different patient phenotypes more accurately than mean and 

standard deviation. Second, the mean and standard deviation work poorly as summary 

variables and can only reliably help determine absence of a disease. We suspect that mean 

and standard deviation work poorly because they are not robust statistics; it is possible 

that applying m-estimators or other robust statistics tools [68] would make mean and 

standard deviation more useful. Third for all of the models it is apparently easy to detect 

absence of a disease when the presence of the disease is a defined by a high value of 

the laboratory value. The implication is that outliers in this situation are biased toward 

being too high; this may not always be the case for every laboratory measurement. Fourth, 

the PopKLD selected model, the GEV generally does well relative to the purity against 

the gold standard, although it underperforms on the identification of pancreatitis. Fifth, 

the GEV, aside from the mean-like location and the standard deviation-like scale, has 

a tail-controlling parameter called shape and sometimes the shape parameter matters for 

helping to identify a disease. For example, in the case of CKD, negative shape, or a left 

tail, helps better identify patients with CKD. That the GEV has more parameters to leverage 

can be an advantage—here enforcing a negative shape implies a hard upper bound on 

laboratory measurements, decreasing the likelihood of high outlier, while being able to 

retain information about high mean and standard deviation-like parameters. And sixth, the 

second best performing model according to the PopKLD, the log normal, generally performs 

well, especially in the case of pancreatitis where it outperforms the GEV. It is likely that 

using more than one model summary, e.g., the top three PopKLD models, may be helpful 

in high-throughput applications as there may be little cost in calculating such quantities 

and using them in phenotyping schemes. Constructing a model averaging [9,69]or ensemble 

learning [70–72] approach here may be very useful. Another less redundant option would 

include an uncertainty analysis into the PopKLD algorithm; we will cover this option in the 

discussion.

4. Discussion

Summary

We developed an algorithm, the PopKLD algorithm, for summarizing EHR laboratory data 

that is automated, generalizable, and robust to context of collection and therefore can 

potentially be used in high-throughput phenotyping applications. This does not mean that 

the PopKLD algorithm is a phenotyping algorithm—it is not—but rather that the laboratory 

summaries estimated by the PopKLD algorithm may be provide more information than 

mean, standard deviation, or presence/absence, when integrated into a high-throughput 

phenotyping algorithm. The PopKLD model selection algorithm revealed that context of 

data collection, e.g., health care process, physiology, etc., potentially may contribute to the 

data we observe in quantifiable, identifiable ways.
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Modeling electronic health record data generated by physiology and the health care 
process

We have shown that in different clinical contexts, different parameterized models of data 

may be appropriate, and we hypothesize but have not proven that the cause is not so much a 

change in physiology, but a change in the way health is measured in the different contexts. 

That is, we hypothesize that the health care process causes different but measurable biases 

in the data and provide more evidence validating this hypothesis. In the ICU, the health 

care process measurement function does not appear to have a strong influence on glucose 

measurements. Circumstantially, we observe that we can treat and use ICU data more like 

continuously sampled physiologic data. In contrast, the process that generates or collects 

data from outpatient, or mixed outpatient-inpatient settings, does influence the data collected 

more profoundly. If the reasonably correct model is not chosen, the physiologically expected 

relationships between parameters are lost. Written differently, it is likely that we must 

understand something about, or otherwise account for, the generating processes of EHR data 

in a concrete way if we intend to use EHR data to their full capacity. Moreover, if we ignore 

the health care process entirely, our results may be highly suspect. The PopKLD algorithm 

is meant to reduce biases such as the health care process bias, but a deeper understanding of 

these biases will be necessary to more completely and positively remove them.

High-throughput phenotyping application

One of the points of the PopKLD algorithm to create a reasonable, interpretable, stable, 

automatable, ordinal summary of laboratory data that can be used in high-throughput 

situations where machine learning [17,16,15] is used to categorize humans. Based on 

the results from the clinical evaluation, we believe that PopKLD will be very useful in 

phenotyping studies.

PopKLD not meant to be used by itself

The point of this paper was not to create a laboratory summary algorithm to be used as 

a single and only summary of an individual. While we did use the PopKLD summary 

variables as lone summarizations of patients for the clinical evaluation, this is not the 

intended use. Rather, the PopKLD algorithm was designed with two goals in mind. First, 

the PopKLD summaries were intended to be used in conjunction with other variables as a 

stable and accurate summary of a given laboratory value that can be generated automatically 

for high-throughput applications. Second, the PopKLD algorithm was intended to transform 

laboratory values from continuous to discrete summaries when necessary for use in high

throughput settings such as topic modeling.

Striking a balance between accuracy and interpretability

In this paper we developed an algorithm for creating a simple, interpretable summary of 

laboratory data—PopKLD—and a method for discretizing that summary when necessary—

PopKLD-CAT. There are many options for further modifying our algorithms to include 

more complex methods, including adaptations of Lasso, general linear modeling, Bayesian 

methods, mixture models, random effects models, etc. These modifications raise the 

question of the balance between interpretability and accuracy. On one end, if one wants 
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to maximize accuracy of a distributional estimate and doesn't care so much about 

interpretability or simplicity, then modeling the data with a KDE or a neural network, 

or a spline, or a mixture model, etc., will provide a more accurate representation of the 

data almost surely. But often what gained using a more complex model, accuracy of 

estimation, and is lost is interpretability. For example, mixing only two models together 

makes interpreting parameters much more complex; e.g., a KDE is, in essence, a mixture 

of different kernel functions whose parameters are not easily interpretable. Our algorithm 

development was driven by concrete constraints; we wanted an interpretable, single 

parametric model representations of the data that was robust, useful on sparsely sampled 

individuals, and we wanted the selection of such a model to be automatable. The balance 

we struck has limitations, as discussed in Section 2.4 and we suspect that modifications to 

the our algorithm that detect, account for, and build out from these limitations will extend 

interpretability and reduce the level of garbage in within high-throughput phenotyping 

pipelines.

Incorporation of uncertainty analysis and model error into the PopKLD algorithm

We did not introduce uncertainty quantification into the PopKLD algorithm because we 

wanted to simplify the presentation of the core concepts of the algorithm and because 

we wanted to highlight that it may be useful to use more than a single summary 

model. Moreover, uncertainty quantification induces many choices that we did not want 

to highlight or focus on. Nevertheless, it may be useful to preform uncertainty analysis, 

especially in situations where there are many potentially useful models and only one is 

desired. Uncertainty analysis is rather simple to incorporate into the PopKLD algorithm in 

theory, but can become messy in practice. For example, applying the jackknife bootstrap, 

or bootstrap with replacement on patient, or bag of little bootstraps to the population 

will allow easy computation of a confidence interval on the KDE of the population [73–

75]. The problem is then determining the KL-divergence between two distributions with 

confidence intervals around them. One solution is to estimate the KL-divergence between 

the confidence interval bounds that maximize the difference at every point in the support, 

but there are many other options. Here we took a more simple tactic, we assume the 

model error is always quite high and do not focus on only the model that minimized the KL

divergence but also consider other models that are near the minimum of KL-divergence. This 

robustness tactic is well-worn: we treat all the models near the KL-divergence minimum 

as perturbations of one another in a functional sense, and by evaluating all of them, we 

evaluate the robustness of PopKLD algorithm relative to selecting any of the models near the 

KL-divergence minimum. What we observed in our evaluations is that all the models near 

the KL-divergence minimum did quite well reproducing known physiology and matching 

the clinician defined gold standard. Because of this robustness to functional perturbations, 

we are more confident that PopKLD will be useful in a more automatic setting where, for 

example, the user randomly selects one distribution in the case where there is more than one 

best distribution.

Insights from the KL-divergence estimates

We did not include an analysis of all comparisons between the non-parametric KDE models 

of the population and the parametric models because there are 704 such comparisons. We 
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did look at all the KL divergence estimates and graph combinations we were surprised 

by a few things: (i) nearly all parametric families approximated some laboratory variables 

well while almost no parametric families approximated other laboratory variables well; (ii) 

sometimes a few parametric families fit a laboratory variable very well but differently while 

the rest of the parametric families fit the laboratory variable miserably; and (iii) sometimes 

subclasses of distributions provided much better estimates of a laboratory variable, e.g., the 

Weibull may not resemble the GEV estimate for a given data set, even though the Weibull is 

a GEV subclass. This later issue reveals the complexity and sensitivity that model estimates 

can have to the method used to estimate the model parameters. Meaning, different model 

estimation algorithms with, e.g., different methods for selecting parametric starting points, 

can arrive at different parametric estimates given the same data. This problem is not new 

and is a consequence of the difficulties encountered in choosing suitable parameter estimates 

given that a global optimal parametric estimate that may neither exist nor be easy to find. 

Because of this it may be useful when describing a model used to pair it with the algorithm 

used to estimate the model as was done in [76].

Data requirements of the algorithms

One of the powers of EHR data lies in the size of the population; we increase the data 

set by increasing the population while every individual remains sparsely measured. For the 

analysis here we included all individuals with at least five measurements. Generally, most of 

the individuals in our data set had fewer than 10 measurements per laboratory measurement 

type but there was variation in the amount of data present per individual across the different 

laboratory measurements. Our algorithm excludes all individuals for which an parametric 

model estimate did not converge. This failure to converge was relatively infrequent and was 

dependent on both the laboratory measurement and the chosen model. Most commonly, the 

algorithm excluded fewer than 5% of the population, meaning that the algorithm worked 

well on sparsely measured individuals.

Deviation from the normal distribution

As a byproduct of our analysis, we observed that the normal distribution is generally, but 

not always, among the worst representations of laboratory measurements. This has two 

implications. First, very few laboratory values are well represented by a normal distribution. 

The likely reason is that the normal distribution has symmetric tails while most physiologic 

variables have relatively hard lower bounds quite a distance from zero. But, the point is 

that for many analysis of laboratory values from hypothesis testing to machine learning 

(e.g. assumed Gaussian priors) include assumptions of normality, and those assumptions 

are likely quite wrong and may effect the conclusions of those studies. Second, mean 

and standard deviation may not be very useful quantities to characterize distributions of 

laboratory measurements. This does not mean that a mean-like centroid quantifying quantity 

and a standard deviation-like distributional spread quantifying quantity are not useful, just 

that mean and standard deviation themselves may not always be particularly representative 

or insightful quantities.
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Empirical estimation and the non-robustness of the mean and standard deviation

It is well understood that the mean and standard deviation are non-robust statistics. These 

quantities can be made more robust with some effort, but such effort is rarely employed. 

Instead, we often assume that the non-robustness of the mean and standard deviation will not 

be so bad as to deeply obscure their meaning. Moreover, we assume that by adding more 

data we may be able to reduce data quality problems. However, adding more data doesn't 

help because as more data are added, more outliers are also added at a roughly constant 

rate. So often the empirical mean becomes similarly or more corrupted as more data are 

added, not less corrupted. Meaning, our assumption that assuming that the non-robustness 

of the empirical estimates like a mean may not be so bad, or can be corrected by using 

more data is not consistent with the data and our understanding of robust statistics. Here 

we have quantification for how bad this assumption really is—mean and standard deviation 

failed miserably when used to identify presence of diabetes, chronic kidney disease, or 

pancreatitis. When using EHR data, it is likely best to either avoid mean and standard 

deviation when possible or employ robust statistics machinery or to use the method we 

propose here to select a representation to summarize the centroid and the variance around 

the centroid.

Why not use the principle of maximum entropy?

One could ask why not use maximum entropy as the model selection method rather than just 

as an evaluation method. At this point, it is difficult to estimate the entropy in a meaningful 

way using standard parameterized families of distributions because it is difficult to estimate 

the tails of the continuous distributions well in the setting of sparse data, and some of 

these distributions are sensitive to the tails. But we suspect that if these problems can be 

addressed maximum entropy would be useful for model selection for models of sparsely 

measured continuous variables just as it has been shown to be useful in the context of 

discrete variables [77] and natural language processing [78].

5. Summary

We developed the PopKLD and PopKLD-CAT algorithms that admit raw, continuous, 

inherently noisy, outlier-ridden, biased EHR laboratory data and emerges with a low

dimension summary that is less dominated by health care process biases, outliers, and other 

complexities, ready to be used by current machine learning technology. The algorithms, 

meant to be used to preprocess EHR data for use in high-throughput phenotyping and cohort 

identification algorithms, are easily automated and scalable as the number of laboratory 

variables and the patient population is increased. The algorithm excludes temporal features 

of the data, but can produce a robust summary that is either continuous using the PopKLD 

algorithm or ordinal using the PopKLD-CAT algorithm, pushing the fidelity of laboratory 

data summaries in such a way to be useful to many machine-learning-based phenotyping 

algorithms.
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Appendix A. Parameterized distributions

Normal distribution: is a member of the exponential class. The normal is important for at 

least two reasons. First, the normal distribution is universal because of the central limit 

theorem that states that summation or mean of any iid random variable with finite variance 

will have a normal distribution. The second reason why the normal family of distributions 

is important is that it is the maximum entropy distribution for a system whose mean and 

variance are known. If the normal distribution is the most representative model, then we 

can conclude that the process we are observing is: (i) generated by a normally distributed 

random variable (not likely because physiology generally does not have infinite support), 

(ii) the observed process is a sum of random variables (more likely because the original 

generating process can be nearly any random variable), or (iii) we can only resolve the mean 

and variance (as a consequence of maximum entropy).

Log-normal distribution: is the distribution of a random variable whose logarithm is normal 

distributed. Like the normal distribution, it is important for the same reasons in log 

coordinates. The log-normal distribution is the multiplicative product of positive iid random 

variables instead of the sum because it is in log coordinates (the log of a product is a sum). 

The log-normal distribution is the maximum entropy probability distribution for a system, X, 

whose mean and variance of ln(X) are known. The log-normal family of distributions is an 

intuitive choice for modeling EHR data because of its generative properties—the product of 

positive random variables—and because it is defined for only positive numbers.

Generalized extreme value distributions. (GEV) is a family of three distributions, GEV I, 

GEV II and GEV III, who are joined within a single equation. The GEV is the universal 

distribution of extrema of distributions according to the extreme value theorem and models 

properly normalized distributions of extrema of random variables if the extrema exist. 

The extreme value theorem, the extreme value analog of the central limit theory, shows 

that the GEV class of distributions is the only distribution family that models extrema of 

distributions. This universality makes the GEV a particularly important family, especially in 

the EHR context because it is often claimed that by measuring people only when why are 

sick, we are capturing the extrema of their physiology. It is important to note how the GEV 

and the Weibull, a subclass of the GEV, arrive at different parameter estimates, implying that 

the constraints limiting the GEV to the Weibull can have significant impact on the modeling 

estimates.

Weibull distribution: is one of the three types of extreme value distributions, GEV III and is 

a member of both the exponential and GEV families. Varying the parameters of the Weibull 

distribution interpolates between the exponential distribution and Rayleigh distribution while 

remaining within the exponential family. The variable in the Weibull distribution has been 

conceptualized as a distribution for particle size and more canonically in the extreme value 

context, a time to failure.

Rayleigh distribution: is a member of the exponential family, is defined for the positive real 

line, and is a special case of the Weibull which is therefore also a member of the GEV 

family. Moreover the Rayleigh distribution is a generalization of both the gamma or the 
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chi distributions, depending on how the parameters are constrained. The interpretation of 

the Rayleigh distribution is as the magnitude, x2 + y2, of a two dimensional vector whose 

components are independent, normally distributed, and have equal variance. It is not easy 

to interpret glucose in this framework, but the Rayleigh distribution's relationship to other 

distributions helps to show how restricted parameterizations lead to different MLE-based 

estimates.

Exponential distribution: is a member of the exponential family of distributions. The 

exponential distribution represents a generative random process capturing the time between 

consecutive random events in Poisson process with no memory.

Gamma distribution: is a member of the exponential and generalized hyperbolic family 

of distributions. Generatively the gamma distribution models waiting times, such as 

times to death, of Poisson process. More importantly, the gamma distribution is the 

maximum entropy distribution for a process whose expected value is related to its 

univariate parameterization times a constant. Or, written differently, the gamma distribution 

is maximum entropy variable for processes whose mean-like and standard-deviation-like 

quantities are dependent [61].

Logistic distribution: is highly flexible and can be, depending on constraints on its 

parameters, a member of either or both the GEV or exponential families. The logistic 

distribution is notable because of its flexibility, because it is widely used in machine learning 

(e.g., in neural networks), because its cumulative probability density function of the logistic 

function, and because it is essentially a more flexible, normal distribution with fatter tails.

Uniform distribution: is the maximum entropy distribution when only a mean is known. 

Specifically, if we only have information about the mean and nothing else, the UD is the 

least biased distribution, and is essentially the distribution to beat. The uniform distribution 

is not a member of GEV or exponential family of distribution.

Pareto: is the family of distributions that follow a power-law and is not a member of 

either the exponential or the GEV family of distributions. Generally the Pareto distribution 

is used to model extrema with fat tail distributions. Power-law dependencies afford many 

interpretations and are common in nature. The most common interpretation of a power-law 

is the implication of scale independence because the functional dependence does not change 

over different scales of the independent variable. Like the log-linear distribution, it allows 

for the linearization of dependencies of variables that are only linear in log-log coordinates.

t-distribution: is an approximation of the normal distribution when the sample size is small 

and the variance is unknown. As the sample size is increased, the distribution tends toward 

a normal but generally has fatter tails than the normal distribution. The t-distribution can 

have a variable number of parameters or degrees of freedom, here we report results with 

three degrees of freedom but exampled it with between one and five. The t-distribution is 

a member of the much larger generalized hyperbolic distribution. The t-distribution is the 

maximum entropy distribution under the constraint that E [ln(ν + X2)] is constant, where ν 
is the number of degrees of freedom.

Albers et al. Page 21

J Biomed Inform. Author manuscript; available in PMC 2018 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Hripcsak G, Albers D. Next-generation phenotyping of electronic health records. JAMIA. 10 2012; 
:1–5. 

2. Hripcsak G, Albers D. Correlating electronic health record concepts with healthcare process events. 
JAMIA. 0 2013; :1–8. 

3. Albers D, Hripcsak G, Schmidt M. Population physiology: leveraging electronic health record data 
to understand human endocrine dynamics. PLoS One. 7 2012; :e480058. 

4. Albers DJ, Hripcsak G. A statistical dynamics approach to the study of human health data: resolving 
population scale diurnal variation in laboratory data. Phys Lett A. 2010 

5. Albers DJ, Hripcsak G. Using time-delayed mutual information to discover and interpret temporal 
correlation structure in complex populations. CHAOS. 22 2012; :013111. [PubMed: 22462987] 

6. Kohane I, Weber G. Extracting physician group intelligence from electronic health records to 
support evidence based medicine. PLoS One. 8 2013; :e64933. [PubMed: 23734227] 

7. Pivovarov R, Albers D, Sepulveda J, Elhadad N. Identifying and mitigating biases in EHR 
laboratory tests. J Biomed Informat. 2014 

8. Burnham K, Anderson D. Model Selection and Multimodel Inference: A Practical Information
theoretic Approach. Springer. 2002 

9. Claeskens, G, Hjort, N. Model Selection and Model Averaging. Cambridge University Press; 2008. 

10. Gottesman O, Kuivaniemi H, Tromp G, Faucett W, Li R, Manolio T, Sanderson S, Kannry J, 
Zinberg R, Basford M, Brilliant M, Carey D, Chisholm R, Chute C, Connolly J, Crosslin D, Denny 
J, Gallego C, Haines J, Hakonarson H, Harley J, Jarvik G, Kohane I, Kullo I, Larson E, McCarty 
C, Ritchie M, Roden D, Smith M, Bttinger E, Williams M. eMERGE Network. The electronic 
medical records and genomics (emerge) network: past, present, and future. Genet Med. 15 (10) 
2013; :761–771. [PubMed: 23743551] 

11. Hripcsak, G, Duke, D, Shah, N, Reich, C, Huser, V, Schemie, M, Suchard, M, Park, R, Wong, 
I, Rijnbeek, P, van der Lei, J, Pratt, N, Noren, G, Lim, Y, Stang, P, Madigan, D, Ryan, 
P. MEDINFO15. So Paulo; Brazil: 2015. Observational health data sciences and informatics 
(OHDSI): opportunities for observational researchers. 

12. Hripcsak G, Ryan PB, Duke JD, Shah NH, Park RW, Huser V, Suchard MA, 
Schuemie MJ, DeFalco FJ, Perotte A, Banda JM, Reich CG, Schilling LM, Matheny 
ME, Meeker D, Pratt N, Madigan D. Characterizing treatment pathways at scale using 
the OHDSI network. Proc Natl Acad Sci. 113 (27) 2016; :7329–7336. http://dx.doi.org/
10.1073/pnas.1510502113 http://www.pnas.org/content/113/27/7329.full.pdf http://www.pnas.org/
content/113/27/7329.abstract [PubMed: 27274072] 

13. Newton K, Peissig P, Kho A, Bielinski S, Berg R, Choudhary V, Basford M, Chute C, Kullo I, Li 
R, Pacheco J, Rasmussen L, Spangler L, Denny J. Validation of electronic medical record-based 
phenotyping algorithms: results and lessons learned from the emerge network. J Am Med Inform 
Assoc. 20 2013; :e147–e154. [PubMed: 23531748] 

14. Pathak J, Kho A, Denny J. Electronic health records-driven phenotyping: challenges, recent 
advances, and perspectives. J Am Med Inform Assoc. 20 2013; :e206–e211. [PubMed: 24302669] 

15. Halpern Y, Choi Y, Horng S, Sontag D. Using anchors to estimate clinical state without labeled 
data. Proceedings of the American Medical Informatics Association (AMIA) Annual Symposium. 
2014 :606–615. 

16. Halpern Y, Choi Y, Horng S, Sontag D. Electronic medical record phenotyping using the anchor 
and learn framework. JAMIA. 2016 

17. Pivovarov R, Perotte A, Grave E, Angiolillo J, Wiggins C, Elhadad N. Learning probabilistic 
phenotypes from heterogeneous EHR data. J Biomed Inform. 2015 

18. Hagar Y, Albers D, Pimovarov R, Dukic V, Elhadad N. Survival analysis adapted for electronic 
health record data: experiments with chronic kidney disease. Stat Anal Data Min. 7 2014; :385–
403. [PubMed: 33981381] 

19. Lasko T, Denny J, Levy M. Computational phenotype discovery using un-supervised feature 
learning over noisy, sparse, and irregular clinical data. PLOS One. 2013 

Albers et al. Page 22

J Biomed Inform. Author manuscript; available in PMC 2018 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1073/pnas.1510502113
http://dx.doi.org/10.1073/pnas.1510502113
http://www.pnas.org/content/113/27/7329.full.pdf
http://www.pnas.org/content/113/27/7329.abstract
http://www.pnas.org/content/113/27/7329.abstract


20. Hripcsak G, Albers DJ. High-fidelity phenotyping: richness and freedom from bias. J Am Med 
Inform Assoc. 2017 :ocx110. 

21. Hripcsak G, Albers D, Perotte A. Exploiting time in electronic health record correlations. JAMIA. 
18 2011; :109–115. 

22. Albers D, Hripcsak G. Estimation of time-delayed mutual information from sparsely sampled 
sources. Chaos Solitons Fract. 45 2012; :853–860. 

23. Hastie T, Tibshirani R, Wainwright M. Statistical Learning with Sparsity. CRC. 2015 

24. Claassen J, Perotte A, Albers D, Kleinberg S, Schmidt J, Tu B, Lantigua H, Hirsch L, 
Mayer S, Connolly E, Hripscak G. Electrographic seizures after sub-arachnoid hemorrhage 
and derangements of brain homeostasis in humans. Ann Neurol. 74 2013; :53–64. [PubMed: 
23813945] 

25. Claassen J, Albers D, Schmidt JM, De Marchis GM, Pugin D, Falo CM, Mayer SA, Cremers S, 
Agarwal S, Elkind MSV, Connolly ES, Dukic V, Hripcsak G, Badjatia N. Nonconvulsive seizures 
in subarachnoid hemorrhage link inflammation and outcome. Ann Neurol. 75 (5) 2014; :771–781. 
DOI: 10.1002/ana.24166 [PubMed: 24771589] 

26. Milliken, G, Johnson, D. Analysis of Messy Data. Vol. 1. Chapman & Hall/CRC; 2004. 

27. Milliken, G, Johnson, D. Analysis of Messy Data. Vol. 2. Chapman & Hall/CRC; 1989. 

28. Milliken, G, Johnson, D. Analysis of Messy Data. Vol. 3. Chapman & Hall/CRC; 2001. 

29. Marvasti, F, editor. Non-uniform Sampling: Theory and Practice. Springer; 2001. 

30. Box G, Cox D. An Analysis of Transformations. J Roy Stat Soc. 26 (2) 1964; :211–252. 

31. Carroll R, Ruppert D. On prediction and the power transform family. Biometrika. 68 (3) 1981; 
:609–615. 

32. McCullagh, P, Nelder, J. Generalized Linear Models. second. CRC; 1989. 

33. Christensen, R. Plane Answers to Complex Questions. fourth. Springer; 2011. 

34. Hug, C. Predicting the Risk and Trajectory of Intensive Care Patients Using Survival Models (PhD 
thesis). MIT; 2006. 

35. Luo Y, Wang F, Szolovits P. Tensor factorization towards precision medicine. Briefings Bioinform. 
2016 

36. Poole S, Schroeder LF, Shah N. An unsupervised learning method to identify reference intervals 
from a clinical database. J Biomed Inform. 59 (Supplement C) 2016; :276–284. http://dx.doi.org/
10.1016/j.jbi.2015.12.010 http://www.sciencedirect.com/science/article/pii/S1532046415002907 
[PubMed: 26707631] 

37. den Broeck JV, Cunningham SA, Eeckels R, Herbst K. Data cleaning: detecting, diagnosing, and 
editing data abnormalities. PLoS Med. 2 2005; :e287. [PubMed: 16231993] 

38. Luo Y, Szolovits P, Dighe A, Baron J. Using machine learning to predict laboratory test results. Am 
J Clin Pathol. 2016 

39. Poh N, de Lusignan S. Modeling rate of change in renal function for individual patients: A 
longitudinal model based on routinely collected data. NIPS Personalized Medicine Workshop. 
2011 

40. Poh, N, de Lusignan, S. Workshop on Pattern Recognition for Healthcare Analytics. ICPR; 2012. 
Calibrating longitudinal eGFR in patience records stored in clinical practices using a mixture of 
linear regressions. 

41. Hripcsak G, Albers D, Perotte A. Parameterizing time in electronic health record studies. J Am 
Med Inform Assoc. 22 (4) 2015; :794–804. [PubMed: 25725004] 

42. Levine, M, Albers, D, Hripcsak, G. Annual Symposium Proceedings. AMIA; 2016. Comparing 
lagged linear correlation, lagged regression, granger causality, and vector autoregression for 
uncovering associations in EHR data. 

43. Cismondi F, Fialho AS, Vieira SM, Reti SR, Sousa JaMC, Finkelstein SN. Missing data in 
medical databases: impute, delete or classify? Artif Intell Med. 58 (1) 2013; :63–72. DOI: 
10.1016/j.artmed.2013.01.003 [PubMed: 23428358] 

44. Rubin, DB, Little, RJA. Statistical Analysis with Missing Data. second. Wiley; 2002. 

45. Little R. Pattern-mixture models for multivariate incomplete data. J Am Stat Assoc. 88 1993; 
:125–134. 

Albers et al. Page 23

J Biomed Inform. Author manuscript; available in PMC 2018 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1016/j.jbi.2015.12.010
http://dx.doi.org/10.1016/j.jbi.2015.12.010
http://www.sciencedirect.com/science/article/pii/S1532046415002907


46. Diggle P, Kenward MG. Informative drop-out in longitudinal data analysis. J Roy Stat Soc. 43 
1994; :49–93. 

47. Acock AC. Working with missing values. J Marriage Family. 2005 

48. Rodrigues De Morais, S; Aussem, A. Exploiting data missingness in Bayesian network modeling. 
Proceedings of the 8th International Symposium on Intelligent Data Analysis: Advances in 
Intelligent Data Analysis VIII, IDA '09, Springer-Verlag; Berlin, Heidelberg. 2009. 35–46. 

49. Lin JH, Haug PJ. Exploiting missing clinical data in bayesian network modeling for predicting 
medical problems. J Biomed Inform. 41 (1) 2008; :1–14. [PubMed: 17625974] 

50. Farhangfar A, Kurgan LA, Pedrycz W. A novel framework for imputation of missing values in 
databases. IEEE Trans Syst Man Cybern Part A: Syst Hum. 37 (5) 2007; :692–709. DOI: 10.1109/
TSMCA.2007.902631 

51. Abdala O, Saeed M. Estimation of missing values in clinical laboratory measurements of ICU 
patients using a weighted k-nearest neighbors algorithm. Computers in Cardiology. 2004 :693–
696. 

52. Fang H, Espy KA, Rizzo ML, Stopp C, Weibe SA, Stroup W. Pattern recognition of longitudinal 
trial data with nonignorable missingness: an empirical case study. Int J Inform Technol Decis 
Making. 2009 

53. Neuenschwander B, Branson M. Modeling missingness for time-to-event data: a case study in 
osteoporosis. J Biopharm Stat. 14 2004; :1005–1019. [PubMed: 15587977] 

54. Zarate, LE; Nogueira, BM; Santos, TRA; Song, MAJ. Techniques for missing value recovering 
in imbalanced databases: application in a marketing database with massive missing data; IEEE 
International Conference on Systems, Man and Cybernetics, IEEE; 2006. 2658–2664. 

55. Razavian, N; Marcus, J; Sontag, D. Multi-task prediction of disease onsets from longitudinal 
laboratory tests. In: Doshi-Velez, F; Fackler, J; Kale, D; Wallace, B; Weins, J, editors. Proceedings 
of the 1st Machine Learning for Healthcare Conference, Proceedings of Machine Learning 
Research, PMLR; Northeastern University, Boston, MA, USA. 2016. 73–100. URL <http://
proceedings.mlr.press/v56/Razavian16.html>

56. Xu, Y; Xu, Y; Saria, S. A non-parametric bayesian approach for estimating treatment-response 
curves from sparse time series. In: Doshi-Velez, F; Fackler, J; Kale, D; Wallace, B; Weins, J, 
editors. Proceedings of the 1st Machine Learning for Healthcare Conference, Proceedings of 
Machine Learning Research, PMLR; Northeastern University, Boston, MA, USA. 2016. 282–300. 
URL <http://proceedings.mlr.press/v56/Xu16.html>

57. Gelman, A, Carlin, J, Stern, H, Dunson, D, Vehtari, A, Rubin, D. Bayesian Data Analysis. third. 
CRC Press; 2014. 

58. Cover, TM, Thomas, JA. Elements of Information Theory. second. Wiley-Interscience; 2006. 

59. Dahlem D, Maniloff D, Ratti C. Predictability bounds of electronic health records. Sci Rep. 2015 

60. Langford E. Quartiles in elementary statistics. J Stat Educ. 14 2006; 

61. Park S, Bera A. Maximum entropy autoregressive conditional heteroskedasticity model. J Econom. 
2009 :219–230. 

62. Albers D, Elhadad N, Tabak E, Perotte A, Hripcsak G. Dynamical phenotyping: using 
temporal analysis of clinically collected physiologic data to stratify populations. PLoS One. 6 
2014; :e96443. 

63. Sturis J, Polonsky K, Shapiro E, Blackman J, O'Meara N, Cauter EV. Abnormalities in the 
ultradian oscillations of insulin secretion and glucose levels in type 2 (non-insulin-dependent) 
diabetic patients. Diabetologia. 35 1992; :681–689. [PubMed: 1644248] 

64. Coles, S. An Introduction to Statistical Modeling of Extreme Values. Springer; 2001. 

65. Sturis J, Polonsky KS, Mosekilde E, Cauter EV. Computer model for mechanisms underlying 
ultradian oscillations of insulin and glucose. Am J Physiol Endocrinol Metab. 260 1991; :E801–
E809. 

66. Keener, J, Sneyd, J. Mathematical Physiology II: Systems Physiology. Springer; 2008. 

67. Manning, C, Raghavan, P, Schutze, H. Introduction to Information Retrieval. Cambridge University 
Press; 2008. Ch. Evaluation of clustering

68. Huber, P, Ronchetti, E. Robust Statistics. Wiley; 2009. 

Albers et al. Page 24

J Biomed Inform. Author manuscript; available in PMC 2018 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://proceedings.mlr.press/v56/Razavian16.html
http://proceedings.mlr.press/v56/Razavian16.html
http://proceedings.mlr.press/v56/Xu16.html


69. Hoeting J, Madigan D, Raftery A, Volinsky C. Bayesian model averaging: a tutorial. Stat Sci. 14 
1999; :382–417. 

70. Opitz D, Maclin R. Popular ensemble methods: an empirical study. J Artif Intell Res. 11 1999; 
:169–198. 

71. Seni G, Elder J. Ensemble Methods in Data Mining, Morgan and Claypool. 2010 

72. Zhou, ZH. Ensemble Methods: Foundations and Algorithms. Chapman and Hall; 2012. 

73. Efron, B, Tibshirani, R. An Introduction to the Bootstrap. Chapman and Hall/CRC; 1994. 

74. Davison, A, Hinkley, D. Bootstrap Methods and Their Applications. Cambridge University Press; 
1997. 

75. Kleiner A, Talwalker A, Sarkar P, Jordan M. A Scalable Bootstrap for Massive Data. 

76. Levine M, Hripcsak G, Mamykina L, Stuart A, Albers D. Offline and Online Data Assimilation for 
Real-time Blood Glucose Forecasting in Type 2 Diabetes. 

77. Phillips S, Anderson R, Schapire R. Maximum entropy modeling of species geographic 
distributions. Ecol Model. 2006 :231–259. 

78. Berger A, Pierta SD, Pierta VD. A maximum entropy approach to natural language processing. 
Comput Linguist. 22 (1) 1996; :39–71. 

Albers et al. Page 25

J Biomed Inform. Author manuscript; available in PMC 2018 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
A graphical picture of the PopKLD algorithm for creating a statistical summary of patient 

laboratory data.
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Fig. 2. 
A graphical picture of the PopKLD-CAT algorithm that translates the continuous PopKLD 

patient laboratory data summaries into categorical variables that can be used in situations 

where categorical variables are necessary, such as topic modeling.
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Fig. 3. 
Joint distributions for: mean vs raw standard deviation (top left), mean vs truncated standard 

deviation (top right), location vs scale—the mean-like and variance-like parameters of the 

GEV—(middle left), log-normal mean vs standard deviation (middle right), and “a” vs 

“b” of the gamma distribution for the ICU population (bottom). PopKLD selected the log

normal and gamma distributions as the best models and both reproduce known physiology 

well.
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Fig. 4. 
Joint distributions for: mean vs raw standard-deviation (top left), mean vs by hand truncated 

variance (top right), location vs scale—the mean-like and variance-like parameters of the 

GEV—(middle left), log-normal mean vs standard deviation (middle right), and “a” vs “b” 

of the gamma distribution for the AIM population (bottom).
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Table 2

Clinical evaluation of the PopKLD method for selecting cohorts. For three diseases, diabetes, chronic kidney 

disease and pancreatitis and three related laboratory measurements, glucose, creatinine and lipase, we compare 

the presence/absence of a disease identified by manual review with presence/absence of a disease identified 

using output from the PopKLD algorithm. We want to see positive correlation between a low KL-divergence 

and a high cluster purity because this implies that the model selected by the PopKLD method separated 

patients in a ways useful for identifying phenotypes and cohorts. Generally, the PopKLD method worked well 

identifying presence of a disease compared with other laboratory data based metrics. Most metrics worked 

well identifying absence of a disease compared with presence of a disease, a result that is expected because the 

low outlier error indicates absence whereas high outlier errors produce false positives.

Clinical evaluation of cluster purity of PopKLD selected cohorts

Disease state Model-defined cohort KL-divergence Purity (Proportion)

Glucose collected in the AIM clinic

Diabetes GEV() 10th decile, shape >0 3.1 ⇐
0.93(14

15)

Diabetes GEV() 10th decile, shape <0 3.1 ⇐
0.93(14

15)

Diabetes logn() 10th decile 4.3
1(15

15)

Diabetes mean and standard deviation 10th decile –
0.53( 8

15)

No Diabetes GEV() 1st decile, shape >0 3.1 ⇐
0.93(14

15)

No Diabetes GEV() 1st decile, shape <0 3.1 ⇐
0.93(14

15)

No Diabetes logn() 1st decile 4.3
1(15

15)

No Diabetes mean and standard deviation 1st decile –
1(15

15)

Creatinine collected in the AIM clinic

CKD GEV() 10th decile, shape >0 1.1 ⇐
0.53( 8

15)

CKD GEV() 10th decile, shape <0 1.1 ⇐
0.8(12

15)

CKD logn() 10th decile 2.0
0.53( 8

15)

CKD mean and standard deviation 10th decile –
0( 0

15)

No CKD GEV() 1st decile, shape >0 1.1 ⇐
1(15

15)

J Biomed Inform. Author manuscript; available in PMC 2018 March 16.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Albers et al. Page 33

Clinical evaluation of cluster purity of PopKLD selected cohorts

Disease state Model-defined cohort KL-divergence Purity (Proportion)

No CKD GEV() 1st decile, shape <0 1.1 ⇐
1(15

15)

No CKD logn() 1st decile 2.0
1(15

15)

No CKD mean and standard deviation 1st decile –
1(15

15)

Lipase collected in the AIM clinic

Pancreatitis GEV() 10th decile, shape 73 ⇐
0.27( 4

15)

Pancreatitis GEV() 10th decile, shape <0 73 ⇐
0.2( 3

15)

Pancreatitis logn() 10th decile 80
0.87(13

15)

Pancreatitis mean and standard deviation 10th decile –
0( 0

15)

no Pancreatitis GEV() 1st decile, shape >0 73 ⇐
0.8(12

15)

no Pancreatitis GEV() 1st decile, shape <0 73 ⇐
1(15

15)

no Pancreatitis logn() 1st decile 80
1(15

15)

no Pancreatitis mean and standard deviation 1st decile –
0.73(11

15)
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