
NeuroImage: Clinical 29 (2021) 102529

Available online 8 December 2020
2213-1582/© 2020 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Brain anatomical covariation patterns linked to binge drinking and age at 
first full drink 

Yihong Zhao a,b,*, R. Todd Constable c,d,e, Denise Hien f, Tammy Chung g, Marc N. Potenza h,i,j 

a Center of Alcohol & Substance Use Studies, Department of Applied Psychology, Graduate School of Applied and Professional Psychology, Rutgers University-New 
Brunswick, Piscataway, NJ 08854, USA 
b Department of Child and Adolescent Psychiatry, Hassenfeld Children’s Hospital at NYU Langone, New York, NY 10016, USA 
c Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06519, USA 
d Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06519, USA 
e Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06519, USA 
f Center of Alcohol & Substance Use Studies, Graduate School of Applied and Professional Psychology, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA 
g Department of Psychiatry, Robert Wood Johnson Medical School, Institute for Health, Health Care Policy, and Aging Research, New Brunswick, NJ 08901, USA 
h Connecticut Council on Problem Gambling, Wethersfield, CT 06109, USA 
i Connecticut Mental Health Center, New Haven, CT 06519, USA 
j Departments of Psychiatry, Neuroscience and Child Study Center, Yale University, New Haven, CT 06519, USA   

A R T I C L E  I N F O   

Keywords: 
Structural covariation patterns 
Alcohol 
Structural MRI 
Age of drinking onset 
Binge drinking 
Addictive behavior 

A B S T R A C T   

Binge drinking and age at first full drink (AFD) of alcohol prior to 21 years (AFD < 21) have been linked to 
neuroanatomical differences in cortical and subcortical grey matter (GM) volume, cortical thickness, and surface 
area. Despite the importance of understanding network-level relationships, structural covariation patterns among 
these morphological measures have yet to be examined in relation to binge drinking and AFD < 21. Here, we 
used the Joint and Individual Variance Explained (JIVE) method to characterize structural covariation patterns 
common across and specific to morphological measures in 293 participants (149 individuals with past-12-month 
binge drinking and 144 healthy controls) from the Human Connectome Project (HCP). An independent dataset 
(Nathan Kline Institute Rockland Sample; NKI-RS) was used to examine reproducibility/generalizability. We 
identified a reproducible joint component dominated by structural covariation between GM volume in the 
brainstem and thalamus proper, and GM volume and surface area in prefrontal cortical regions. Using linear 
mixed regression models, we found that participants with AFD < 21 showed lower joint component scores in 
both the HCP (beta = 0.059, p-value = 0.016; Cohen’s d = 0.441) and NKI-RS (beta = 0.023, p-value = 0.040, 
Cohen’s d = 0.216) datasets, whereas the individual thickness component associated with binge drinking (p- 
value = 0.02) and AFD < 21 (p-value < 0.001) in the HCP dataset was not statistically significant in the NKI-RS 
sample. Our findings were also generalizable to the HCP full sample (n = 880 participants). Taken together, our 
results show that use of JIVE analysis in high-dimensional, large-scale, psychiatry-related datasets led to dis
covery of a reproducible cortical and subcortical structural covariation pattern involving brain regions relevant 
to thalamic-PFC-brainstem neural circuitry which is related to AFD < 21 and suggests a possible extension of 
existing addiction neurocircuitry in humans.   

1. Introduction 

Underage drinking (i.e., under the legal drinking age of 21 in the US) 
is recognized as a serious public health problem. Per the National 
Institute on Alcohol Abuse and Alcoholism (NIAAA) guidelines, people 
younger than 21 years should avoid alcohol use completely (http 

s://www.niaaa.nih.gov/alcohol-health/overview-alcohol-consumptio 
n/moderate-binge-drinking). Age at first full drink (AFD) prior to 21 
years (AFD < 21) and binge drinking (BD) are important factors linked 
to the development of alcohol use disorders (AUDs) (Lees et al., 2020; 
Squeglia and Cservenka, 2017). Adolescence, characterized by a 
normative imbalance in brain development, with subcortical regions 
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developing earlier than the prefrontal control regions, is a critical risk 
period for addictions (Casey et al., 2011; Chambers et al., 2003; Shul
man et al., 2016). Pre-adult onset of alcohol use and BD may also 
interfere with ongoing neurodevelopment, inducing neurobiological 
changes that could promote subsequent development of AUDs (Jones 
et al., 2018; Lees et al., 2020; Squeglia and Cservenka, 2017). 

Human neuroimaging studies indicate that early onset of alcohol use 
and BD in adolescents or emerging adults are linked to aberrations in 
brain structure relative to healthy controls (HCs) (Lees et al., 2020; 
Squeglia and Cservenka, 2017). The identified deviations in brain 
structure include, for example, reduced cortical thickness (Brumback 
et al., 2016), decreased surface area (Infante et al., 2018), and increased 
grey matter (GM) densities (Sousa et al., 2017) in frontal regions, and a 
GM volume reduction in multiple regions (Baranger et al., 2020; Sque
glia et al., 2014; Yang et al., 2016) with exceptions including greater 
striatal volume (Howell et al., 2013). Gender-related effects have also 
been observed, with cortical thickness in selected frontal regions thinner 
in males, and thicker in females (Squeglia et al., 2012); and putamenal 
volumes smaller in males, and larger in females who report early onset 
of alcohol use or BD, relative to controls (Fein et al., 2013). Together 
with findings from animal models, it has been postulated that prefrontal 
cortex (PFC), amygdala, and striatum contribute importantly to early 
onset alcohol use and BD (Koob and Volkow, 2016; Squeglia and Cser
venka, 2017). 

Alcohol use-related structural brain findings to date have generally 
been identified via group mean differences (either increased or reduced) 
in morphological measures in individual brain regions. Such analyses, 
however, do not typically consider that brain regions function in inter
acting circuits or networks. Indeed, inter-individual differences in the 
structure of brain regions within the same or connected neural circuitry 
often covary more than individual differences in other brain regions, 
suggesting relationships within communities of brain regions (Alex
ander-Bloch et al., 2013). Thus, structural covariance analyses may 
reveal structurally or functionally linked subsystems. Specifically, 
structural covariance analyses compare differences in group-level 
structural covariation networks, where networks are based on pair
wise correlations in morphological measures (e.g., cortical thickness) 
between brain regions. This group-level network-based approach has 
been used to identify regions operating conjointly in schizophrenia 
(Sandini et al., 2018). However, to our knowledge, no published struc
tural covariance studies have examined such relationships with respect 
to BD or AFD. 

Here, we sought to investigate whether common and distinct 
covariation patterns across well-studied cortical morphological mea
sures (thickness, surface area, and GM volume) and subcortical GM 
volume were associated with past-12-month BD and/or AFD. To 
accomplish this goal, we used the Joint and Individual Variation 
Explained (JIVE) method (Lock et al., 2013). JIVE differs from other 
network-based structural covariance analyses described above (Sandini 
et al., 2018), which are limited to group-level analyses, and thus cannot 
obtain individual-level measures of structural synchronization. In 
contrast, JIVE summarizes structural covariation patterns across multi
ple morphological measures into different component scores. Since 
brain structures with larger loading magnitudes in a JIVE component are 
generally more correlated than those with smaller loading magnitudes 
in the same component (Zhao et al., 2019b), the JIVE component scores 
may provide insight into relationships across brain regions and 
morphological measures at the individual level. Indeed, our prior work 
has shown that JIVE can be used to integrate multiple morphological 
measures into joint and specific components that can predict brain age 
(Zhao et al., 2019b). In short, JIVE analysis may help reveal information 
at the brain network level, not only providing efficient data reduction, 
but also indicating potentially interacting neural circuits. 

Brain structural alterations involving multiple morphological fea
tures in cortical and subcortical regions relevant to addiction circuitry 
have been associated with AFD and BD in humans (Lees et al., 2020; 

Squeglia and Cservenka, 2017). Recently, a murine optogenetic study 
demonstrated that neural responses in a circuit between the medial PFC 
and brainstem during initial alcohol exposure predicted future devel
opment of compulsive drinking (Siciliano et al., 2019). This finding, if 
confirmed in humans, could significantly expand existing models of 
addiction neurocircuitry (Koob and Volkow, 2016; Siciliano et al., 
2019). Additionally, another recent study using a sample (706 partici
pants) of the Human Connectome Project (HCP) (Morris et al., 2019) 
reported significant inverse associations between cortical thickness in a 
majority of 24 cortical regions examined (particularly frontal cortical 
regions) and drinks in the past week and frequency of heavy drinking (5 
+ drinks in 24 h). Given these two recent findings (Morris et al., 2019; 
Siciliano et al., 2019), together with a wealth of data supporting roles for 
the PFC and subcortical regions in adolescent addiction vulnerability 
(Casey et al., 2011, 2008; Koob and Volkow, 2016; Luna and Wright, 
2016; Shulman et al., 2016), we proposed two main hypotheses to be 
tested here. First, we hypothesized that covariation among morpho
logical measures in the PFC, brainstem, and other cortical or subcortical 
regions would exist, and this covariation pattern would be associated 
with past-12-month BD and/or AFD < 21 (Morris et al., 2019). Second, 
we hypothesized a JIVE component specific to cortical thickness would 
be related to BD. In exploratory analyses, we also assessed relationships 
between other identified JIVE components and AFD < 21 and BD, 
respectively, using the HCP dataset (Van Essen et al., 2013). 

2. Materials and methods 

2.1. Study sample 

The HCP S1200 data (Van Essen et al., 2013) were our primary data. 
The total HCP S1200 dataset represents 1,206 participants aged 22–36 
years, recruited from the community, who are free of current serious 
psychiatric conditions or neurologic illness, and free of lifetime sub
stance use disorders (SUDs) other than AUD, cannabis use disorder, and 
tobacco use disorder. The HCP dataset includes structural brain imaging 
data along with alcohol consumption information from the Semi- 
Structured Assessment for the Genetics of Alcoholism (SSAGA). We 
applied predefined selection criteria on subjects to select a subsample (n 
= 293) participants (see Section 2.2: past-12-month binge drinkers and 
HCs) as primary data and a full sample (n = 880) to explore generaliz
ability of findings. 

2.2. Inclusion and exclusion criteria 

For inclusion in analyses, participants met the following criteria: 1) 
passed image quality controls; 2) had no conflict information between 
SSAGA survey and laboratory drug results; and, 3) had complete data on 
SSAGA substance use measures, T1-weighted cortical morphometric 
features, and potentially confounding variables. Selection using these 
inclusion criteria resulted in a full HCP sample of 880 participants. To 
study the relationship between past 12-month BD and brain structure, 
additional criteria were used to generate a subsample. Subjects with 
lifetime AUD (either past or current) status were included in the sub
sample only if they reported BD in the past 12 months. Given possible 
brain alterations related to use of other substances, subjects with other 
lifetime SUDs without AUD co-morbidity were excluded from analyses, 
regardless of past 12-month BD status. HCs reported no more than one 
(for female) or two (for male) drinks on any drinking day in their life
time. Also exclusionary to HC status were: 1) more than five lifetime uses 
of any illicit drugs including hallucinogens, opiates, sedatives, and 
stimulants; and, 2) positive drug tests for methamphetamine, amphet
amines, cocaine, opiates, tetrahydrocannabinol, and oxycontin. These 
additional selection criteria resulted in a subsample consisting of 293 
participants (144 HC vs 149 BD). As the subsample minimized the 
confounding effects due to alcohol use, it was chosen as the primary 
dataset for this study. 
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2.3. Binge drinking (BD) and age at first full drink (AFD) 

BD subjects were defined as those who had at least four (for female) 
or five (for male) drinks within a period of 24 h at least once per week in 
the past 12 months. BD was a three-level categorical variable (i.e., HC, 
BD without AUD, and BD with AUD). AFD < 21 indicated whether the 
participant had his/her very first full alcoholic drink (e.g., beer, wine, 
wine coolers, and hard liquor) prior to 21 years. 

2.4. Validation data set 

The NKI-RS includes publicly available data (Nooner et al., 2012). To 
mimic the HCP study design, we applied similar inclusion and exclusion 
criteria to select BD and HC subjects. The ages of HCP participants 
ranged from 22 to 37 years. Due to the small sample size in this age 
group in the NKI-RS sample, we included subjects aged between 18 and 
60 years if they met BD criteria in the past year (with or without lifetime 
AUD diagnosis; BD participants with AUD and other SUDs were also 
included). HCs were required to have no Axis I diagnosis, no self- 
reported past-12-month BD history, limited past-12-month alcohol use 
(i.e., at a frequency of no more than once per week), and no or only 
occasional (i.e., at a frequency of between one and 10 times) past-12- 
month use of other substances. The selected sample consisted of 93 
subjects (46 HCs and 47 BDs) with 34 HCs (73.9%) using alcohol at a 
frequency of no more than once per month. Potentially confounding 
variables were controlled in regression analyses, including age, gender, 
race (white vs. other), socioeconomic status, fluid intelligence (Wechsler 
Abbreviated Scale of Intelligence-II), handedness, and estimated total 
intracranial volume. 

2.5. Brain image processing 

All T1-weighted imaging data in the HCP sample were acquired on a 
customized Siemens 3T Skyra scanner using a multi-band sequence at a 
spatial resolution of 0.7 mm isotropic voxels (Van Essen et al., 2013). 
Structural scans with good/excellent quality were preprocessed by the 
HCP team using the customized HCP structural pipeline based on 
FreeSurfer 5.3. The HCP structural dataset includes multiple morpho
metric measures for each subject. Based on prior findings from studies of 
early initiation of alcohol use and BD, we investigated structural 
covariation patterns among GM volumes in 17 subcortical regions (left 
and right amygdala, accumbens area, caudate, hippocampus, putamen, 
pallidum, thalamus proper, ventral diencephalon, and brainstem), and 
cortical thickness, surface area and GM volume in 68 regions-of-interest 
(ROIs) based on the Desikan-Killiany atlas (Desikan et al., 2006). 

Subjects in the NKI-RS sample underwent a scan session using a 
Siemens TrioTM 3.0T MRI scanner. T1-weighted images were acquired 
using a magnetization-prepared rapid gradient echo (MPRAGE) 
sequence with 1 mm isotropic resolution. The structural images were 
preprocessed using the recon-all pipeline from FreeSurfer version 5.3.0 
(Fischl et al., 2002, 2004), a widely used pipeline optimized for 1 mm 
isotropic data. Image pre-processing quality was checked following 
ENIGMA image quality control protocols (http://enigma.ini.usc.edu 
/protocols/imaging-protocols/). 

2.6. Statistical analysis of cortical and subcortical covariation patterns 

Subcortical GM volume, cortical thickness, surface area, and cortical 
GM volume were treated as four data sources. We utilized JIVE (Lock 
et al., 2013) to identify covariation patterns consistent across different 
morphological measures and patterns unique to individual morpholog
ical measures. JIVE can be viewed as an extension of principal compo
nent analysis (PCA). Like PCA, JIVE uses a matrix-decomposition 
technique to identify a set of dominant directions (i.e., components in 
data space) that capture intrinsic covariation patterns that are either 
common across or specific to different types of morphological measures. 

In other words, JIVE components represent a set of linear combinations 
of the original morphological measures, and each resulting JIVE 
component score is computed from the weighted sum of the original 
morphological measures where weights are indicated by their corre
sponding loading vectors. 

Specifically, JIVE decomposes total variation into three terms: joint 
variation across multiple morphometric measures, structured variation 
unique to each morphometric measure, and residual noise to be dis
carded from analyses. In mathematical format, letX1,X2,X3,X4 be data 
matrices for four morphological measures in which each row stands for a 
morphometric feature (e.g., surface area, cortical thickness) and each 
column for a subject, Aibe matrix for individual structure of Xi, Jibe the 
submatrix of joint structure matrix associated with Xi, and ∈ibe error 
matrix of Xi. The JIVE model can be written as X1 = J1 + A1 + ∈1, …, 
X4 = J4 + A4 + ∈4. An iterative approach was used to estimate the 
loadings of Ji and Ai (i.e., joint and individual components). The optimal 
number of joint and individual components was determined via a per
mutation approach (Lock et al., 2013) with 10,000 permutations and the 
significance level set to 0.0001. All procedures were implemented in R 
using modified functions from the r.jive package. 

2.7. Linear mixed regression analysis 

To control for potential confounding effects in regression analysis, 
we included covariates of age, gender, race (white vs. other), education 
and income level (to approximate socioeconomic status), twin status 
(monozygotic, dizygotic, or unrelated), fluid intelligence score based on 
Raven’s Progressive Matrices, and estimated total intracranial volume 
(to control for differences in overall head size). Linear mixed models 
with family as a random effect were used to test whether JIVE joint and 
individual components were related to BD status and AFD < 21. The 
false discovery rate (FDR) was used to control for potential inflation of 
Type I errors due to multiple comparisons. In the analyses, the FDR is 
controlled at 5% for each of the primary outcomes separately. The 
adjusted p-values are reported. 

3. Results 

3.1. Participant characteristics (HCP sample) 

The HCP sample included 144 HCs, 61 BD subjects without lifetime 
AUD diagnosis (BD-AUD), and 88 BD subjects with lifetime AUD diag
nosis (BD + AUD). Among HCs, 28 (19.4%) subjects reported no past 12- 
month alcohol use; 57 (39.6%), 39 (27.1%), and 20 (13.9%) subjects 
reported one or two drinks at frequency of less one day per month, be
tween one and three days per month, and between one and three days 
per week, respectively. Frequency of BD for the majority of BD subjects 
(136, 91.3%) was between one and three days per week. Additionally, 
these groups did not differ significantly on age, handedness, household 
income, education, intelligence, zygosity, and family history of drug or 
alcohol use (Table 1). However, our bivariate analyses indicated that 
there were significantly more white males in the BD group. Also, the HC 
group on average had significantly smaller estimated intracranial vol
umes than the BD group. As expected, there was a significant difference 
in age at first use of alcohol. The mean AFD was 20.3 (±2.8) years for 
HC, 17.1 (±2.5) years for BD-AUD, and 16.0 (±1.9) years for BD + AUD. 

3.2. Cortical and subcortical covariation patterns 

JIVE analysis of 221 brain features (three cortical morphological 
measures for each of 68 ROIs plus 17 subcortical GM volumes) from the 
HCP sample led to identification of 14 brain signatures (i.e., compo
nents). These included one joint component, and individual components 
specific to surface area (n = 3), cortical thickness (n = 4), GM volume in 
cortical regions (n = 4), GM volume in subcortical regions (n = 2). Fig. 1 
shows joint and individual variation across the four morphological 
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measures. Overall, the joint component explained 38.4% of total vari
ation. Within each morphological set, the percentages of variation 
explained by individual components are 35.5%, 50.2%, 11.8%, and 
12.8%, for subcortical GM, cortical thickness, cortical GM, and surface 
area, respectively. The individual components collectively explained 
27.6% of total variation. A considerable amount of residual noise was 
identified in cortical thickness (48.6%), surface area (37.3%), and GM 
volume (36.0%). 

3.3. Wide-spread cortical thinning associated with past-12-month BD 

Controlling for confounding variables (see Section 2.7), separate 
linear mixed models were used to test associations between each JIVE 
component and BD status. After multiple-comparison adjustment, one 
individual component specific to cortical thickness was negatively 
associated with BD status (p-value = 0.02), suggesting that past-12- 
month BD was linked to smaller mean cortical thickness component 
scores in both BD-AUD (beta = − 0.062, p-value = 0.001, Cohen’s d =
0.506) and BD + AUD (beta = − 0.057, p-value = 0.003, Cohen’s d =
0.476) groups (Fig. 2A). Post-hoc subgroup analyses revealed no 

differences in mean thickness component scores between BD-AUD and 
BD + AUD groups (beta = 0.013, p-value = 0.544). To facilitate the 
interpretation of this cortical thickness component, we listed loadings 
for each of the 68 ROIs (Table S1). Loadings in most ROIs (~72%) 
ranged between 0.10 and 0.15. Seven ROIs (mainly in the temporal lobe: 
right entorhinal, left and right temporal pole, transverse temporal re
gion, and frontal pole) had loadings between 0.15 and 0.21, suggesting 
that BD might have a slightly stronger relationship with systematic 
cortical thinning in temporal lobe regions compared to others. Overall, 
results suggest that widespread cortical thinning is associated with past- 
12-month BD. 

3.4. Brain anatomical covariation patterns associated with AFD < 21 

Separate linear mixed models were used to test associations between 
JIVE components and AFD < 21, controlling for potentially confounding 
variables. After multiple-comparison adjustment, two components were 
associated with AFD < 21. First, the aforementioned cortical thickness 
component reflecting widespread cortical thinning associated with BD 
(Fig. 2A) was also related to AFD < 21 (beta = − 0.066, p-value < 0.001; 
Cohen’s d = 0.549; Fig. 2B). Second, individuals with AFD ≥ 21 dis
played greater mean joint component scores (beta = 0.059, p-value =
0.016; Cohen’s d = 0.441; Fig. 2C). This joint component, which in
cludes structural covariation pattern across all 221 cortical and 
subcortical brain features considered (Table S2), is dominated by 
covariation patterns among subcortical and cortical GM volumes and 
cortical surface areas, and accounts for roughly 50% of variation within 
each of these three morphological measures. This joint component, 
however, accounted for only 1.3% of variation in cortical thickness. 
Most brain features (147 out of 221, 66.5%) had loading magnitudes less 
than 0.05, 16 (7.2%) features had loadings between 0.05 and 0.08, 34 
(15.4%) had loadings between 0.08 and 0.10, and 24 brain features 
(10.9%) had loadings greater than 0.10. The 24 brain features with the 
largest loadings and their individual associations with AFD < 21 are 
listed (Table 2), and the loading plot of these regions is shown (Fig. 2D). 
Fig. S1 shows regions with loadings larger than 0.08. Among all 221 
brain features, the brainstem had the largest loading (0.433), followed 
by the thalamus proper (left and right) and PFC regions (e.g., GM vol
ume and surface area in left and right superior frontal and rostral middle 
frontal regions), suggesting that the joint component is dominated by 
relationships among these brain regions. Surprisingly, most of these 
regions were not significantly related to AFD < 21 based on the mixed 
model regression analysis (Table 2, and Table S2). Thus, our analysis 
suggests that AFD < 21 may not relate to substantial individual brain 
alterations. Instead, AFD < 21 may involve coordinated relationships 
among morphological measures in regions including brainstem, thal
amus proper, and PFC. In addition, several cortical regions in the pari
etal, temporal and occipital lobes, and other subcortical regions 
including left and right putamen, hippocampus, caudate, and ventral 
diencephalon also had relatively large loadings in the joint component 
(Table S2). 

We also assessed whether biological age and gender were related to 
the joint component. Without controlling for confounding variables, the 
joint component was inversely related to biological age (beta = -0.011, 
p-value = 0.001), and males had larger joint component scores (beta =
0.311, p-value < 0.001). Controlling for race, socioeconomic status, 
handedness, and estimated intracranial volumes, relationships with age 
(beta = -0.006, p-value = 0.013) and gender (beta = 0.064, p-value =
0.003) remained significant. 

3.5. Examining NKI-RS data 

To investigate replication in an independent dataset, we conducted 
JIVE analyses in the NKI-RS sample (Table S3). First, proportions of joint 
and individual variance explained were highly similar in the NKI-RS 
(Fig. 3A) and HCP (Fig. 1) samples. Second, the joint component 

Table 1 
Summary of drinking and heathy control subjects from the HCP subsample.  

Variables HC BD-AUD BD + AUD 

Number of subjects 144 61 88 
Age (SD) 28.8 (4.1) 27.5 (3.8) 28.2 (3.2) 
Sex: Female * 86 (59.7%) 25 (41.0%) 20 (22.7%) 
Race: White * 87 (60.4%) 42 (68.9%) 77 (87.5%) 
Household income (<$50,000) 61 (42.4%) 26 (42.6%) 34 (38.6%) 
Education (<16 years) 64 (44.4%) 27 (44.3%) 41 (46.6%) 
Handedness (SD) 69.6 (40.1) 63.0 (45.0) 61.4 (43.7) 
Intelligence: PMAT score (SD) 16.9 (4.8) 16.0 (4.9) 17.2 (4.5) 
Total intracranial volume cm3 

(SD) * 
1561.2 
(197.7) 

1590.5 
(197.0) 

1671.0 
(154.4) 

Zygosity    
Individual subjects 85 (59.0%) 36 (59.0%) 57 (64.8%) 
Dizygotic twins 30 (20.8%) 9 (14.8%) 16 (18.2%) 
Monozygostic twins 29 (20.1%) 16 (26.2%) 15 (17.0%) 
Family history of drug or 

alcohol use 
22 (15.3%) 9 (14.8%) 20 (22.7%) 

Age of first alcohol use (SD) * 20.3 (2.8) 17.1 (2.5) 16.0 (1.9) 
BD Frequency in past 12- 

month*    
>3 days/week 0 (0.0%) 3 (4.9%) 10 (11.4%) 
1–3 days/week 0 (0.0%) 58 (95.1%) 78 (88.6%) 
1–3 days/month 0 (0.0%) 0 (0.0%) 0 (0.0%) 
1–11 days/year 22 (15.3%) 0 (0.0%) 0 (0.0%) 
Never 122 (84.7%) 0 (0.0%) 0 (0.0%) 

HC, healthy controls; BD, binge drinking; BD-AUD, BD without AUD, BD + AUD, 
BD with AUD. PMAT24, Raven’s Progressive Matrices. SD, standard deviation. * 
indicates a significant difference at p < 0.05 level (without multiple comparison 
adjustment). 

Fig. 1. Proportion of variance explained by JIVE components in the HCP 
subsample data. 
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identified in HCP analyses was reproducible in NKI-RS analyses. Pair
wise Pearson correlation coefficients between the component loadings 
from both datasets were used to assess degrees of similarity in brain 
components. If an HCP component was correlated highly with more than 
one NKI-RS component, the maximal correlation coefficient was re
ported. We found that the HCP and NKI-RS joint components correlated 
highly (r = 0.959; Fig. 3B). Third, three individual components were 
also reproducible including components specific to subcortical GM 
volume (r = 0.990), surface area (r = 0.881), and cortical thickness (r =
0.819), respectively. Correlations in loadings for other components 
specific to individual morphological measures were low to moderate 
(ranging from 0.234 to 0.743), indicating that these components were 
less reproducible. Of note, the thickness component related to BD 
(Fig. 2A) and AFD < 21 (Fig. 2B) identified from the HCP sample had 
moderate reproducibility in the NKI-RS sample, as evidenced by the 
maximal correlation of 0.624 between loadings of the cortical thickness 
component in HCP and NKI-RS samples. 

We also investigated whether relationships between two components 
(i.e., joint and thickness) and BD and/or AFD < 21 were reproducible. 
Regression analysis, controlling for potential confounding effects, 
showed that neither BD (p-value = 0.580) nor AFD < 21 (p-value =
0.743) were significantly related to the thickness component in the NKI- 
RS. In contrast, the NKI-RS sample replicated the positive association 

between the joint component and AFD < 21 (beta = 0.023, p-value =
0.040, Cohen’s d = 0.216). The lack of validation with respect to the 
association between the cortical thickness component and BD/AFD in 
NKI-RS could be potentially due to a low replicability (i.e., r = 0.624) of 
the cortical thickness component. To assess whether the same compo
nent is similarly associated with the outcomes in NKI-RS, we used the 
component loadings from the HCP sample to predict the JIVE compo
nent scores in the NKI-RS sample and then assessed the relationship 
between the predicted component scores and BD/AFD, respectively. 
Similarly, our results showed that the resulting cortical thickness 
component was not associated with BD (p-value = 0.417) or AFD (p- 
value = 0.723), while the joint component and AFD demonstrated a 
significant relationship with a similar effect size (beta = 0.095, p-value 
= 0.008, Cohen’s d = 0.280). 

In terms of biological age and gender, the joint component was 
inversely related to biological age in NKI-RS with (beta = − 0.032, p- 
value < 0.001) or without (beta = − 0.040, p-value < 0.001) controlling 
for confounding variables. The significant relationship between gender 
and the joint component was observed without controlling for con
founding variables (beta = 1.019, p-value < 0.001), but no longer 
remained (beta = 0.014, p-value = 0.135) if controlling for confounding 
variables. 

Fig. 2. JIVE components related to binge-drinking and age at first full drink prior to 21 years in the HCP subsample data. (A & B) Boxplots showing a cortical 
thickness component related to binge-drinking status (p-value = 0.02) and to age at first alcohol use (p < 0.001). (C) Boxplot showing the model-based JIVE joint 
component score related to age at first full drink (p = 0.016). (D) Plots of brain regions in the joint component with loadings larger than 0.10. Interior and exterior 
views of the brain regions are presented for each morphological measure. Brainstem is not shown. HC, healthy controls; BD-AUD, subjects with BD in the past 12 
months but without AUD diagnosis; BD + AUD, subjects with both BD in the past 12 months and AUD diagnosis. 
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3.6. Relationship between AFD (continuous measure) and the joint 
component 

Our primary analysis used AFD < 21 as the outcome measure based 
on the legal age for alcohol drinking in US and NIAAA guidelines to not 
consume alcohol prior to age 21. Post-hoc analyses were conducted to 
assess the robustness of the JIVE joint component and its relationship to 
AFD as a continuous variable. Using the HCP full sample, the JIVE joint 
component is almost identical to that obtained from the HCP subsample, 
with Pearson correlation of 0.997 (Fig. S2). The continuous AFD was 
significantly related to the joint component in both the HCP full sample 
(beta = 0.002, p-value = 0.023) and NKI-RS validation set (beta = 0.03, 
p-value = 0.02), respectively. These results suggest that smaller GM 
volume and/or surface area in brain regions relevant to thalamic-PFC- 
brainstem neural circuitry is linked to earlier AFD. Given that the HCP 
full sample included subjects with other SUDs (i.e., cannabis use disor
der and nicotine dependence), we included these measures as 

covariates. Additionally, results replicated in subjects without any life
time cannabis use disorder, nicotine dependence and/or AUD (data not 
shown). Together, the results suggest that our findings are not 
confounded by other SUDs. 

Additionally, the component specific to cortical thickness from the 
HCP subsample was reproducible in the HCP full sample, with Pearson 
correlation of 0.93. The frequency of past-12-month BD (beta = − 0.002, 
p-value < 0.001) and AFD (beta = − 0.002, p-value = 0.002) were also 
associated with the JIVE component specific to cortical thickness in the 
full sample. However, frequency of past-12-month BD and AFD as 
continuous variables were not related to the cortical thickness compo
nent in the NKI-RS sample. 

4. Discussion 

4.1. Joint structural covariation implicates thalamus-PFC-brainstem 
circuitry 

Our hypotheses were largely supported in that we observed both a 
specific structural covariation pattern suggestive of widespread cortical 
thinning related to past-12-month BD and AFD < 21 in HCP, and a 
highly correlated joint structural covariation pattern linked to AFD < 21 
across HCP and NKI-RS datasets. Furthermore, in the HCP full sample, 
the joint covariation pattern was reproducible and its relationship with 
AFD < 21 generalized to AFD as a continuous measure. Thus, the finding 
of the AFD-related joint component may be more generalizable across 
samples and may efficiently capture brain structural features associated 
with early onset alcohol use identified in prior research, which exam
ined regions in isolation (Squeglia and Cservenka, 2017). Although re
sults regarding the individual component specific to cortical thickness 
resonate with those assessing relations between cortical thickness and 
alcohol misuse using HCP data and different analytical approaches 
(Morris et al., 2019), we did not observe these associations in the NKI-RS 

Table 2 
Loading of top brain regions in the joint component related to AFD < 21 in the 
HCP subsample. A total of 24 brain regions and morphological measures in the 
joint component showing a loading of larger than 0.100 are listed based on the 
order of the magnitudes of the loadings. The results from individual linear mixed 
regression analyses are also listed.  

Shape ROI Loading Estimate Std. 
Error 

P- 
value 

P- 
adj.  

Joint component   0.06  0.02  0.001 0.016 
SC 

Vol 
Brain stem  0.434  − 81.41  234.73  0.729 1 

SC 
Vol 

L_Thalamus 
proper  

0.193  78.82  90.51  0.385 1 

GM 
Vol 

L_Superior frontal  0.178  499.14  259.03  0.055 1 

GM 
Vol 

R_Superior frontal  0.171  397.00  257.66  0.125 1 

Area L_Superior frontal  0.169  48.00  81.38  0.556 1 
SC 

Vol 
R_Thalamus 
proper  

0.161  109.51  76.38  0.153 1 

Area R_Superior frontal  0.161  38.85  80.91  0.632 1 
Area R_Rostral middle 

frontal  
0.144  58.63  79.71  0.463 1 

GM 
Vol 

R_Rostral middle 
frontal  

0.142  449.90  238.24  0.060 1 

Area L_Rostral middle 
frontal  

0.137  5.91  77.23  0.939 1 

GM 
Vol 

L_Rostral middle 
frontal  

0.137  172.54  235.32  0.464 1 

Area R_Inferior parietal  0.125  12.88  80.50  0.873 1 
GM 

Vol 
R_Inferior parietal  0.124  252.43  236.13  0.286 1 

Area L_Inferior parietal  0.113  − 61.34  68.54  0.372 1 
Area L_Superior 

parietal  
0.112  75.94  68.06  0.265 1 

GM 
Vol 

R_Middle 
temporal  

0.111  3.98  156.81  0.980 1 

Area R_Superior 
parietal  

0.109  111.45  70.26  0.114 1 

GM 
Vol 

L_Inferior parietal  0.109  − 13.00  202.65  0.949 1 

SC 
Vol 

R_Putamen  0.106  157.07  57.69  0.007 0.165 

GM 
Vol 

L_Inferior 
temporal  

0.105  295.26  186.85  0.115 1 

GM 
Vol 

R_Precentral  0.103  339.72  166.59  0.042 0.974 

Area L_Supramarginal  0.101  27.58  56.56  0.626 1 
Area R_Lateral occipital  0.101  10.65  64.34  0.869 1 
Area R_Precentral  0.101  60.21  55.14  0.276 1 

Abbreviations: ROI, region-of-interest; L, left; R, right. SC Vol, subcortical vol
ume; GM Vol, grey matter volume; Area, surface area. SE, standard error. P- 
value and P-adj. represent the p-values from the linear mixed regression models 
without and with multiple comparison adjustment, respectively. P-adj. was 
calculated based on FDR adjustment on these 24 tests. 

Fig. 3. A highly similar joint component exists in the NKI-RS data (shown in 
blue) as identified in the HCP subsample data. (A) Proportion of variance 
explained by JIVE components in the NKI-RS data. See Fig. 1 for proportion of 
variance explained by JIVE components in the HCP subsample data. (B) 
Overlayed scatter plot of the loadings for 221 ROI structural features in the joint 
components derived from the HCP subsample (HCP-sub) and the NKI-RS data 
sets. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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sample. Therefore, interpretation of relations between the JIVE thick
ness component and BD and AFD < 21 should be made cautiously. 
Despite not being able to fully replicate all findings, we note that we 
employed a high bar for examining reproducibility. The NKI-RS sample 
differs from the HCP sample with respect to recruitment strategy, sample 
age range, study design, scanners employed, and imaging protocols 
used. We believe that results reproduced by our approach may have 
more generalizability than ones reproduced by a less stringent cross- 
validation strategy. 

A particularly consistent finding across samples is the association of a 
cortical and subcortical covariation pattern, or joint component, with 
AFD. The joint component is dominated by covariation between GM 
volume and surface area features across multiple regions (Table 2). 
Among all brain features, covariation among brainstem, thalamus 
proper, and superior and rostral middle frontal cortices contributed 
most. The PFC has been shown to play a critical role in early alcohol use 
initiation, as it is still maturing in adolescence relative to subcortical 
regions, resulting in a normative developmental peak in sensation- or 
novelty-seeking during adolescence, according to dual-systems or 
maturational imbalance models (Casey et al., 2011, 2008; Koob and 
Volkow, 2016; Luna and Wright, 2016; Shulman et al., 2016; Squeglia 
and Cservenka, 2017; Steinberg et al., 2008). Although less is known 
regarding the role of brainstem in youth alcohol use, alcohol use has 
been linked to impairment of lower-level brain stem functioning (Oscar- 
Berman and Marinkovic, 2003), and adolescents who initiated heavy 
drinking showed reduced brainstem volume (Squeglia et al., 2014). 
Importantly, the JIVE brainstem result appears to be consistent with a 
recent preclinical optogenetic study, which found that neural response 
in medial-PFC-brainstem circuitry during initial alcohol exposure in a 
mouse model predicted future compulsive drinking (Siciliano et al., 
2019). However, the extent to which the PFC-brainstem circuitry con
tributes to human alcohol use remains unknown. Our JIVE finding that 
the brainstem contributes most strongly to the AFD-related joint 
component and covaries with PFC regions suggests a key role of brain
stem in onset of human alcohol addiction, likely via PFC-brainstem 
circuitry. 

Additionally, the identified frontal and brainstem regions also covary 
with thalamic GM volumes. The thalamus has been described as a 
“passive” information relay station, but some research suggests that it 
contributes importantly to cognition (Wolff and Vann, 2019). Thalamic 
function via corticothalamic or thalamocortical pathways integrates 
inputs from the PFC and other cortices. Indeed, the PFC and thalamus 
can be activated by alcohol cues (George et al., 2001), and decreased 
connectivity in the thalamus-PFC fiber pathway is associated with AUD 
(Segobin et al., 2019). In addition, a thalamus-dorsomedial-PFC circuit 
was recently demonstrated to link to social dominance in mice (Zhou 
et al., 2017). Notably, social behaviors also have been associated with 
PFC-brainstem circuitry in the mouse model (Franklin et al., 2017), 
further suggesting coherence in the coordinated activities of these 
structures in the thalamus-PFC-brainstem circuit. Given these data and 
our finding that the brainstem, thalamus and frontal regions are top 
contributors to the joint component score, we postulate a role for a 
thalamus-PFC-brainstem circuit in early alcohol use initiation in 
humans. 

Other cortical and subcortical structures also showing strong con
tributions to the joint component have been implicated in early alcohol 
use initiation. For example, prior studies reported differences in GM 
volume in parietal, temporal and occipital lobes examining brain 
structural changes related to pre-initiation or post-drinking (Segobin 
et al., 2014; Squeglia et al., 2014; van Holst et al., 2012; Yang et al., 
2016). These regions are associated with various functions, such as 
motor control, emotion processing, language comprehension, and vi
suospatial processing. Several subcortical regions are noteworthy, 
including putamen, caudate and their functionally connected regions 
including the hippocampus and structures in the ventral diencephalon. 
The dorsal striatum, including putamen and caudate, has been 

implicated in addiction processes, particularly with respect to habitual 
versus goal-directed behaviors (Chen et al., 2011; Cox and Witten, 2019; 
Haber, 2016). Consistently, the dorsal striatum is proposed as contrib
uting importantly to binge/intoxication phases of AUDs (Koob and 
Volkow, 2016). Hippocampal volumetric differences have been reported 
in adolescents with and without AUDs (De Bellis et al., 2000), 
hippocampus-dorsal-striatum connections are involved in formation of 
memories and habits may contribute (Volkow and Morales, 2015), and 
the hippocampus-thalamus fiber pathway is related to AUD (Segobin 
et al., 2019). The ventral diencephalon includes structures implicated in 
controlling alcohol consumption, such as the substantia nigra, sub
thalamic nucleus and hypothalamus (Barson and Leibowitz, 2016; Chen 
et al., 2014; Morais-Silva et al., 2016; Morales-Mulia et al., 2013; Pel
loux and Baunez, 2017). In summary, given extensive interconnections 
between the top three regions (thalamus, PFC, and brainstem) and other 
cortical or subcortical structures, these latter regions and related circuits 
may provide or modulate inputs to or outputs from the major thalamus- 
PFC-brainstem circuit in balancing impulse control vs. sensation- or 
novelty-seeking that may influence AFD. Cortical and subcortical 
covariation patterns may represent a potential brain-based biomarker 
for AFD. 

4.2. Structural covariation may reflect synchronized development 

An advantage of JIVE analysis is that it can effectively consolidate 
covariation patterns among different morphological measures into 
lower dimensional representations (i.e., component scores). This is 
important for generating meaningful, interpretable results using existing 
statistical models (Bzdok and Yeo, 2017; Zhao and Castellanos, 2016). 
Other methods, such as structural learning and integrative decomposi
tion of multi-view data (SLIDE) (Gaynanova and Li, 2019), common 
orthogonal basis extraction (Zhou et al., 2016), and group factor anal
ysis (Klami et al., 2015), may also be used. Our results suggest that an 
attractive feature of JIVE is the performance robustness, consistent with 
our prior study of brain age prediction (Zhao et al., 2019b). Given that 
brain morphological measures within structurally and functionally 
connected regions often co-vary (Alexander-Bloch et al., 2013), the 
identified JIVE covariation patterns may represent synchronized or co
ordinated development of brain structures across cortical and subcor
tical regions, although longitudinal studies are needed to examine this 
possibility directly. Longitudinal studies may also disentangle the extent 
to which such relationships exist prior to or subsequent to alcohol use. 
Although prior studies have explored brain alterations related to alcohol 
use measures in the HCP (Morris et al., 2019) and the NKI-RS (Zhao 
et al., 2019a, 2017), their methods focused on brain-behavior relation
ship on individual regions and morphological measures. In contrast, our 
study provides a more complete picture of brain-behavior relationships 
in alcohol use and initiation and underscores the importance of using 
innovative data-driven approaches to extract novel information from big 
data to provide new insight into alcohol-use behaviors/problems. 

4.3. Limitations 

First, the JIVE method has limitations. For example, in our study, 
cortical thickness measures in the joint component have much smaller 
loading magnitudes than other morphological measures. This might be 
due to the common covariation being shared partially among different 
sets of data (i.e., three of the morphological measures but not cortical 
thickness). In the presence of partially shared covariation patterns, the 
SLIDE (Gaynanova and Li, 2019) method could possibly provide better 
estimations. Of particular note, if the primary interest was to discover 
covariation patterns among multiple morphological measures in cortical 
brain regions only, tensor factorization approaches (see (Mørup, 2011)) 
might provide better estimations because tensor factorization ap
proaches utilize multiway array information (i.e., multiple morpholog
ical measures of the same brain regions for each subject). 
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Second, our work is cross-sectional and retrospective; thus, it is not 
possible to determine whether this joint structural covariation pattern 
reflects a consequence or a precursor of AFD. Also, while most HCP 
participants initiated alcohol use prior to tobacco and/or cannabis use 
and we controlled for related disorders in whole sample analyses, future 
studies should examine whether the identified structural covariation 
pattern is specific to alcohol use, particularly as alcohol use often co- 
occurs with tobacco and cannabis use. Future studies using longitudi
nal data are needed to determine: 1) whether the identified structural 
covariation pattern can prospectively predict initiation of alcohol and/ 
or other substance use; 2) how developmental trajectories of brain 
structural covariation patterns may change from childhood to adoles
cence to adulthood; 3) whether this structural covariation pattern may 
predict risk or resilience relative to substance use; and 4) whether DTI- 
based structural connectivity studies and fMRI-based functional con
nectivity may show evidence to support a role of thalamus-PFC- 
brainstem covariation/circuitry relative to AFD. 

5. Conclusions 

Using JIVE, we identified a reproducible cortical and subcortical 
structural covariation pattern involving brain regions relevant to 
thalamic-PFC-brainstem neural circuitry. Further, this covariation 
pattern was linked to AFD < 21 in both HCP and NKI-RS datasets. The 
results are generalizable to the full HCP data and AFD as a continuous 
measure. To our best knowledge, this is the first study that suggests a 
potential role for a PFC-brainstem circuit in AFD in humans, which ex
tends a recent animal model (Siciliano et al., 2019) to human, and 
potentially extends models of addiction neurocircuitry. This data-driven 
discovery study highlights the importance of: 1) considering multiple 
structural measurements in subcortical and cortical regions together to 
increase understanding of neural correlates related to alcohol use and 
possibly other behaviors and brain disorders; and, 2) using literature 
from both animal and human studies to guide data analyses. 
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