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(UNR), Suipacha 531, 2000 Rosario, Argentina

4 Instituto de Quı́mica Rosario (IQUIR, UNR-CONICET), Suipacha 531, 2000 Rosario, Argentina
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The genus Candida includes about 200 different species, but only a few species are human opportunistic pathogens and cause
infectionswhen the host becomes debilitated or immunocompromised.Candida infections can be superficial or invasive. Superficial
infections often affect the skin or mucous membranes and can be treated successfully with topical antifungal drugs. However,
invasive fungal infections are often life-threatening, probably due to inefficient diagnostic methods and inappropriate initial
antifungal therapies. Here, we briefly review our current knowledge of pathogenic species of the genus Candida and yeast infection
causes and then focus on current antifungal drugs and resistance mechanisms. An overview of new therapeutic alternatives for the
treatment of Candida infections is also provided.

1. Introduction

Candida albicans is the most important fungal opportunistic
pathogen. It usually resides as a commensal in the gas-
trointestinal and genitourinary tracts and in the oral and
conjunctival flora [1–5]. However, it causes infection when
the host becomes debilitated or immunocompromised.These
infections can be superficial and affect the skin or mucous
membrane [6] or can invade the bloodstream and dissemi-
nate to internal organs. Risk factors for invasive candidiasis
include surgery (especially abdominal surgery), burns, long-
term stay in an intensive care unit, and previous administra-
tion of broad-spectrum antibiotics and immunosuppressive
agents [7–10]. Advances in medical management as anti-
neoplasic chemotherapy, organ transplantation, hemodialy-
sis, parenteral nutrition, and central venous catheters also
contribute to fungal invasion and colonization [11]. Other
Candida species found in healthy individuals include Can-
dida glabrata, Candida tropicalis, Candida parapsilosis, and

Candida krusei [12]. All five mentioned species cause more
than 90% of invasive infections, although the relative preva-
lence of the species depends on the geographical location,
patient population, and clinical settings [12–14]. Emergence
of Candida guilliermondii, Candida kefyr, Candida rugosa,
Candida dubliniensis, and Candida famata as pathogens has
also been reported worldwide [6, 14]. In fact, the National
Nosocomial Infections Surveillance System (NNISS) reports
Candida species as the fourth most common nosocomial
bloodstream pathogen [15]. Mortality rates are estimated to
be as high as 45% [16], probably due to inefficient diagnostic
methods and inappropriate initial antifungal therapies [17].

2. Antifungal Drugs in Clinical Treatments

Although the antifungal drugs used in clinical treatments
appear to be diverse and numerous, only few classes of
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Antifungal class Mode of action Drugs

Azoles Inhibitors of lanosterol
14-𝛼-demethylase

Miconazole
Econazole
Clotrimazole
Ketoconazole
Fluconazole
Itraconazole
Voriconazole
Posaconazole

Echinocandins Inhibitors of
(1,3)-𝛽-D-glucan synthase

Caspofungin
Micafungin
Anidulafungin

Polyenes Binding ergosterol Nystatin
Amphotericin B

Nucleoside analogues Inhibitor of DNA/RNA synthesis Flucytosine

Allylamines Inhibitors of squalene-epoxidase Terbinafine
Amorolfine
Naftifine

Thiocarbamates Inhibitors of squalene-epoxidase Tolnaftate
Tolciclate

Antibiotic Interaction with 𝛽-tubulin Griseofulvin

Nucleoside analogues
Inhibitors of
nucleic acid

synthesis

Plasma membrane
Cell wall

Mitosis
Nuclei

Cytosol

Endoplasmatic
reticulum
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Binding ergosterol

Azoles,
allylamines, and
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Figure 1: Primary targets and mode of action of several antifungal agents.

antifungal agents are currently available to treat mucosal or
systemic infections with Candida spp. (Figure 1) [18–20].

2.1. Azoles: Inhibitors of the Lanosterol 14-𝛼-Demethylase. The
largest family of antifungal drugs is the azole family. Azoles
disrupt the cell membrane by inhibiting the activity of the
lanosterol 14-𝛼-demethylase [21], enzyme involved in the
biosynthesis of ergosterol (Figure 1). Ergosterol, analogous to
cholesterol in animal cells, is the largest sterol component of

the fungal cell membrane. Since ergosterol and cholesterol
have sufficient structural differences, most antifungal agents
targeted to ergosterol binding or biosynthesis does not cross-
react with host cells. The azole family includes imidazoles
(miconazole, econazole, clotrimazole, and ketoconazole) and
triazoles (fluconazole, itraconazole, and the latest agent
voriconazole (second-generation, synthetic triazole deriva-
tive of fluconazole) and posaconazole (hydroxylated ana-
logue of itraconazole)) [21, 22]. Many azoles are effective



BioMed Research International 3

Table 1: Administration routes and pharmacokinetic parameters of representative antifungal agents belonging to the major families of
compounds.

Drug family Drug Adm.
routea

Pharmacokinetic parameters
ReferencesOral bioavailability

(%)
𝐶max

b

𝜇g/mL
AUCc

mg⋅h/L
Protein

binding (%)
Half time

(h) Elimination

Azoles

Fluconazole Oral >90 0.7 400.0 10–12 27–31 Urine [35, 37]
Itraconazole Oral >55 1.1 29.2 99.8 21–64 Hepatic [35, 37]
Voriconazole Oral >90 4.6 20.3 60.0 6 Renal [35, 37, 38]
Posaconazole Oral >98 7.8 17.0 99.0 15–35 Feces [35, 39]

Echinocandins
Caspofungin IV <5 9.5–12.1 93.5–100.5 96.0 10.6 Urine [20, 35, 40,

41]

Micafungin IV <5 7.1–10.9 59.9–111.3 99.8 11–17 Feces [20, 35, 40,
41]

Anidulafungin IV <5 3.4–7.5 44.4–104.5 84.0 18.1–25.6 Feces [20, 35, 40,
41]

Polyenes Amphotericin B IV <5 1.5–2.1 13–17 >95 6.8–50 Feces [35, 42]
Nucleoside
analogues Flucytosine Oral 76–89 80 62 4 3–6 Renal [31, 35]
aAdm. route indicates administration route; fluconazole, itraconazole, and voriconazole can be administered by both intravenous and oral routes; IV:
intravenous; b𝐶max: maximal concentration; cAUC: area under the curve.

both for topical use and for the treatment and prophylaxis
of invasive fungal infections [22]. In this regard, these agents
have the approval of the US Food and Drug Administration
(FDA) and the European Medicines Agency (EMEA) [23].

2.2. Echinocandins: Inhibitors of the Glucan Synthesis. Echi-
nocandins (caspofungin, micafungin, and anidulafungin) are
lipopeptidic antifungal agents that inhibit the synthesis of
fungal wall by noncompetitive blockage of the (1,3)-𝛽-D-
glucan synthase (Figure 1). This enzyme inhibition leads to
the formation of fungal cell walls with impaired structural
integrity, which finally results in cell vulnerability to osmotic
lysis [24]. All three agents (caspofungin, micafungin, and
anidulafungin) exhibit concentration-dependent fungicidal
activity against most species of Candida [25, 26] and have
been approved by the regulatory agency FDA for the treat-
ment of esophageal and invasive candidiasis, including can-
didemia [27–29].

2.3. Polyenes: Binding Ergosterol. Polyenes such as nystatin
and amphotericin B (both isolated from Streptomyces spp.)
bind ergosterol and disrupt the major lipidic component of
the fungal cell membrane resulting in the production of aque-
ous pores (Figure 1). Consequently, the cellular permeability
is altered and leads to the leakage of cytosolic components
and, therefore, fungal death [30].

2.4. Nucleoside Analogues: Inhibitors of DNA/RNA Synthesis.
Flucytosine is a pyrimidine analogue. It is transported into
fungal cells by cytosine permeases. Then, it is deaminated to
5-fluorouracil and phosphorylated to 5-fluorodeoxyuridine
monophosphate. This fluorinated nucleotide inhibits
thymidylate synthase and thus interferes with DNA synthesis
(Figure 1, [31]). The 5-fluorodeoxyuridine monophosphate

can be further phosphorylated and incorporated to RNA,
thus affecting RNA and protein synthesis (Figure 1, [32]).

2.5. Other Antifungal Agents. Allylamines and thiocarba-
mates also disrupt the cell membrane by inhibiting the
squalene-epoxidase [33], enzyme involved in the biosynthesis
of ergosterol (Figure 1).

Griseofulvin (a tricyclic spirodiketone, first isolated from
Penicillium griseofulvum) acts by disrupting spindle and cyto-
plasmic microtubule production, thereby inhibiting fungal
mitosis (Figure 1, [34]).

2.6. Treatment of Systemic Infections. The antifungal therapy
is driven by whether the agents are being used to treat
mucosal or systemic infections. Superficial infections can be
treated successfully with topical antifungal drugs. Systemic
infections can be treated with oral or intravenous (IV)
preparations. Table 1 shows the pharmacokinetic parameters
of the main antifungal agents used for the treatment of
systemic candidiasis. Pharmacokinetic parameters are not
always directly comparable because data derive frommultiple
sources and trials [20]. However, the routes of adminis-
tration and excretion are often important considerations
in selecting an appropriate antifungal agent. Some drugs
are available only as IV preparations (e.g., caspofungin,
micafungin, anidulafungin, and amphotericin B), only as oral
preparations (e.g., posaconazole and flucytosine) or can be
administered by both IV and oral routes (e.g., fluconazole,
itraconazole, and voriconazole) depending on the drug sol-
ubility [35]. Since fluconazole and caspofungin are primarily
excreted into the urine as active forms (Table 1), they are
agents of choice for the treatment of urinary tract fungal
infections. Unfortunately, some of these antifungal drugs
have been extensively used and led to an increased selective
pressure and the development of antifungal resistance [36].
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Table 2: Resistance mechanisms of major systemic antifungal drugs. Antifungal resistance is based on different mechanisms, namely, (i)
reduced drug intracellular accumulation, (ii) decreased target affinity/processivity for the drug, and (iii) counteraction of the drug effect.

Antifungal
class Genetic basis for resistance Functional basis for resistance

Azoles

Upregulation of CDR1/CDR2 andMDR1 by point
mutations in TAC1 andMRR1 transcription
factors

(i) Upregulation of drug transporters

Point mutations in ERG11 (ii) Decreased lanosterol 14-𝛼-demethylase binding affinity for the
drug

Upregulation of ERG11 by gene duplication and
transcription factor regulation (iii) Increased concentration of lanosterol 14-𝛼-demethylase

Point mutations in ERG3 (iii) Inactivation of C5 sterol desaturase leading to alterations in the
ergosterol synthetic pathway

Echinocandins Point mutations in FKS1 and FKS2 (ii) Decreased glucan synthase processivity for the drug
Polyenes Point mutations in ERG3 and ERG6 (iii) Decreased ergosterol content in cells

Nucleoside
analogues

Point mutations in FCY2 (i) Inactivation of cytosine permease affecting drug uptake

Point mutations in FCY1 (iii) Inactivation of cytosine deaminase leading to alterations in the
metabolism of 5-fluorocytosine

Point mutations in FUR1 (iii) Inactivation of uracil phosphoribosyl transferase leading to
alterations in the metabolism of 5-fluorocytosine

3. Mechanisms of Resistance against
Antifungal Agents

Antifungal resistance is based on different mechanisms,
namely, (i) reduced drug intracellular accumulation, (ii)
decreased target affinity/processivity for the drug, and (iii)
counteraction of the drug effect. Particularly, the mechanism
of resistance will be different depending on the mode of
action of antifungal compounds. Cellular and molecular
mechanisms supporting resistance against antifungal classes
mentioned above have been discussed in detail in previous
reviews [43–46]. Below, we briefly summarize the main
observations (Table 2).

3.1. Azole Resistance. Over the past 10 years, fluconazole and
itraconazole have been used extensively for chemoprophy-
laxis and treatment of systemic fungal infections because of
their favorable oral bioavailability and safety profiles [84–86].
Afterwards, fluconazole resistance has been described in a
high percentage of patients [87]. In fact, azole-resistant C.
albicans is frequent inHIV-infected patients with oropharyn-
geal candidiasis [88]. However, resistance is less important
in patients with other diseases, such as vaginal candidiasis
and candidemia [89]. An intrinsically reduced susceptibility
to fluconazole has been also reported for non-albicans species
of Candida like C. glabrata, C. krusei, and C. lusitaniae [90,
91]. It appears that variations in the structure of azoles are
responsible for the cross-resistance patterns among Candida
species [92–94]. Several major mechanisms leading to azole
resistance have been elucidated (Table 2, [95]) and detailed
below.

(i) Reduced Drug Intracellular Accumulation. A responsible
mechanism for decreasing the intracellular concentration of
azole relies on an upregulation of two principal families of

efflux pumps (reviewed in [96]). These transporters differ in
the source of energy used to pump out the drug and in the
specificity of the azole molecule. The Cdr pumps belong to
the superfamily of ATP-binding cassette (ABC) transporters
and are able to extrude all azole antifungals. These pumps
are encoded by Candida drug resistance 1 and 2 (CDR1 and
CDR2) genes in C. albicans [96]. The other pump is a sec-
ondary transporter which utilizes proton gradient as a source
of energy and is specific for fluconazole. This pump belongs
to themajor facilitator superfamily (MFS) transporters and is
encoded by theMDR1 gene in C. albicans [96]. Upregulation
ofCDR1/CDR2 andMDR1 arises frommutations inTAC1 and
MRR1 transcription factors, respectively [97, 98]. Gain-of-
functionmutations generate hyperactive alleles in C. albicans
and subsequent loss of heterozigocyty (LOH) at theTAC1 and
MRR1 loci [99]. Other transporter genes have been reported
to be upregulated in azole-resistant C. glabrata (CgCDR1,
CgCDR2 (formerly named PDH1) and CgSNQ2 (another
ABC transporter)) [100–102], C. dubliniensis (CdCDR1 and
CdCDR2) [103], C. krusei (ABC1 and 2) [104, 105], and C.
tropicalis (CDR1-homologue) isolates [44]. In C. glabrata,
CgCDR1, CgCDR2, and CgSNQ2 genes are regulated by the
CgPDR1 transcription factor [106–108].

(ii) Decreased Target Affinity for the Drug. The target of azole
antifungals is the lanosterol 14-𝛼-demethylase encoded by the
ERG11 gene. Several point mutations have been characterized
and associated to azole minimum inhibitory concentration
(MIC) increases (reviewed in [95]).

(iii) Counteraction of the Drug Effect. Two mechanisms
contribute to counterbalancing the drug effects. The first
system involves an upregulation of the ERG11 gene leading
to an intracellular increase of the target protein. ERG11
overexpression occurs by transcription factor regulation and
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gene duplication (reviewed in [95]). The second mechanism,
although very uncommon, has been identified in several
clinical isolates ofC. albicans [109]. Alteration of the late steps
of the biosynthesis of ergosterol through ERG3 inactivation
leads to the total inactivation of the C5 sterol desaturase [110].
Thus, toxic 14𝛼-methylated sterols are no longer accumulated,
and yeast strains produce cell membranes devoid of ergos-
terol but containing other sterols [110].

3.2. Echinocandin Resistance. Echinocandin drugs are rec-
ommended as the first line for invasive candidiasis. However,
reports of echinocandin resistance in patients with infections
due to C. albicans, C. glabrata, C. tropicalis, and C. krusei are
rising [111–116]. In fact, resistance in C. glabrata increased
from 4.9% to 12.3% between 2001 and 2010 [115]. Even more,
emergence of coresistance to both echinocandins and azoles
in clinical isolates of C. glabrata has been reported [115]. In
addition, intrinsic echinocandin resistance of C. parapsilosis,
C. orthopsilosis,C.metapsilosis, andC. guilliermondiihas been
described [117, 118].

Secondary resistance to echinocandins is associated with
the following mechanism.

(ii) Decreased Target Processivity for the Drug. Resistance
is attributed to point mutations in the FKS1 and/or FKS2
genes (Table 2, [119–121]) which encode the (1,3)-𝛽-D-glucan
synthase complex [121]. Mutations in FKS1 did not alter
substrate binding but lowered 𝑉max values [122].

3.3. Polyene Resistance. Despite more than 30 years of clin-
ical use, minimal resistance to amphotericin B has been
developed. However, the main problem associated with the
prophylactic use of conventional amphotericin B has always
been due to its well-known side effects and toxicity [123,
124]. Resistance tends to be species dependent. C. glabrata
and C. krusei are usually considered to be susceptible to
amphotericin B, although they show higherMICs to polyenes
than C. albicans. In this regard, higher than usual doses of
amphotericin B have been recommended by the Infectious
Diseases Society of America for treating candidemia caused
by C. glabrata and C. krusei [125]. In fact, a significant
proportion of isolates of C. glabrata and C. krusei species
resistant to amphotericin B has been reported [126]. Addi-
tionally, some Candida spp. including C. lusitaniae and C.
guilliermondii, besides C. glabrata, are capable of expressing
resistance to amphotericin B [127]. It is noteworthy that even
the antifungal lipopeptide caspofungin led to drug resistance
in transplanted patients [112]. When resistance to polyenes
occurs, it may result from the following mechanism.

(iii) Counteraction of the Drug Effect. Acquired resistance is
probably due to a decrease or lack of ergosterol content in cell
membranes. In fact,membranes of polyene-resistantCandida
isolates have relatively low ergosterol content, compared to
those of polyene-susceptible isolates. These deficiencies are
probably consequences of loss of function mutations in the
ERG3 or ERG6 genes which encode some of the enzymes
involved in ergosterol biosynthesis (Table 2, [128–130]).

3.4. Flucytosine Resistance. Primary resistance to flucytosine
remains low (<2%). Secondary resistance relies on inactiva-
tion of different enzymes of the pyrimidine pathway (Table 2)
as described below.

(i) Reduced Drug Intracellular Accumulation. Uptake of the
drug is affected by point mutations in the FCY2 gene which
encodes the cytosine permease [46, 128].

(iii) Counteraction of the Drug Effect. Acquired resistance
to flucytosine also results from point mutations in the
FCY1 gene which encodes for the cytosine deaminase or
FUR1 gene which encodes for the uracil phosphoribosyl
transferase. These enzymes catalyze the conversion of 5-
fluorocytosine to 5-fluorouracil and 5-fluorouracil to 5-
fluorouridine monophosphate, respectively. The most fre-
quently acquired resistance to flucytosine is based on point
mutations in the FUR1 gene. Several point mutations have
been described in C. albicans, C. glabrata, and C. lusitaniae
[46, 128, 131, 132].

The rapid development of antifungal resistance, the tox-
icity and the variability in available formulations of some
agents, and the increase in the frequency of non-albicans
Candida spp. infections support the need for more effective
and less toxic treatment strategies.

4. Need of New Antifungal Agents

Potential pharmacological strategies include the use of (i)
new formulations of antifungals, such as liposomal ampho-
tericin B, amphotericin B lipid complex, amphotericin B
colloidal dispersion, amphotericin B into a lipid nanosphere
formulation, itraconazole, and 𝛽-cyclodextrin itraconazole
or (ii) combination therapies of one or more antifungal
compounds, for example, amphotericin B + flucytosine,
fluconazole + flucytosine, amphotericin B + fluconazole,
caspofungin + liposomal amphotericin B, and caspofungin +
fluconazole.

Potential alternative therapies include the use of new
active principles obtained from different general sources, as
natural products, synthetic agents or polymeric materials
that have been shown to be active in vitro (Table 3). Among
the natural products, plants contain diverse components that
are important sources of biologically active molecules [50,
133, 134]. In fact, the activity of plant crude extracts against
different microorganisms has been reported, that is, strong
antifungal activity of somemajor components of essential oils
[135, 136]. In this regard, the antibiofilm activity of terpenes
and the exceptional efficiency of carvacrol, geraniol, and thy-
mol, in the treatment of candidiasis associated with medical
devices, have been demonstrated [137]. In another work,
terpenoids exhibited excellent activity against C. albicans
yeast and hyphal form growth at concentrations that were
nontoxic to HeLa cells [138]. Thus, terpenoids may be useful
in the near future not only as an antifungal chemotherapeutic
agent but also to synergize effects of conventional drugs like
fluconazole [138]. Other compounds with antimycological
activity obtained from plants are saponins, alkaloids, pep-
tides, and proteins [47, 48]. Marine organisms, endophytic
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Table 3: Some natural products, synthetic agents, and polymeric materials with reported antifungal activities.

General
source Specific source Biological active molecules Examples References

Natural
products

Plants
Essential oils; terpenoids;
saponins; phenolic compounds;
alkaloids; peptides; proteins

Steroidal saponins, sesquiterpenoids [47, 48]

Marine organisms
Anthracycline-related
compounds; lipopeptides;
pentacyclic compounds

Xestodecalactone B, seragikinone A [49]

Endophytic fungi Secondary metabolites; peptides;
pyrones cryptocandin, pestalopyrone [50]

Microorganisms of
terrestrial environment Lipopeptides; terpenoids Echinocandins, enfumafungin [50, 51]

Synthetic
agents

Organically synthesized or
derived compounds
(not polymeric materials)

Compounds based on
N,N-dimethylbiguanide
complexes

Me
(N,N-dimethylbiguanide)2(CH3COO)2⋅nH2O
where Me: Mn, Ni, Cu, and Zn

[52, 53]

Derived compounds from
traditional antifungal structures Imidazole derivatives, amine-derived bis-azoles [54, 55]

Synthetic derived peptides Lactoferrin-derived peptides [56]

Derived compounds from
natural products

Micafungin sodium, anidulafungin,
caspofungin acetate, pneumocandin, and
enfumafungin derivatives

[57, 58]

Polymeric
materials Polymeric materials

Polymers with quaternary
nitrogen atoms

Polymers containing aromatic or heterocyclic
structures [59]

Cationic conjugated polyelectrolytes [58]
Polymers with quaternary nitrogen atoms
within the main chain. [60]

Block copolymers containing quaternary
ammonium salt [61]

Synthetic peptides, synthetic dendrimeric
peptides [62, 63]

Antifungal peptides mimics

Arylamide and phenylene ethynylene
backbone polymers [64]

Polynorbornene derivatives [65]
Polymethacrylate and polymethacrylamide
platforms containing hydrophobic and cationic
side chains

[66, 67]

Polymers with superficial activity Fluorine-containing polymers [68]

Polymers containing different
contents of halogens

Chlorine-containing phenyl methacrylate
polymers [69, 70]

Polymeric N-halamines [71]

Chelates Polymer-copper(II)-bipyridyl complex [72]
N-vinylimidazole copolymerized with
phenacyl methacrylate [73]

Imidazole derivative polymers 2-[(5-methylisoxazol-3-yl)amino]-2-oxo-ethyl
methacrylate and ethyl methacrylate [71]

Polymers loaded with antifungal
compounds

Organic compounds [74–76]
Inorganic compounds [77–79]

fungi andmicroorganisms of terrestrial environment are also
specific sources of antifungal compounds, although to a lesser
extent [50, 139]. Among them, good antimicrobial activi-
ties of anthracycline-related compounds, peptides, pyrones,
lipopeptides, and terpenoids isolated from these specific
sources have been reported [49–51].

A second general source of antifungal agents comprises
nonpolymeric synthetic agents, which can be classified into
four groups (Table 3). The first group includes chemicals
based on N,N-dimethylbiguanide complexes [52]. These
compounds displayed low cytotoxicity and could be consid-
ered as potential broad-spectrum agents [53]. The second
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group involves derived compounds of traditional antifungal
structures [54, 55] where some of them present better
antimicrobial action than the original structures [55, 140].
The third group is formed by synthetic derived peptides,
that is, the “human lactoferrin derived peptide” which was
well tolerated in preclinical tests and clinical trials [56].
Finally, the last group includes compounds which are derived
from semisynthetic natural products, such as compounds
derived from echinocandins: micafungin sodium, anidu-
lafungin, caspofungin acetate, and pneumocandin. These
agents showed improved properties over the parental com-
pounds [50, 141]. Unfortunately, echinocandins derivatives
are poorly absorbed when administered orally and, therefore,
are used only for IV administration. A natural antifungal
with comparable activity to that of caspofungin acetate
against Candida pathogenic fungal strains was isolated [51].
The compound, named enfumafungin, is a new triterpene
glycoside that inhibits the (1,3)-𝛽-D-glucan synthase. Several
synthetic products derived from enfumafungin are currently
under development in order to optimize in vivo antifungal
activity and oral efficacy [57].

The third general source of antifungal compounds,
namely, polymeric materials could be classified into seven
groups (Table 3). (1) Polymers with quaternary nitrogen
atoms [60] that can exist in different structures, that is,
aromatic or heterocyclic structures [59], cationic conjugated
polyelectrolytes [58], quaternary nitrogen atoms within the
main chain [60], block copolymers [61], and synthetic and
dendrimeric peptides [62, 63]. All of them were shown
to be effective against a variety of microorganisms based
on the exposure of its quaternary ammonium group. (2)
Mimic antimicrobial peptides; among them are arylamide
and phenylene ethynylene backbone polymers [64]; poly-
norbornene derivatives, which depending on their structure
may exhibit substantial antimicrobial and low hemolytic
activity [65], and polymethacrylate and polymethacrylamide
with hydrophobic and cationic side chains [66, 67]. (3)
Polymers with antimicrobial activity derived from their
superficial activity (surfactants) based on fluorine-containing
compounds [68]. (4) Polymers containing different contents
of halogens, where the halogen group is the commander of
the inhibition process, such as phenyl methacrylate polymers
with different contents of chlorine [69, 70]. The halogen
may form a covalent bond to nitrogen yielding polymeric
N-halamines with a broad-spectrum antimicrobial activity
without causing environmental concerns [71]. (5) Chelates;
the antimicrobial activity of different chelates, such as N-
vinylimidazole copolymerizedwith phenacylmethacrylate or
poly (1,3-thiazol-2-yl-carbamoyl) methyl methacrylate with
Cd(II), Cu(II), or Ni (II), has been analyzed in 2011 by Soykan
et al. [73]. The Ni(II) complexes showed higher activity
than those of Cu(II) and Co(II) ions. However, all of them
exhibited lower activity than fluconazole. Another complex
containing Cu(II) was found to have good antifungal activity
due to electrostatic binding to fungalDNA [72]. (6) Imidazole
derivatives, polymers and copolymers, with antimicrobial
effectiveness depending on the polymeric structures [71, 142].
(7) Polymers loaded with antimicrobial organic or inorganic
compounds. Antimicrobial organic agents are based on

organic drugs; that is, chlorhexidine has been incorporated
into polymeric microparticles and into polymeric hydrogels
to modulate the release of the drug [74, 75]. Another research
group loaded triclosan into polymeric nanoparticles [76].
Antimicrobial inorganic agents frequently incorporatemetals
into polymers, such as silver. This metal exhibits much
higher toxicity to microorganisms than to mammalian cells.
Polymeric nanotubes [77] and nanofibers [78] with silver
nanoparticles have been prepared by chemical oxidation
polymerization of rhodanine. Other silver nanocomposites
have been reported in the literature based on different silver-
loaded nanoparticles such as silver-zirconium phosphate
nanoparticles [79] or silver zeolites [142]. Another example of
inorganic compound loaded into polymers is copper. Copper
particles are also known for their antimicrobial activity,
although they are relatively less studied than silver [143].

The mentioned agents have been tried in vitro against
Candida; however, many of them are not used in clinical
treatments; in this regard, there are three agents with actual
promise: E1210, albaconazole, and isavuconazole (Figure 2).

E1210 is a broad-spectrum antifungal agent with a novel
mechanism of action based on the inhibition of fungal glyco-
sylphosphatidylinositol biosynthesis [144, 145]. The efficacy
of oral E1210 was evaluated in murine models of oropharyn-
geal and disseminated candidiasis [80].

Results indicate that E1210 significantly reduced the
number of viable Candida in the oral cavity in comparison to
that of the control treatment and prolonged survival of mice
infected with Candida spp. Therapeutic responses were dose
dependent [80]. Table 4 shows the major pharmacokinetic
parameters after administration of E1210 in mice. E1210 was
also highly effective in the treatment of disseminated candidi-
asis caused by azole-resistant C. albicans or C. tropicalis [80].
Currently, E1210 is in Phase II.

Albaconazole is a new oral triazole with broad-spectrum
antifungal activity, unique pharmacokinetics, and excellent
tolerability [146]. It has been demonstrated that this com-
pound was highly effective in vitro against pathogenic yeasts
and also in animal models of systemic candidiasis [146].
Oral bioavailability was calculated to be 80% in rats and
100% in dogs [81]. Assays in healthy human volunteers
showed that albaconazole was rapidly absorbed and pre-
sented good pharmacokinetic parameters (Table 4). In fact,
the therapeutic efficacy of a single dose of albaconazole at
≥40mg was more effective than 150 mg of fluconazole for the
treatment of acute vulvovaginal candidiasis [81]. Currently,
albaconazole is in Phase II. In addition, low toxicity was
observed when albaconazole was administered to animals
and human volunteers [82].

Finally, isavuconazole (the active metabolite of the
water-soluble prodrug isavuconazonium) is a novel second-
generation water-soluble triazole with broad-spectrum anti-
fungal activity, also against azole-resistant strains. Studies
carried out with neutropenic mice of disseminated C. trop-
icalis or C. krusei infections showed that the treatment
significantly reduced kidney burden in mice infected with C.
tropicalis and both kidney and brain burden in mice infected
with C. krusei [147]. This azole is currently under Phase III
trials in patients with systemic candidiasis. Both oral and
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Figure 2: Chemical structures of three agents with actual promise: E1210 (a), albaconazole (b), and isavuconazole (c).

Table 4: Pharmacokinetic parameters of some lead drugs.

Drug Available
forms Experimental organisms

Pharmacokinetic parameters
ReferencesOral

bioavailability
(%)

𝐶max
b

(𝜇g/mL)
𝑡max

c

(h)

Protein
binding
(%)

Half
time
(h)

Elimination

E1210 Oral/IVa Mice 57.5 0.11 0.5 High 2.2 nrd [80]

Albaconazole Oral Healthy human volunteers nrd
5–80

(proportional
to dose)

2–4 98 30–56 Feces [81, 82]

Isavuconazonium Oral Healthy human volunteers Very high
1.03

(100mg
dose)

0.75–1 98 56–77 Feces [81–83]

Isavuconazole IVa Healthy human volunteers nrd
1.45

(100mg
dose)

1.3–5 98 76–104 Feces [81–83]

aIV: intravenous; b𝐶max: maximal concentration; c𝑡max: time to reach maximal plasma concentrations after oral administration; dnr: not reported.

intravenous formulations showed favorable pharmacokinetic
(Table 4) and pharmacodynamic profiles [82]. This drug
has the potential to become an important agent for the
treatment of invasive fungal infections, principally because of
its relatively broad and potent in vitro antifungal activity, its
favorable pharmacokinetic profile, and the absence of severe
adverse effects [82, 148, 149].

5. Conclusions

Although the antifungal drugs used in clinical treatments
appear to be diverse and numerous, only few classes of anti-
fungal agents are currently available in oral and intravenous

forms. Additionally antifungal resistance based on different
mechanisms continues to grow and evolve and exacerbate
the need of new treatments against Candida infections. In
this regard, new formulations of antifungals, combination
therapies and development of new bioactive compounds
might be useful for a better therapeutic outcome. Particularly,
there are three compounds in Phase II or III studies with
actual promise for the treatment of invasive candidiasis.
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