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Working memory (WM) is one of the most studied cognitive constructs. Although many
neuroimaging studies have identified brain networks involved in WM, the time course of
these networks remains unclear. In this paper we use dense-array electroencephalography
(dEEG) to capture neural signals during performance of a standard WM task, the n-back
task, and a blend of principal components analysis and independent components analysis
(PCA/ICA) to statistically identify networks of WM and their time courses. Results reveal a
visual cortex centric network, that also includes the posterior cingulate cortex, that is active
prior to stimulus onset and that appears to reflect anticipatory, attention-related processes.
After stimulus onset, the ventromedial prefrontal cortex, lateral prefrontal prefrontal cortex,
and temporal poles become associated with the prestimulus network.This second network
appears to reflect executive control processes. Following activation of the second network,
the cortices of the temporo-parietal junction with the temporal lobe structures seen in the
first and second networks re-engage. This third network appears to reflect activity of the
ventral attention network involved in control of attentional reorientation. The results point
to important temporal features of network dynamics that integrate multiple subsystems of
the ventral attention network with the default mode network in the performance of working
memory tasks.
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INTRODUCTION
An essential capacity for cognition and human performance is
working memory (WM), the ability to hold information in store as
it is manipulated through various cognitive transformations. The
n-back task, which has been in use at least since 1958 (Kirchner,
1958), can easily accommodate working load manipulations and
different stimulus features. This property allowed it to be used
to study WM across various sensory modalities, and a number
of early fMRI studies used n-back tasks to isolate and compare
the neural mechanisms for maintaining and manipulating items
in WM. Although not specifically developed to isolate component
processes of WM (see Jaeggi et al., 2010), the body of evidence that
has developed through the use of the n-back task is impressive,
not only in the sheer number of published studies but also in
what it has revealed about brain regions and networks responsible
for WM. In a meta-analytic study, Owen et al. (2005) identified
brain regions that are commonly engaged in WM, as assessed by
the n-back task, and they include: premotor, cingulate, lateral
prefrontal, fronto-polar, and medial and lateral posterior parietal
cortices. In addition, activations often are observed in perceptual
representation-specific regions, including inferior temporal and
lateral occipital cortices (Druzgal and D’Esposito, 2001). However,
nothing is known about the time course(s) of these brain regions
and networks in WM.

In the event-related potential (ERP) literature, Gevins et al.
(1996) conducted the first WM ERP studies with the n-back
task. Using dense-array electroencephalography (dEEG), these
authors observed early- (200 ms post-stimulus), mid- (390 ms
post-stimulus), and late-latency (600–900 ms post-stimulus) com-
ponents that differed as a function of WM load. Specifically, early
activity was larger for high load conditions, whereas activity at the
mid- and late-latency intervals was attenuated for high WM loads.

Using other visual WM paradigms designed to investigate spe-
cific WM processes, researchers have shown that activity 300 ms
post-stimulus over occipitoparietal recordings sites is sensitive to
memory maintenance requirements (e.g., Kiss et al., 1998; McCol-
lough et al., 2007), memory updates (Kiss et al., 1998, 2007), and
selection of memory traces for maintenance (Yi and Friedman,
2011). In contrast, frontal components at approximately 400 ms
post-stimulus reflect either inhibition of irrelevant stimuli (Yi and
Friedman, 2011) or the initiation of updates to the memory store
(Kiss et al., 2007).

Studies that employ ERP methodology can leverage both
appropriate experimental design and the inherent temporal prop-
erties of ERP features to infer functional significance. However,
because the vast majority of ERP studies of WM have employed
either sparse EEG arrays or analytic techniques such as sur-
face Laplacian or highly simplistic head models that do not
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take advantage of modern advances in electro-magnetic imag-
ing, information about the relevant underlying brain structures
has been lacking. Furthermore, temporal overlap in activity
among the underlying neural generators of scalp-recorded EEG
can produce complicated scalp voltage distribution patterns that
cloud the interpretation of traditionally measured, discrete ERP
components (Dien et al., 2004). Consequently, findings from
the ERP WM literature have not been integrated with fMRI
findings.

Recently, neuroimaging studies have examined the dynam-
ics among the cerebral nodes that support WM by assessing the
functional connectivity within and among brain networks during
n-back performance, leaving an even larger gap between the ERP
and fMRI bodies of literature. fMRI functional connectivity stud-
ies have observed temporal correlations among the regions noted
above during n-back performance that are consistent with “task-
positive” network (TPN) activity seen in a wide range of tasks
(e.g., Fox et al., 2005). Although the specific nodes of this net-
work vary slightly from study to study depending on the task, the
method of assessing functional connectivity, and the seed regions
used, TPN nodes responsive to n-back load typically include lat-
eral prefrontal cortex (lPFC), the insula, the anterior cingulate
cortex (ACC), and/or the supramarginal gyrus (SMG – Newton
et al., 2011; Gordon et al., 2012; Sala-Llonch et al., 2012). The TPN
is believed to support controlled attention processes (Fox et al.,
2005), and stronger functional connectivity within the TPN dur-
ing WM delays is associated with more accurate performance in
WM tasks (Pessoa et al., 2002).

Several fMRI studies also have observed functional connectiv-
ity in the default mode network (DMN) reflecting task-induced,
correlated deactivation among medial frontal and posterior cin-
gulate cortices during n-back performance (Hampson et al., 2006;
Newton et al., 2011; Gordon et al., 2012; Sala-Llonch et al., 2012).
Activity within the DMN is also directly related to task perfor-
mance. Individual differences in the DMN connectivity strength,
whether assessed during a resting state or during task performance,
predict individual differences in response accuracy (Hampson
et al., 2006; Sala-Llonch et al., 2012).

Thus, while both TPN and DMN functional connectivity are
correlated with behavioral performance, the way in which these
two networks interact with one another and with other cortical
nodes involved in specific aspects of cognition to produce effec-
tive task performance remains unclear. Above and beyond the
degree to which TPN and DMN connectivity predict task perfor-
mance individually, the strength of the anti-correlation between
these two networks also predicts WM task performance (Hamp-
son et al. (2006)). Furthermore, Chadick and Gazzaley (2011)
demonstrated that activity within visual category-specific regions
of inferior temporal cortex representing one of two attended
stimulus categories (i.e., increased FFA activity when faces were
attended and houses were ignored) correlated with activity in the
task-positive network. Simultaneously, suppressed activity with
regions representing the ignored stimulus category (i.e., decreased
PPA activity when houses were ignored) correlated with activity in
the default-mode network. While this study clearly demonstrates
that the TPN and DMN must coordinate to support task perfor-
mance in a way that goes beyond simple alternating activity among

the two networks, little is known about how these two networks
dynamically interact to support performance during a continu-
ous WM task such as the n-back. However, understanding the
way in which these networks interact to support task performance
requires a far better understanding of the temporal dynamics of
this interaction than is possible with fMRI.

In the present study, we employed dEEG methodology and an
advanced head model for accurate source estimation to exam-
ine both the time course and cortical networks involved in WM, as
assessed by the n-back task. We applied temporal principal compo-
nents analysis (PCA) and spatial independent components analysis
(ICA) to decompose the scalp-recorded brain activity. This ana-
lytic approach decomposes signals that overlap in time and space,
with each principal component representing cortical activity that
is temporally and spatially correlated. Each resulting component
is independent from the others. These statistical decomposition
techniques also improve source analysis because noise is separated
and removed from the signal (Dien, 2012). The results allow us to
delineate not only the underlying dynamics of WM networks but
also their temporal courses, laying a foundation for future stud-
ies that employ more refined paradigms for further isolation of
different WM processes.

MATERIALS AND METHODS
PARTICIPANTS
Twenty-four right-handed participants from the general student
population at the University of Oregon completed the study. Due
to EEG data quality (two participants) and behavioral perfor-
mance (five participants), data from seven participants were not
analyzed further. Of the remaining 17 participants, 7 were males,
and their age ranged between 19 and 60 (median = 22, SD = 12.4).
It is noted that three participants had age ranging from 57 to 60.
When these participants were removed (median = 22, SD = 3.3),
the significant behavioral and dEEG results reported below do not
change. Therefore, we retained these three subjects in all analyses.

All participants had normal or corrected-to-normal vision and
reported no history of seizures or loss of consciousness and no
current medications or use of illicit drugs that could affect the
EEG. The experimental protocol was approved by institutional
review boards at EGI, the University of Oregon, and the Office of
Naval Research. All subjects provided informed written consent
prior and received $30 for participating.

STIMULI AND EXPERIMENTAL DESIGN
Each stimulus (see Figure 1) consisted of two diagonal, overlap-
ping wrenches (Weber et al., 1997; Caggiano and Parasuraman,
2004). In each stimulus, the two wrenches differed in shape (one
contained a hexagonally shaped head and the other a C-shaped
head) and in color (green or purple). Each stimulus was divided
virtually into four quadrants; the head for each wrench appeared
in one of these four quadrants in any given stimulus. The total
set of stimuli included all possible combinations of wrench color,
wrench head quadrant, and depth (which wrench was overlaid on
top of the other), resulting in a set of 32 stimuli. Each stimulus
from the total available set was used equally often across all exper-
imental blocks. Participants viewed each stimulus at a distance of
65 cm from the monitor, and each stimulus subtended 9.5◦ × 9.5◦.
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FIGURE 1 |Task schematic (see Stimuli and Experimental Design).

The experiment employed a 2 (WM load) by 2 (Task – color vs.
location) blocked design. Participants indicated whether a key fea-
ture of the C-shaped wrench of each stimulus matched the similar
feature on the stimulus presented “n” trials previously by pressing
a button on “match” trials (see Figure 1). In the “color” blocks,
participants based their comparisons on the color of the C-shaped
wrench. In “location” blocks, they based their comparisons on the
stimulus quadrant in which the C-shaped wrench head appeared.

On each trial, the stimulus was presented for 2000 ms fol-
lowed by a randomly jittered inter-stimulus interval of 1000–
1500 ms. The experiment included two blocks of each of the WM
load × Task conditions, resulting in a total of eight blocks. The
order of blocks was randomized with respect to condition with
the following constraints – the two blocks for any given condition
always were run in succession (i.e., the first 1-back color block was
always followed by the second 1-back color block). The study con-
sisted of eight blocks; each block contained 128 trials and ran for
approximately 8 min. The condition order was counterbalanced
across participants.

EEG RECORDING
Electroencephalography was acquired using a 256-channel
HydroCel Geodesic Sensor Net (EGI, Eugene, OR, USA). All elec-
trode impedances were kept below 70 K� (Ferree et al., 2000).
Recordings were referenced to Cz. The EEG was low-passed fil-
tered (100 Hz) prior to being sampled at 250 samples/s with a
24-bit analog-to-digital converter.

PROCEDURE
After providing informed consent, participants were fitted with
the 256-channel Hydrocel Geodesic Sensor Net (EGI, Eugene, OR,
USA). To minimize head movements, participants rested their
head on a chin rest during task performance. Once participants
were fitted with the EEG Sensor Net, they received instructions

for the first task that they would perform and were given 12
practice trials. In between blocks, participants took a short break,
as needed. Participants viewed new instructions and performed
12 new practice trials every time they encountered a block with a
new condition. The entire study lasted 3 h.

EEG PROCESSING
The continuous EEG was band-pass filtered at 0.1–30 Hz with
zero-phase shift FIR filters. The data were then segmented rela-
tive to the onset of each stimulus (200 ms before and 1000 ms
after). Only correctly identified match trials were included in
the analysis. Trials were then sorted according to task and load.
Trials with blinks or ocular movement artifacts were excluded.
Trials with more than 10 bad channels (defined as any sample
that exceed a voltage threshold of 200 μV or a sample-to-sample
transition threshold of 100 μV) were also excluded. The data were
then averaged and re-referenced to the average reference. The data
were not baseline corrected prior to submission to the PCA/ICA
procedures because we want to examine any WM related effects
that precedes stimulus onset, as would be expected for the n-back
task.

PRINCIPAL COMPONENTS ANALYSIS
Because the ERPs reflect superimposed activity from multiple
sources with overlapping time courses, we decomposed the ERPs
using PCA. The average data for each subject were entered into
a temporo-spatial PCA using the ERP PCA Toolkit version 2.14
(Dien, 2010, 2012). In this analysis, a temporal decomposition is
first performed on the covariance matrix with time points as the
variables. The PCA factor structure was rotated using the Pro-
max procedure, with subjects, conditions, and channels as the
sources of variance. The temporal components thus reflect pat-
terns of covariance among time points. Following the temporal
PCA, spatial decomposition of each time course component was
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conducted with ICA, wherein channels were now the variables,
and the factor structure was rotated to achieve spatial indepen-
dent components with infomax. Because many components will
be generated, our strategy for analysis of the components begins
with elimination of all components that do not account for at
least 0.5% of the variance. Next, we search for components
that are identifiable as ERP components and have been previ-
ously reported to be affected by WM load manipulations. These
components are tested for statistical reliability using repeated mea-
sures ANOVA (see Results section) without correction for multiple
comparisons. For the remaining components, they were visually
examined to determine if load effects are present. These anal-
yses were performed with Bonferonni correction for multiple
comparisons.

SOURCE ESTIMATES
Each temporospatial component represents multiple sources that
functionally covary in time and space. Each PCA/ICA component
reflects a static topography, and the only thing that varies is the
amplitude of the components over time; analysis of the sources for
each component at each time point produces the same source map,
with source amplitude changing to reflect changes in the compo-
nent amplitude. We hypothesize that each component describes
activity from either a single brain structure or a network of brain
structures that covary together over the task conditions and across
individuals. Source estimates were conducted for load-sensitive
components derived from the temporospatial PCA/ICA, which
are statistically identified.

Sources were estimated using GeoSource (version 2.0) electri-
cal source imaging software (EGI, Eugene, OR, USA). GeoSource
uses a finite difference method (FDM) of head tissue conductivity
for accurate computation of the lead field in relation to head tis-
sues, where the primary resistive component is the skull. The FDM
allows accurate characterization of the cranial orifices, primarily
the optical canals and foramen magnum. Tissue compartments of
the FDM were constructed from whole head MRI and CT scans of
a single subject (Colin27) whose head shape closely matches the
Montreal Neurological Institute (MNI) average MRI (MNI305).
The MRI and CT images were co-registered prior to segmenta-
tion of the brain and cerebral spinal fluid (identified from MRI
data), and the skull and scalp (identified from CT images), and
the individual’s MRI and CT images were aligned with the cortex
volume from the MNI305 atlas with Talaraich registration. The
tissue volumes were parceled into 2-mm voxels to form the com-
putational elements of the FDM. Conductivity values used in the
FDM model are as follows: 0.25 S/m for brain, 1.8 S/m for cere-
bral spinal fluid, 0.018 S/m for skull, and 0.44 S/m for scalp (see
Ferree et al., 2000). These values reflect recent evidence that the
skull-to-brain conductivity ratio is about 1:14 (Ryynanen et al.,
2006; Zhang et al., 2006), compared to the 1:80 ratio traditionally
assumed.

Source locations were derived from the probabilistic map of
the MNI305 average. Based on the probabilistic map, gray mat-
ter volume was parceled into 7-mm voxels; each voxel served as
a source location with three orthogonal orientation vectors. This
resulted in a total of 2,394 source triplets whose anatomic iden-
tities were derived through use of a Talaraich demon (Lancaster

et al., 2000). Once the head model was constructed, an average
of the 256-channel sensor positions was registered to the scalp
surface. To compute estimates of the sources, a minimum norm
solution with the LORETA constraint (Pascual-Marqui, 2002) was
used. All source estimates were performed on the temporospatial
components from the grand-averaged data.

RESULTS
BEHAVIORAL DATA
Of the 24 participants that completed the study, two participants
were excluded from analysis due to excessive ocular artifacts. Data
from five additional participants were excluded due to poor per-
formance in at least one task condition. Of these five, three seemed
to have confused the response mapping in one of the conditions;
the other two were unable to reach a criterion level of performance
(75% accuracy).

The response time (RT) and accuracy data from the remain-
ing 17 participants were entered into separate 2 (task: color
vs. location) × 2 (load: 1-back vs. 2-back) repeated measures
ANOVAs. The RT data indicated significant main effects of task
[F(1,16) = 9.56, p = 0.007, MSE = 10,554] – participants
responded more quickly in the location (mean = 668 ms) than
in the color (mean = 745 ms) conditions – and WM load
[F(1,16) = 25.4, p < 0.001, MSE = 11,997] – participants
were faster in the 1-back (mean = 640 ms) than in the 2-back
(mean = 774 ms) conditions. The interaction between task and
load was not significant in the RT data [F(1,16) = 0.564, p = 0.464,
MSE = 3609]. The accuracy data also indicated main effects
of task [F(1,16) = 4.78, p = 0.044, MSE = 0.002] and load
[F(1,16) = 25.4, p < 0.001, MSE = 0.003, see Figure 2]. Par-
ticipants responded significantly more accurately in the location
[meanlocation = 95.9%, meancolor = 93.6%] and in the 1-back
conditions (mean1−back = 98.2%, mean2−back = 91.3%). In
addition, a significant task × load interaction [F(1,16) = 5.84,
p = 0.028, MSE = 0.001] indicated that the effect of load
was larger for the color task (an 8.7% difference in accuracy)
than for the location task (a 5% difference in accuracy, see
Figure 2).

EVENT-RELATED POTENTIALS
On visual inspection, several traditional ERP components
appeared to be sensitive to WM load (Figure 3). At mediofrontal
sites (at ∼350 ms), a positive component was larger for the 2-back
than the 1-back location condition. At approximately 400 ms over
centroparietal sites, the late positive complex (LPC; i.e., P3) also
differentiated between WM load, with 1-back location showing
the largest amplitude (see Introduction, especially for the location
task). Following the peak of the LPC, slow negative-going fea-
tures of the ERP over frontal and posterior sites also differed as a
function of load.

Principal components analysis
Temporal PCA decomposed the traditional ERP data into distinct
temporal factors. A parallel test (Horn, 1965) was performed to
determine the number of temporal factors to retain for the spatial
decomposition step. In this test, a Scree plot is generated for a
fully random dataset (with the same dimensionality as the actual
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FIGURE 2 | Behavioral data from all participants included in the EEG analyses. Accuracy (A) and response time (B) data. Note that response time data are
from correctly detected match trials only.

FIGURE 3 | Original grand-average ERP waveforms at FCz and Pz. Note that in this figure, a baseline correction (between −200 ms and stimulus onset)
was applied, in contrast to all PCA/ICA components displayed in Figures 4–6.
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data set) for comparison with the Scree plot from the actual data.
The point at which the two Scree plots cross indicates the number
of factors to be retained. Based on the parallel test, eight fac-
tors, accounting for 93% of the variance, were retained. A second
parallel test on the spatial ICA of the eight temporal factors indi-
cated that four spatial factors, accounting for 78% of the total
variance, should be retained for each temporal factor.

Of the 32 temporospatial factors recovered, we eliminated 21
components because they each accounted for less than 0.5% of
the variance. Thus, we are left with 11 components for analysis.
Applying our criterion of component resemblance to known ERP
components (with regards to latency and scalp distribution) that
have been shown in previous research to be affected by WM load,
we were able to identify two components [Component 1 (C1)
and Component 9 (C9), see below]. After this step 9 components
remained for exploratory analysis, wherein Bonferroni correction
(at 0.05) was applied.

Repeated measures ANOVAs were performed on the scalp volt-
age data at the peak channels and latency for each component,
with Task and Load as within-subjects factors. Of the 11 compo-
nents, three components showed statistically reliable differences in
WM load. We present the analysis of each of these temporospatial
components in the following sections.

Component 1 (C1)
The waveforms and scalp topography of C1 are illustrated in
Figure 4. In this figure, the grand-average ERP waveforms
(Figure 4A) are presented for all four conditions at the chan-
nel overlaying the location indicated in the topographic map
(white dot in Figure 4B). C1 is characterized by load effects
in both the pre-stimulus interval and in a post-stimulus inter-
val that peaks at 456 ms. This component is similar to the
LPC, which includes the P3 and related components (see Dien
et al., 2004), in its topography and time course in the post-
stimulus interval. This same temporospatial component, however,
also seems to capture the pre-stimulus stimulus preceding neg-
ativity (SPN). Statistical tests were performed on two windows,
defined through visual inspection, of C1 (−200 to 80 ms,
and 340–630 ms, highlighted in green in Figure 4A). We
derived an average of each window re-referenced to the 130–
300 ms post-stimulus interval (where differences between the
four waveforms were minimal). The data were then submit-
ted to repeated-measures ANOVA with Task, Load, and Time
(Pre-stimulus vs. Post-stimulus) as within-subjects factors. Note
that because this component reflects the LPC/SPN components
that have been noted to be affected by load manipulations (see
Discussion), significance level was not adjusted for multiple
comparisons.

The ANOVA revealed significant effects for Load, F(1,16) = 8.4,
p < 0.02, Task, F(1,16) = 5.3, p < 0.04, Time × Load,
F(1,16) = 8.4, p < 0.02, and Time × Task (1,16) = 5.3,
p < 0.04 (see Table 1). The Time × Load effect indicated
that although the amplitude was larger in the 1-back than in
the 2-back condition in both time windows, the polarity of
the component reversed from the pre-stimulus to the post-
stimulus window. Paired t-tests performed at each time interval
revealed that the differences were significant – t(16) = −2.9,

p < 0.02 (pre-stimulus), t(16) = 2.9, p < 0.02 (post-stimulus).
Similarly, inspection of the mean for the Time × Task effect
showed that the location task was associated with greater ampli-
tude overall, but the polarity of the component differed over
time. Paired t-tests also confirmed that during the pre-stimulus
interval the location task was associated with greater nega-
tive amplitudes than the color task, t(16) = −2.3, p < 0.04,
whereas the location task elicited larger positive amplitudes than
the color task during the post-stimulus interval, t(16) = 2.3,
p < 0.04.

In order to understand the pre-stimulus time course of C1
over a somewhat longer interval, we re-segmented the data with
a window of 1000 ms (vs. the initial 200 ms) before and 500
post-stimulus onset. Because more subjects blinked in the longer
pre-stimulus interval, the number of participants with enough
artifact free trials for signal averaging was reduced from 17 to 14.

The same temporospatial PCA/ICA procedure was applied to
this subset of subjects, and the parallel test revealed that 10 tem-
poral factors, accounting for 94% of the total variance, should be
retained for the next (spatial ICA) step. The parallel test for the spa-
tial ICA step revealed four spatial components should be retained
for each temporal component, accounting for 81% of the total
variance. Examination of these components revealed a component
with a similar time course, topography, and condition differences
as C1 (Figures 4D,E). Consistent with the interpretation of an
SPN, C1 activity in this longer interval began to deviate from
baseline approximately 400 ms before stimulus onset (Figure 4D).

In considering the pre-stimulus activity for the C1 component,
if this activity is in fact an SPN, reflecting functional engagement
of visual association in preparation for the visual perception, then
trials with a smaller C1 or SPN would be expected to have lower
accuracy. The Temporospatial (PCA/ICA) analysis was re-run for
the 11 subjects with enough errors to include an average for error
trials. Figure 5 illustrates that the C1 component amplitudes for
the correct trials show a similar pattern as for the full sample. As
predicted, the C1 amplitudes are markedly attenuated for error
trials, consistent with the interpretation that the pre-stimulus
negativity of C1 is a functional preparation for effective visual
perception.

Source estimation for the grand-average of C1 showed promi-
nent activity in the bilateral inferior temporal lobe (including the
fusiform area), BA 18, and BA 7 (precuneus), and posterior cin-
gulate cortex (PCC, see Figure 4C). The inferior temporal lobe
activity was bilateral but stronger for the right hemisphere.

Component 7 (C7)
Figure 6 shows the waveforms and spatial topography of C7.
This component also had two post-stimulus time intervals, one
early (88–156 ms) and one late (700+ ms), that were sensitive
to WM load. We analyzed this component using a repeated mea-
sures ANOVA with Task, Load, and Time (Interval 1, Interval
2) as within-subjects factors, referenced to the average of the
−200 to 0 ms prestimulus interval. The adjusted significance
level for multiple comparison is p < 0.005. The main effects of
Load, F(1,16) = 18.2, p < 0.002, and Time, F(1,16) = 37.7,
p < 0.001, were significant, as was the Load × Time interaction,
F(1,16) = 18.2, p < 0.002 (see Table 1). Paired t-tests showed
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FIGURE 4 | Component (C1). (A) Component waveform. Green boxes
represent the time windows used for statistical analysis. (B) Topographic
map showing voltage distribution of C1. Orientation is top looking down
with nose at the top. Positive voltage values are red and negative values
are blue, with the zero crossing in white. Dots on the map are channel
locations and white dot represents channel used for the waveform in (A).
(C) Source results projected onto a schematic flat map (unfolded cortex) to
show activity at all cortical sites. The area within the white border

represents the lateral surface (outside of this is the medial wall); the left
side is the left hemisphere. Activity was thresholded to show the top 10%
of source activity. (D) This component waveform was re-computed with
temporospatial analysis using a long prestimulus interval [see Component 1
(C1)]. (E) Topographic map showing voltage distribution, with the same
topography as when computed with a shorter baseline. This component
also showed a similar pattern of cortical source activity as the C1 in
Figure 4C.

that at both time intervals the waveforms differed significantly,
t(16) = −2.3, p < 0.04 (early), t(16) = 2.3, p < 0.04 (late).

Source estimation results showed that, in addition to the extras-
triate areas that we observed for C1, C7 included activation in
the left middle frontal gyrus (MFG, BA 10), left inferior frontal
gyrus (IFG, BA 46), medial orbitofrontal cortex (OFC, peak at BA
11), and temporal poles (stronger for the right hemisphere, see
Figure 6).

Component 9 (C9)
This component was most prominent at approximately 350 ms
post-stimulus (see Figure 7, C9) and resembles the P2 component
and is affected by the load manipulation as previously reported (see
Discussion). C9 was quantified as the mean activity 280–430 ms
post-stimulus and referenced to the mean of the 200 ms pre-
stimulus interval. Analysis included Task and Load factors. The
main effects were significant – Task, F(1,16) = 18.2, p < 0.002,

Frontiers in Human Neuroscience www.frontiersin.org January 2014 | Volume 8 | Article 4 | 7

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


“fnhum-08-00004” — 2014/1/27 — 21:04 — page 8 — #8

Luu et al. Neural networks of working memory

Table 1 | Summary table of components and experimental effects.

Component Source location Talairach coordinates of

maximum current density

Effect Significance

C1 Bilateral inf. temp. lobe, BA 18, BA 7, PCC 60, −53, −13 Load p < 0.02

Task p < 0.04

Time Ns

Time × load p < 0.02

Time × task p < 0.02

C7 Bilateral inf. temp. lobe, bilateral temp. poles,

BA 18, BA 10, BA 11, BA 46

−3, 45, −20 Load p < 0.002

Task Ns

Time p < 0.001

Time × load p < 0.002

Time × task Ns

Task × load Ns

Time × task × load Ns

C9 Bilateral inf. temp. lobe, bilateral temp. poles,

BA 18, middle and superior temporal gyri, BA

10, BA 11, BA 40

60, −53, −13 Load p < 0.002

Task p < 0.002

Load × task Ns

PCC, posterior cingulate cortex.

and Load, F(1,16) = 15.7, p < 0.002 – confirming that the
amplitude was largest in the 2-back and in the location conditions
(see Table 1).

Source estimates were similar to C1. In fact, the location with
maximal current density is the same as C1 (see Table 1). However,
C9 also included activity in the middle and superior temporal
gyri and in the inferior parietal lobe (BA 40, stronger in the left
hemisphere, Figure 7C, C9) not present in C1. C9 also had sources
that were similar to C7, notably activity at the temporal poles and
medial prefrontal cortex.

Network dynamics
Together, the three components described above capture the
essential aspects, both in terms of neural regions, as well as
in time course of activity, of an overarching network that sup-
ports WM in the n-back test. To illustrate the sequence of
component activations, Figure 8 plots the time courses, with
insets of cortical activation patterns, for all of the components
that varied significantly as a function of memory load. The
underlying dynamics of this network seem to follow this time
course:

FIGURE 5 | Component 1 (C1) waveforms with error trials.
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FIGURE 6 | Component 7 (C7). (A–C) are as in Figure 4.

FIGURE 7 | Component 9 (C9). For each component, (A–C) are as in Figure 4.
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FIGURE 8 |Time course of each temporospatial component in relation to stimulus onset and mean reaction times for each experimental condition.

Note that border of source maps are color coded to match waveforms.

(a) Engage active control (C1), 200 ms before stimulus onset to
80 ms post-onset

(b) Prime attentional resources (C7), 88 ms post-stimulus onset
to 156 ms post-onset

(c) Focus attentional resources (C9), 280 ms post-stimulus onset
to 430 ms post-onset

(d) Release control (C1) 340–630 ms post-stimulus onset
(e) Re-prime for the next trial (C7), 700 ms post-onset

DISCUSSION
In this n-back WM task, the subjects attended to a relevant feature
of the visual stimulus (color or location), held it in memory, and
evaluated whether that feature matches the same feature category
on either the next trial (1-back) or the trial after the next trial
(2-back). RT analysis indicated that, whereas the color memory
task was more difficult overall, the effect of the WM load manip-
ulation was roughly equivalent for the color and location tasks.
While the accuracy data showed a significant interaction between
task type and task load, with a larger effect of load in the color
task, this interaction was likely due to a combination of the main
effect of task with a ceiling effect in the 1-back conditions – par-
ticipants were at or near ceiling in terms of accuracy for 1-back
for both the color (98% correct) and the location (98.4% correct)
conditions. Nonetheless, RT was faster for the location 1-back
condition (mean RT = 607 ms) than the color 1-back condition
(mean RT = 673 ms; F(1,16) = 8.46, p < 0.01).

Having validated the WM load manipulation in the behavioral
data, we then examined the brain’s electrical activity that varied
with WM load. To separate the brain activity superimposed at

the head surface from multiple cortical sources, we conducted
a temporospatial analysis, in which a temporal PCA was fol-
lowed by a spatial ICA. The temporal PCA identified unique
time courses (temporal components) that suggested patterns of
covariance in time computed over the spatial features of brain
activity (variability over channels), the task demands (variability
over conditions), and individual differences (variability over sub-
jects). The subsequent spatial ICA decomposition showed only
three temporospatial component that varied with memory load.
Our reasoning was that the temporospatial decomposition – when
examined in relation to WM load – may suggest how to statistically
decompose the complex time course of cortical activity into func-
tionally meaningful patterns (i.e., networks). In some cases, these
patterns may indicate activity from a single, modular brain source,
while in other cases, these patterns may indicate networks of corti-
cal function that must be coordinated to achieve effective WM. The
LORETA source estimation maps provide a data-driven approach
that makes few assumptions regarding modular vs. distributed
network accounts of temporospatial ERP components. We first
discuss the possible meaning of each temporospatial component,
and then consider them together as an ensemble of interacting
networks.

TIME COURSES AND SPATIAL PATTERNS OF CORTICAL ACTIVITY IN
WORKING MEMORY
Component C1
Component C1 peaked at 456 ms post-stimulus, similar to the
LPC. The memory load effect for C1 replicates load effects for the
LPC reported by other researchers (Gevins et al., 1996; McEvoy
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et al., 1998). PCA studies show that the LPC can be decom-
posed into several components with unique topographies and time
courses (Dien et al., 2004; Foti et al., 2007). One component iden-
tified by Foti et al. (2007) has an occipital distribution and a time
course that seem to parallel C1. The apparent network pattern of
C1, including both visual association areas and a more general
(PCC) limbic cortex control function, is consistent with a major
component of the LPC.

However, the C1 component in the present study also showed a
pre-stimulus negativity that exactly mirrored the post-stimulus
positivity of the apparent LPC starting at 350–400 ms. This
pre-stimulus negativity is not typically attributed to the LPC
in the literature. This may be due to the fact that for conven-
tional ERP analysis, the typical practice of pre-stimulus baseline
correction may mask the relationship between any pre-stimulus
negativity and the LPC response. In the early literature on the
P300 (a component closely related to the LPC), there was a
controversy over whether the P300 could be interpreted as a
“release”of the contingent negative variation (CNV). The CNV is a
pre-stimulus negativity that appears to reflect preparation for pro-
cessing, and perhaps for responding to, the stimulus (Williamson
et al., 1977). Although Donchin and Heffley (1979) used fac-
tor analytic evidence to argue persuasively that the P300 and
the CNV are distinct components, the present findings suggest
that pre-stimulus negativity may figure importantly in P300-
like activity under certain task demands, such as placing explicit
demands on WM. The pre-stimulus load effects on C1 are consis-
tent with prior studies with the n-back task. McEvoy et al. (1998)
observed WM load effects on CNV, and the time course of these
effects was similar to that of the C1 component in the present
study.

The CNV, initially described as the E wave or expectancy wave
(Williamson et al., 1977), was later decomposed into two compo-
nents: an early component reflecting an orienting response, and
a late motor preparation response. More recent findings show
that the late component of the CNV can be decomposed fur-
ther into those components that reflect motor preparation and
those that reflect anticipation of the arrival of sensory stimuli
(Brunia and van Boxtel, 2001). The expectation for the sensory
perception is most relevant to the present C1, which showed
pre-stimulus negativity over visual association areas. This percep-
tual readiness component has been described as the SPN. Brunia
and van Boxtel, 2001 presented evidence that the SPN reflects
anticipatory attention that elicits sensory-specific cortical activa-
tion and reasoned on neuroanatomical grounds that the SPN,
although generated in cortex, reflects control influences from
the pulvinar nucleus of the thalamus. In the current study, C1
was generated in visual cortices (particularly on the right side)
and in PCC, consistent with prior research showing that sources
of the late CNV interval seem to engage the PCC, lateral and
medial occipital cortex, and frontal regions (Gómez et al., 2003).
Somewhat in contrast with prior work, however, C1 was sepa-
rated from frontal regions, and the PCC was the apparent limbic
control point for maintaining the priming in visual association
cortices. Locally, the functional priming of visual cortex may
be achieved through modification of the cortical depolarization
threshold, manifesting as a surface negative potential (Rockstroh

et al., 1993). Such an effect may be achieved through subcorti-
cal regulatory input from the pulvinar nucleus of the thalamus
(Brunia and van Boxtel, 2001).

It may seem counterintuitive that the apparent priming of
visual cortex was greater for the low load than the high load
condition. A similar effect was also observed by McEvoy et al.
(1998). This effect might indicate that for the low load condition
the perceptual representation (and priming negativity or SPN) is
maintained into the next trial, whereas for the high load condition
the target perceptual representation must be re-accessed and is not
maintained in the pre-stimulus interval.

Results from fMRI research are consistent with this inter-
pretation that there is local priming of visual cortex when the
representation of a visual stimulus is held in a perceptual store.
Kastner et al. (1999) showed that when attention was allocated
to a location that would eventually contain a visual stimulus,
the visual cortices showed increased activity during the expectant
period, even when no stimulus was present. Esterman and Yan-
tis (2010) observed similar effects within object-selective regions
of temporal cortex when participants were cued to anticipate a
particular category of visual stimulus. Consistent with the inter-
pretation that a greater priming negativity (SPN) reflects greater
anticipatory attention, the amplitude of C1 in the present study
varied with RT, with larger C1s and faster responses not only for
the low load vs. high load, but also for the location vs. color
conditions.

A similar reasoning can be applied to the post-stimulus inter-
val, where C1 peaked at 456 ms and mirrored the distribution of
amplitudes over experimental conditions seen for the pre-stimulus
interval. The response of C1 in the LPC interval was inversely
related to the level of pre-stimulus priming. Although the C1
response in the LPC interval may reflect an active control mecha-
nism, this activity might also reflect a kind of releasing mechanism,
wherein the activity of the visual cortex is released from the control
of attention circuits (such as the pulvinar, or perhaps the prefrontal
cortex or temporoparietal junction – TPJ).

It is important to note that the C1 response is not an early
visual response such as indexed by the P1 or N1. Those compo-
nents were not affected by load, either in the present study or
in previous studies (McCollough et al., 2007). Rather, the post-
stimulus C1 is a late response in visual association cortices and in
memory-related limbic structures (PCC). Furthermore, the appar-
ent network indexed by the C1 is not the classical P3b network –
the C1 topography differs substantially from the traditional P3b
topography (see Foti et al. (2007), even though it does share the
PCC as a pivotal source with the P3b (see Luu et al., 2007).

Considering both time windows of the C1, this component
seems to reflect a functional priming and then functional acti-
vation of the visual perceptual network. If so, then we would
expect an attenuated C1 (poor expectant priming) on trials with
errors. In fact, a weak pre-stimulus C1 should predict a high
likelihood of an error on that trial. Figure 5 shows the data
for subjects with sufficient errors to create ERP averages for
errors as well as for correct responses. The pattern of results for
correct trials is similar to the analysis of the full sample. Further-
more, as predicted there is an attenuated C1 component for error
trials.
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Component C7
This component (Figure 6) reflects a significant enhancement for
the low load vs. high load conditions early in the post-stimulus
epoch, then apparently releasing slowly. To our knowledge this
component has not been reported in the literature. Source analy-
sis included right-lateralized activity in visual association cortex,
similar to the area primed by C1, as well as right-lateralized tem-
poral pole sources, perhaps consistent with the spatial demands of
the task. In fMRI studies, temporal pole activation has been related
to holistic perception of objects (Zhou et al., 2010). Further-
more, multiple structures of the anterior temporal lobe (superior,
middle, and inferior temporal gyrus, perirhinal and entorhinal
cortices, and uncus) have been shown to form a functional network
involved in declarative memory processes (Gour et al., 2011).

Whereas these sources seem clearly relevant to the right-
lateralized processing of the figural stimuli of this task, C7
was strongly left-lateralized for the sources in the frontopolar
(MFG, IFG, and OFC) regions. The MFG and IFG have been
identified in previous research as integral to a stimulus-driven
ventral attention network (Corbetta et al., 2008). According to
Corbetta et al. (2008), the ventral attention network is engaged
by the appearance of important stimuli, independent of the
salience of the stimuli. Specialized for object attention and mem-
ory, the ventral attention network seems to be particularly well
developed in the left hemisphere, which supports analytic percep-
tion and object memory (Tucker et al., 2007; Tucker and Luu,
2012). Engagement of the OFC may be expected for the ven-
tral attention network as well, particularly as it contributes to
WM performance. Recent evidence shows that lesions to the
OFC impair coordination of multiple discrete cognitive pro-
cesses in the n-back task, such as simultaneous maintenance,
manipulation, and monitoring of information (Barbey et al.,
2011).

Based on fMRI studies, the control of the (right-lateralized)
visual association areas (such as seen in C7) might be expected
to engage the frontal networks of the (left-lateralized) ventral
attention system (also seen in C7). However, the time course of
this C7 component is remarkably early, with an abrupt peak at
∼100 ms as the earliest feature of the visual ERP in this study.
On the surface, our current results, suggesting that frontal net-
works are engaged early, runs counter to the ERP literature, which
shows that such early neuronal responses are typically observed
over sensory cortex. How could frontal networks be engaged so
early?

One possibility is that frontal attention control is engaged
through non-specific thalamic projections in parallel with the
sensory-specific thalamic projections to primary visual cortex.
The frontal pole (reflected in the activity of C7) is particularly
important to the thalamic regulation of attention, suggesting the
possibility of two-way frontothalamic interactions in the early
stages of attentional control. The frontal polar cortex in primates
is connected to the anterior thalamic reticular nucleus (TRN,
Zikopoulos and Barbas, 2006), which regulates thalamocortical
activity (including sensory traffic). This anatomical organization
puts the TRN, and its frontopolar cortical network, in a central
position to regulate selective attention processes (Yingling and
Skinner, 1997), as well as the general state of alertness (Tucker

et al., 2007). A now classic hypothesis (Crick, 1994) proposes
that the TRN’s inhibitory control over thalamocortical projec-
tions provides the neural mechanism for the spotlight of attention.
Furthermore, recent evidence shows that seizure discharges in the
frontal pole are observed in absence spells with a momentary lapse
in conscious attention (Tucker et al., 2007). In support of this pro-
posal, early post-stimulus attentional selection-related processing
has been observed in monkey PFC (Hasegawa et al., 2000; Everling
et al., 2002).

Whatever the neural mechanism, the time course of C7 suggests
that the component is re-engaged late in the epoch (Figure 6). That
this activity returns after a response is made may suggest that there
is attention modulation of the same areas in anticipation of the
next trial, given the evaluation of present stimulus in the context
of the 1-back or 2-back memory requirements.

Component C9
Previous ERP research has produced somewhat contradictory
results on WM load effects within this time window. Gevins
et al. (1996) showed that a vertex-positive component occurring at
approximately 200 ms post-stimulus was larger in high-load than
in low load conditions for matching stimuli. In contrast, McEvoy
et al. (1998) showed no effect of load for matching stimuli in the
vertex P250, but P250 was larger for a spatial task compared to a
verbal task.

At the scalp, C9 in the present study showed a peak positiv-
ity near the vertex (see Figure 7) at roughly the same time as the
P200/P250 previously reported (Gevins et al., 1996; McEvoy et al.,
1998). Like the P200/P250, the present C9 showed effects both
of load (larger for high load, as reported by Gevins et al., 1996)
and of task (larger for location compared to color, as reported by
McEvoy et al., 1998). The conflicting results of load and task effects
found by Gevins et al. (1996) and McEvoy et al. (1998) might be
due to differences in experimental procedures, the use of different
stimuli, quantification errors of the P200/P250 because of tem-
poral overlap of different underlying components, or the use of
surface Laplacian measures that are only sensitive to superficial
cortical sources. In our analysis, the PCA/ICA procedure statisti-
cally separated C9 from other overlapping components, making
its quantification more discrete.

We consider C9 to reflect the activity, engaged strongly at this
time interval, of the ventral network identified by Corbetta et al.
(2008). Whether functionally separable or not, these components
reflect the importance of the posterior aspect of the superior tem-
poral gyrus, occipital cortex, and the inferior parietal lobe in the
control of attention in this WM task.

As noted by Corbetta et al. (2008), previous research has shown
that activity in the TPJ is deactivated when participants have to
keep more information in mind. This effect was interpreted as
reflecting the suppression (by a dorsal, goal/task oriented network)
of the reorienting network to enable memory traces to be main-
tained during a retention interval. Consistent with this reasoning,
they noted that during high-workload conditions, novel unat-
tended stimuli are less likely to be detected. Chambers et al. (2004)
also showed, using transcranial magnetic stimulation, that when
the right TPJ is stimulated between 90–120 ms and 210–240 ms
after stimulus onset, reorienting to a new stimulus is impaired.
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They argued that the later effect reflects a different stage of pro-
cessing within the slower visual pathway. The slower time course
identified by Chambers et al. would place that effect at about the
onset of the present C9 component.

TIME COURSE OF MULTIPLE NETWORKS IN WORKING MEMORY
Considering the multiple load-dependent components together,
the temporospatial analysis revealed networks (statistically defined
by PCA and ICA) that span a pre-stimulus preparation to post-
response consolidation interval (Figure 8). Across time, three
networks emerged, with each network sharing some common cor-
tical nodes and, critically, involving unique, non-shared nodes as
well (see Table 1). The first network to appear in the data involves
bilateral visual association areas and the PCC. The pre-stimulus
negativity of C1 seems to reflect priming of visual cortex for cog-
nitive processing of the trial through an anticipatory attention
mechanism. Consistent with this notion, fMRI studies have shown
that the PCC is part of the DMN and that greater PCC deactiva-
tion is associated with faster reaction times (Chadick and Gazzaley,
2011). Similarly, Anticevic et al. (2010) showed that, compared to
error responses, correct responses were associated with greater
deactivation of the DMN. In the present study, although we have
considered the PCC as providing executive control over visual
priming (Mesulam, 1981), it might be important to consider the
alternative that the PCC element of the pre-stimulus C1 may
reflect suppression of the PCC and thus DMN in order to sup-
port the perceptual priming or memory maintenance required for
task performance.

Shortly after stimulus onset, the C1 network appears to be
released, and then at about 100 ms there is abrupt activity in all
other time course components that reflect memory load effects.
One of these components (C7) shows a brief peak at about the
same time as C1 activity diminishes and then goes quiescent until
a slow opposing ramp late in the epoch. The cortical network
engaged by C7 seems to reflect recruitment of attentional control
(left frontopolar), holistic memory representation (right anterior
temporal), and priming of visual association areas. Even though it
is engaged just briefly, we speculate that this C7 network sets the
stage, through top-down control, for further processing.

It is important to point out familiar ERP components, P1 and
N1, which are missing from Figure 8 because they do not vary
with WM load. Some later scalp topographic features of the con-
ventional N1 may be discerned in the map of the C9 component
(Figure 7), but these are posterior negative inversions of the famil-
iar frontal P2 reflected by C9, and are not reflective of the primary
N1 component. Thus, although some of the sources of activity
noted across the various components reported here bear simi-
larity to cortical nodes activated during selective attention tasks,
the temporal effects of WM load on neural processes appear to
occur later than the earliest effects reported for spatial (Martinez
et al., 1999) and color-based (Zhang and Luck, 2008) attentional
selection tasks.

In the conventional P2 and early P3 interval of the ERP
(280–430 ms), a set of networks show load effects. C9 reflects the
familiar anterior centrofrontal P2 of the ERP, and one interpreta-
tion is that it re-engages networks previously primed or activated
by the C1 and C7 components. Certain structures disappeared

(such as the lateral MFG and IFG seen in C7) and new ones were
added (such as the TPJ in C9). This P2/C9 network may reflect
attentional modulation, through regulation of orienting responses
to the presented stimulus, and it involves not only sensory areas
but also the OFC, which is active when attention must reorient
following invalid cues (Nobre et al., 1999) and the temporal poles.
After the 280–430 ms interval, the C1 network reappears to con-
tribute to the later LPC (Dien et al., 2004; Foti et al., 2007). Finally,
C7 ramps in an opposite direction to its initial deflection late in
the epoch after responses have been made. Perhaps this suggests
that the same processes involved in preparing processing for the
stimulus on a current trial are re-engaged to prepare processing
on the next trial.

With the exception of the C1 component, the cortical regions
engaged by C7 and C9 reflect temporospatial networks of the ven-
tral attention network identified by Corbetta et al. (2008). The
temporal resolution of dEEG allowed us to delineate how the com-
ponent networks of the ventral attention system, such as the MFG,
IFG, and TPJ, emerge at different points in time. Consistent with
the reactive (stimulus-initiated) nature of the ventral attention
system, C7 and C9 were reactive in the post-stimulus interval.

LIMITATIONS OF THE PRESENT STUDY
This study was designed to manipulate WM load parametrically,
through the n-back task. However, the conventional cognitive
psychology interpretation of this task, as a memory process that
must be held in an active store for a short time or a longer time,
may be incorrect. Particularly when observing the dEEG evidence
that there was priming of visual association areas, and that this
was most strong for the 1-back condition, it seems apparent that
the 1-back condition is a different cognitive task, which involves
holding a percept in an active visual store, than the 2-back condi-
tion, which does not involve maintenance of a perceptual store
(which is impossible because of the intervening stimulus) but
rather requires a different (perhaps more abstract or symbolic)
access of the 2-back stimulus. This finding could also be accommo-
dated by an account grounded in dual-process theories of memory,
in which declarative and non-declarative representational systems
contribute in varying proportions to n-back performance and in
which declarative processes play a greater role under 1-back condi-
tions than under 2-back conditions (Caggiano et al., 2006; Vilberg
and Rugg, 2008). Further research is required to determine if the
difference between the 1-back and 2-back conditions is indeed
qualitative, as seems in the present study, rather than a quantitative
difference in memory load.

Although the n-back task is commonly used to study WM pro-
cesses, the component processes (such as storage, maintenance,
and executive control) are not readily separable. Our interpreta-
tion of the functional significance of each component not only
relied on the task effects and time course, but also previous find-
ings. Therefore, our interpretations must be tested in future research,
using paradigms that can separate different WM processes, such as
storage, rehearsal, and executive processes (e.g., Kiss et al., 2007).

The use of the WM load manipulation to identify function-
ally relevant components in the temporospatial analysis caused us
to select certain components from the larger set of temporospa-
tial components that are important to understand the cognitive
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processes common to the two memory load conditions. Future
research should not only examine which of the present com-
ponents replicate clearly, but also examine these in light of the
complete set of time courses and cerebral networks required for
all elements of task performance.

CONCLUSION
The present study suggests that a temporospatial analysis can sep-
arate several unique time courses of neural activity with different
underlying cortical networks that contribute to WM performance.
In recent cognitive models, WM is considered to be served by
top-down, temporary activation of items in long-term memory
(Ruchkin et al., 2003) via directed attention (e.g., Cowan, 1997;
Postle, 2006). The present results suggest that temporospatial anal-
ysis of the ERP can isolate the contribution of key nodes in the
frontal lobe, TPJ, and PCC that appear to mediate directed atten-
tion. Nonetheless, the cortical activity most clearly related to this
visual WM task was not an abstract representation from long-
term memory, but the priming of visual cortex that seemed to
reflect preparation for a direct match between the representational
expectancy and the visual percept.
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