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Hemodialysis vascular access dysfunction is a common and intractable problem in clinical practice with no defin-
itive therapy yet available. As a key mediator of vascular and cardiac maladaptive remodeling, mineralocorticoid
receptor (MR) plays a pivotal role in vascular fibrosis and intimal hyperplasia (IH) and is potentiated locally in
hemodialysis vascular access following diverse injuries, like barotrauma, cannulation and shear stress. MR-
related genomic and non-genomic pathways are responsible for triggering vascular smooth muscle cell activa-
tion, proliferation, migration and extracellular matrix overproduction. In endothelial cells, MR signaling dimin-
ishes nitric oxide production and its bioavailability, but amplifies reactive oxygen species, leading to an
inflammatory state. Moreover, MR favors macrophage polarization towards a pro-inflammatory phenotype. In
clinical settings like post-angioplasty or stenting restenosis, the beneficial effect of MR antagonists on vascular fi-
brosis and IH has been validated. In aggregate, therapeutic targeting ofMRmay provide a new avenue to prevent
hemodialysis vascular access dysfunction.
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Fig. 1. Schematic diagram of pathological process leading to hemodialysis vascular access
dysfunction. Abbreviations:AVF, arteriovenous fistula; CKD, chronic kidney disease.
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1. Introduction

Hemodialysis is an effective modality of renal replacement therapy
for end-stage renal disease (ESRD). A functional hemodialysis vascular
access is critical for successful dialysis procedures. The National Kidney
Foundation Kidney Disease Outcome Quality Initiative (KDOQI) guide-
lines for vascular access [1] recommends the arteriovenous fistula
(AVF) as the first choice of vascular access because of its lower rates of
infection, fewer complications, and prolonged survival compared to ar-
teriovenous grafts (AVG) and tunneled catheters. However, vascular ac-
cess is notwithout problems, as only aminority (26%) of created fistulas
were reported to bemature at 6months and 21%were abandonedwith-
out being able to be used [2]. Moreover, the patency rate of primary un-
assisted fistulas at 6 months was only 64% [2]. The major cause of
hemodialysis vascular access dysfunction is vascular stenosis usually
at the site of the venous anastomosis. There is evidence suggesting
that AVF non-maturation is prone to occur in the setting of pathological
changes characterized by vascular fibrosis and intimal hyperplasia (IH).
In recent years, substantial progress has been made in understanding
the molecular mechanisms underlying IH and vascular fibrosis, which
may involve inflammation, uremia, hypoxia, shear stress, and a hyper-
coagulable state [3] related to disturbed blood flow and injury to the in-
tegrity of vessel wall endothelium. Vascular access dysfunction is
associatedwith over activation ofα-smoothmuscle actin (α-SMA) pos-
itive cells, like myofibroblasts and vascular smooth muscle cells
(VSMC). Both cell types proliferate and migrate from adventitia or
media to intima under the local influence of diverse cytokines, culmi-
nating in excess extracellular matrix (ECM) deposition, IH, vascular fi-
brosis and AVF failure [4]. However, to date, there are still no effective
interventional measures to prevent vascular fibrosis or IH and improve
the patency of vascular access.

Mineralocorticoid receptor (MR) is a nuclear receptor and transcrip-
tion factor that is prominently expressed in renal distal tubules and
thereby has been traditionally regarded as a key regulator of electrolyte
and water homeostasis. MR is also expressed in vascular endothelial
cells and VSMC [5], suggesting a role for MR in vascular pathobiology
separate from controlling water-electrolyte balance. Indeed, there is
ample evidence that MR contributes to vascular inflammation, fibrosis,
and calcification [6,7], as well as VSMC proliferation, migration [8] and
the subsequent narrowing of the vascular lumen. MR in endothelial
cells, VSMC, and macrophages has been associated with cardiovascular
disease and in conjunction promotes vascular inflammation, VSMC acti-
vation, and ECM accumulation. MR is upregulated in vein grafts [9] and
in dysfunctional AVF [10]. Furthermore, MR blockade is associated with
reduction of intima-media thickness, inflammatory infiltration and fi-
brosis [11] and genetic knockout of MR is able to attenuate IH and vas-
cular fibrosis. Therefore, it is conceivable to speculate thatMR also plays
a crucial role in hemodialysis vascular access dysfunction, though ap-
propriate precautions should be taken to extrapolate preclinical find-
ings to AVF in humans. Here, we review recent literature related to
the potential role of MR in hemodialysis vascular access dysfunction
with a focus on AVF stenosis.

2. Vascular access maturation and failure

FollowingAVF surgery, it takes approximately 6weeks for the fistula
to achieve clinical and ultrasonographic maturation [12]. As to gross
morphology, a matured AVF is characterized by increased blood vessel
diameter and wall thickness especially within the venous segment of
the fistula. The process of AVF maturation is complicated, consisting of
both outward and inward remodeling. Insufficient outward remodeling
and exuberant inward remodeling will lead to a lack of dilatation and
neointima thickness (Fig. 1). Driving forces for these changes may in-
clude the drastic hemodynamic change to the venous segment of the
fistula (barotraumatic injury), inflammation, oxidative stress, and surgi-
cal injury [13,14]. In addition, uremic toxins are also associated with
vascular injury and AVF non-maturation. In support of this, more than
70% of pre-access veins in ESRD patients have significant hyperplasia
at the time of surgery [15]. However, recent studies demonstrated that
the contribution of pre-existing IH to AVF nonmaturation is likely very
limited, as shownbyMartinez et al. [4] and also by theHemodialysis Fis-
tulaMaturation (HFM)Group [16],which is the largestmulticenter pro-
spective study of AVF with standardized training for data collection and
ultrasoundmeasurements and uniform criteria for defining stenosis. As
for post-operative hyperplasia, its role in AVF non-maturation and fail-
ure has been less studied. However, more and more evidence suggests
that the effects of IH on AVF non-maturation seem to have been
overestimated [4,17,18]. To date, it remains uncertain and controversial
if post-operative IH is a causative factor for AVF failure and if post-
operative intimal hyperplasia is a primary cause or simply a worsening
factor for AVF failure. To prove these, multicenter, large scale and
adequately-powered clinical studies are definitely needed in the future.
Nevertheless, these types of studieswill be likely very difficult, if not im-
possible, because a postoperative sample can only be obtained in those
fistulas that require a surgical intervention, limiting our ability to sys-
temically compare with AVFs that mature successfully. On histology,
IH predominately consists of myofibroblasts, contractile smoothmuscle
cells, macrophages [19], and excess ECMmolecules like collagen and fi-
bronectin [20]. Vascular fibrosis is driven by improper excess ECM de-
position and accumulation [4]. Vascular remodeling occurs when
tunica adventitia, media, or intima is injured, and starts immediately
after AVF creationwhen a vein is abruptly subjected to anarterial hemo-
dynamics, or following endothelial denudation due to hemodynamic
changes or oxidative stress secondary to uremia in ESRD patients. How-
ever, in response to sustained hemodynamic changes, mechanical in-
jury, vascular inflammation, or uremia-induced oxidative stress,
aberrant or maladaptive vascular remodeling will take place and result
in AVF dysfunction.

2.1. Inward remodeling in AVF

Hemodynamic changes represent a crucial factor in vascular remod-
eling.When a vein is exposed to an arterial environment after arteriove-
nous anastomosis, blood flow increases, accompaniedwith two kinds of
wall shear stress (WSS), i.e. unidirectional laminal WSS and oscillatory
WSS. Oscillatory WSS is more prone to occur in the anastomotic region
where AVF stenosis preferentially forms in forearm fistulas. Endothelial
cells are essential for WSS-induced vascular remodeling. Unidirectional
sheer stress stimulates endothelial nitric oxide synthase (eNOS) re-
sponse, followed by increasing nitric oxide (NO) release [21], which im-
proves vascular dilatation and attenuates cell proliferation and
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migration, thereby facilitating adaptivewall remodeling and vasodilata-
tion. In contrast, the oscillatory WSS activates pathways that mitigate
NO generation and matrix metalloproteinases (MMPs) release,
resulting in insufficient vasodilatation, excessive neointimal hyperpla-
sia, and even vascular stenosis. Patients with chronic kidney disease
(CKD) are susceptible to IH possibly because they have a lower NO pro-
duction and NO bioavailability due to increased oxidative stress. In
agreement, the incidence of renal insufficiency was almost three times
greater in patients with failed or failing saphenous vein grafts than in
patientswith patent saphenous vein grafts, implying CKD as a risk factor
for maladaptive remodeling of vein grafts [22]. In the setting of AVF, en-
dothelial cells are activated and express a multitude of inflammatory
mediators, such as interleukin (IL)-6, IL-8, and monocyte chemotactic
protein-1 (MCP-1), which attract and facilitate inflammatory infiltra-
tion to the fistula. In turn, inflammatory cells and macrophages/mono-
cytes recruited to AVF or vein grafts produce diverse inflammatory
mediators [23], thus establishing a vicious cycle. In addition, increased
expression of osteopontin, a matricellular protein present in ECM [20],
and CD44, a cellular adhesion molecule [24], during AVF maturation
may facilitate macrophages infiltration. Infiltrating macrophages play
a vital role in neointimal formation by reinforcing VSMC migration
and proliferation through releasing cytokines like tumor necrosis factor
α (TNF-α), IL-1, and IL- 1β [25]. Moreover, local inflammatory infiltra-
tion can be potentiated by cytokines like macrophage migration inhibi-
tory factor, which is associated with IH and vascular dysfunction in
patients with ESRD [26] and polytetrafluoroethylene grafts [27].

2.2. Outward remodeling in AVF

To achieve adequate blood flow, AVF maturation needs an adaptive
change in vascular luminal caliber. IH or thrombus narrows vascular
lumen. However, the final luminal caliber is determined not only by
the degree of hyperplasia or thrombus, but also by the extent of vascular
outward expansion that depends on media and adventia elasticity
[14,28]. Venous diameter in AVF increases two or three fold during
AVF maturation due to outward remodeling. As an immediate sensor
of hemodynamic changes, endothelia may play a key role in vascular
outward remodeling [15]. In support of this, AVF outward remodeling
has been associated with the vasodilatory factor NO, which is released
by vascular endothelium in response to hemodynamic stress. NO re-
laxes VSMC and activates MMPs, which in combination with degrada-
tion of internal elastic lamina are important for outward remodeling
[29,30]. Indeed, the brachial flow-mediated dilation, which depends
on the ability of the endothelium to release the endogenous vasodilator
NO, is significantly associated with 6-week postoperative AVF flow rate
and diameter [31]. However, these results do not imply that the same
happens after anastomosis in the venous limb of the fistula. Further,
the brachial flow-mediated dilation assesses NO-mediated dilation in
the artery, not in veins. More studies are required to assess the exact
role of NO in AVF remodeling and dysfunction. In addition, post-
operative medial fibrosis is also likely a risk factor for AVF failure, as ev-
idenced by a number of new studies [4,32]. However, all these findings
were derived from a single center, underpowered small study and only
limited to the two-stage AVFs that were all done by a single vascular
surgeon, thus limiting the generalizability. Despite these limitations,
these findings clearly indicate that AVF non-maturation is more likely
to occur in the settings of both post-operative venous intimal hyperpla-
sia and medial fibrosis.

3. MR

As a steroid receptor, MR is amember of the nuclear receptor super-
family. In the absence of cognate ligand, MR is primarily distributed in
the cytoplasm and bound to chaperone proteins or actin [33]. Once ac-
tivated bymineralocorticoid hormones like aldosterone, MR is liberated
and translocated to nuclei, where it subsequently regulates the
expression of numerous target genes. MR is constitutive in certain
cells like in the cortical collecting duct of the kidney but experiments
from our laboratory have clearly shown that MR can be induced after
an injury both in cells where it already exists and in cells where it nor-
mally is absent or expressed in trace amounts [10,34,35].

The common view is that only mineralocorticoids like aldosterone
and deoxycorticosterone activate MR but we now know that under cer-
tain circumstances, glucocorticoids like cortisol and corticosterone can
also activate MR. Moreover, recent studies have suggested that Angio-
tensin II (Ang II) via Ang II type 1 receptor (AT1R) [6], and Rho family
small GTPase Rac1 may also be able to transactivate MR in a ligand-
independent way [36]. In addition to the well-recognized expression
in distal renal tubules, MR is also abundantly expressed in both epithe-
lial tissues and non-epithelial tissues. By immunohistochemistry,
Lombes et al. demonstrated that MR is expressed in endothelial cells
and VSMC in large blood vessels [37]. The MR expressed in VSMC and
endothelial cells is functional and able to regulate gene expression, sug-
gesting that vasculature is also aldosterone-responsive.

3.1. MR activation in vascular remodeling

The pathobiologic activity of aldosterone has been confirmed in
multiple extra-renal organ systems, such as immune cells and vascula-
ture, in concert with the verified expression of MR in macrophages, en-
dothelial cells andVSMC.MR expressed in VSMC or endothelial cells can
be activated by physiologic circulating concentrations of aldosterone,
present inmost ESRDpatientswith AVF [11]. Aldosteronemay also con-
tribute to perivascular inflammation, oxidative stress, followed by vas-
cular hyperplasia and fibrosis in an MR-mediated manner [38].
Conversely, MR antagonists confer a beneficial effect on improving di-
verse cardiovascular diseases and on preventing vascular and cardiac
remodeling, as shown by a number of clinical studies [39,40]. Addition-
ally, there is emerging evidence in support of the beneficial effect of MR
blockades on IH and vascular fibrosis. For instance, eplerenone, a highly
selective MR antagonist, ameliorates constrictive remodeling and colla-
gen accumulation in coronary arteries after angioplasty or stent implan-
tation in animal models [41,42]. Likewise, the classical MR antagonist
spironolactone [11] and nonsteroidal MR antagonist finerenone [43]
were recently shown to be capable of attenuating IH [44] and vascular
fibrosis [45] both in vivo and vitro. Apart from its role in artery remod-
eling, MR also plays a key role in vein remodeling, as evidenced by a
number of studies. For instance, Bafford et al. found thatMR is expressed
in human venous smooth muscle cells and plays an important role in
vein graft arterialization [9]. This was further supported by preclinical
evidence that MR inhibition with spironolactone reduced vein graft
thickening and inflammation and improved vein graft remodeling
in vivo [11], underscoring the potential to use MR antagonists as novel
treatments to preserve vein graft patency. In addition, the crosstalk be-
tween the aldosterone-MRpathway and Ang II-AT1R pathwaymay also
play an important role in IH and fibrosis. Aldosterone is able to upregu-
late the activity of AT1R [46]. In turn, AT1R is also essentially involved in
aldosterone-MR signaling [47]. Two single nucleotide polymorphisms
of AT1R, rs275653 and rs1492099, responsible for increased expression
of AT1R, are associatedwith increased risk of AVF dysfunction [48]. Clin-
ical data suggest that patients with AVG or AVF who have been treated
with angiotensin-converting enzyme inhibitor or angiotensin receptor
blockade [49] are more likely to have lower complication rates and lon-
ger duration of event-free patency [50].

4. Direct role of MR in AVF or AVG dysfunction

4.1. Role of VSMC-specific MR in vascular access dysfunction

Procedures like AVF surgery, which often involve mechanical vessel
stretch andmanipulation, as well as vascular access cannulation, which
inevitably incurs vascular injury, may affect the long-term outcomes of
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hemodialysis vascular access [14,51]. Lee et al. compared vein tissues
collected at the time of new access surgery with those from stenotic
AVF/AVG and found that different mechanistic pathways responding
to surgical injury were associated with distinct cellular changes within
the neointima [52]. However, the biological significance of this study
is uncertain because the correlation between the thickness of the pre-
existing and post-operative hyperplasia was not demonstrated later in
a large cohort [15]. The cellular and molecular changes of veins in re-
sponse to vascular injury, which could mediate IH, have also been vali-
dated. Some CKD patients may already have pre-existing IH and
vascular inflammation. Wasse et al. provided further supportive evi-
dence when they collected vein specimens from stage 4 and 5 CKD pa-
tients at the time of AVF surgery. Inflammatory mediators like IL6,
transforming growth factor-β, TNF-α, and markers of DNA oxidative
damage were already present [53]. Vascular wall injury is associated
not only with primary hemodialysis vascular access stenosis, but also
with reappearance of vascular access stenosis after endovascular inter-
ventions [54]. The injury-induced IH and vascular fibrosis may be de-
pendent on MR in VSMC. Aldosterone enhances vascular remodeling
following mechanical injury and MR blockade attenuates VSMC activa-
tion and reduces neointima formation both in vitro and in vivo [11,43].
In terms of the direct role of VSMC-specific MR in vascular remodeling
in response to injury stimulation, Pruthi et al. found that aldosterone-
induced VSMC proliferation in murine models of wire-induced carotid
injury could be diminished by 79% after the inducible VSMC-specific de-
letion of MR, highlighting the important role of VSMC specific MR sig-
naling for aldosterone-induced vascular remodeling after vascular
injury [55]. Ang II-elicited vascular oxidative stress was also mitigated
in mice with VSMC-specific deletion of MR, an additional benefit [56].

The cellular signaling pathway of aldosterone-activated VSMC in
vascular remodeling is the subject of major interest. MR activation is
able to trigger both non-genomic actions, including increased phos-
phorylation of mitogen-activated protein kinase, GSK3β and c-Src, and
slow genomic actions, such as up-regulation of placental growth factor
signaling and oxidative stress signaling pathways via increased tran-
scription of vascular endothelial growth factor type 1 receptor and
endothelin. These pathways [57] are integrated to activate VSMC and
promote its migration, proliferation and ECM production, leading to
vascular intima-media thickness, narrowing of vascular lumen and vas-
cular fibrosis.

Recently, micro-RNAs have been identified to act via epigenetic reg-
ulation. As a key mediator of MR-regulated vascular remodeling, miR-
29b in VSMC may have a protective effect on vascular remodeling by
suppressing the expression of ECM components like collagen and by
inhibiting VSMC migration. The abundance and activities of miR-29b
in VSMC are diminished when MR is activated [58]. The novel insight
into micro-RNA regulation of relevant signaling pathways in vascular
remodeling underscores a brand newmolecularmechanismunderlying
MR-mediated IH and fibrosis.

4.2. Role of macrophage-specific MR in vascular access dysfunction

Uncommitted macrophages (M0) can be polarized into two distinct
phenotypes: the classical (M1) and the alternative (M2) macrophages,
depending on the local cytokine milieu. M1 exhibits a pro-
inflammatory activity by releasing pro-inflammatory cytokines, such
as MCP-1, TNF-α, IL-6, etc. In contrast, M2 demonstrates an anti-
inflammatory activity and promotes tissue repair [59]. In experimental
AVF outflow vein specimens from mice with CKD, M1 macrophages
dominate. After clodronate-mediated macrophages depletion, M1 infil-
tration in AVF was abolished and M2 was inversely increased, associ-
ated with amelioration of neointima formation as compared with
vehicle-treated animals [3]. There is evidence suggesting that M2 mac-
rophages seem to play a key role during adaptive venous remodeling in
the early phase of AVFmaturation by counteracting aberrant IH [24,60].
Activation ofMR inmacrophages by aldosterone favorsM1 polarization.
MRknockout can abolish this effect, denoting amodulatory effect of MR
on macrophage phenotypes [61]. In addition, macrophages/monocytes
recruited to AVF or AVGmay further amplify inflammation by releasing
pro-inflammatory cytokines, which promote VSMC proliferation, mi-
gration and ECM overproduction, and exacerbate IH and vascular fibro-
sis. This process is also likely regulated byMR. In support of this concept,
myeloid-specific MR knockout in mice drastically suppressed the ex-
pression of pro-inflammatory cytokine (IL-6, IL-8 and IL-1β), osteopon-
tin, receptors of MCP1, chemokine (C-C motif) receptor 2, and
chemokine (C-C motif) receptor 4 in injured vessels. A lower recruit-
ment of macrophages/monocytes, mitigated VSMC activation, im-
proved neointimal hyperplasia and decreased fibrotic response are all
associated with this suppressed response [61,62]. How MR regulates
macrophages polarization and expression of pro-inflammatory cyto-
kines remains obscure, but there is evidence suggesting the involve-
ment of the serum-and-glucocorticoid-regulated kinase1 (SGK1)
signaling, whichhas been traditionally regarded tomediate the slow ge-
nomic mineralocorticoid actions that regulate electrolyte homeostasis
[63]. SGK1 signaling in the vein graft aftermechanical injury appears re-
sponsible for neointima formation [64] and to contribute to macro-
phages differentiation towards the pro-inflammatory phenotype
[62,65]. The activity of SGK1 signaling pathway is blocked in macro-
phages derived from myeloid-specific MR knockout mice, marked by a
reduced phosphorylation of SGK1. Moreover, quintessential pro-
inflammatory signaling pathways, such as activator protein-1 signaling
and nuclear factor-κB signaling are all suppressed in macrophages de-
rived from myeloid-specific MR knockout mice. These effects can be
overridden in macrophages with SGK1 reconstitution, again accentuat-
ing the essential role of SGK1 inMR-mediated regulation ofmacrophage
phenotypes in IH and vascular fibrosis [66].

4.3. Role of endothelial MR in vascular access dysfunction

In the setting of ESRD, oxidative stress is systemically elevated and
this may promote VSMC activation and the subsequent MR dependent
AVF stenosis [67]. In addition, excess reactive oxygen species in the cir-
culation or locally in AVF may scavenge NO, which is a crucial vascular
dilatory factor generated by eNOS when coupling with
tetrahydrobiopterin, a critical cofactor for NOproduction [68]. NOmedi-
ates vasodilatation and inhibits VSMC activation when diffusing into
media, and suppresses inflammation and thrombosis by acting locally
on vascular endothelial cells. MR antagonists have been shown to re-
store NO production and bioavailability by attenuating eNOS
uncoupling in humans and animals [69,70], potentially associated
with increased levels of tetrahydrobiopterin. Conversely, endothelial
MR activation by aldosterone is able to suppress glucose-6-phosphate
dehydrogenase expression, resulting in excessive production of reactive
oxygen species [71]. In addition, studies have shown that the
aldosterone-MR signaling pathway in endothelial cells promotes pro-
duction of inflammatory cytokines and superoxide, leading to vascular
inflammatory response and oxidative stress [72]. By usingDNAmicroar-
ray analysis, Sekizawa et al. discovered that aldosterone at physiological
levels significantly up-regulates the expression of 12 genes in human
endothelial cells, which have pleiotropic effects and can be categorized
into three subgroups that are respectively related to inflammation, an-
giogenesis and remodeling based on their biophysiological function.
The activating effects on these aldosterone-sensitive genes could be to-
tally prevented by spironolactone [73].

An intact and continuous endothelium serves as a line of defense
against thrombosis. Damaged endothelium will trigger the coagulation
cascade. Endothelial MR has been shown to be associated with throm-
bosis. To this end, exogenous aldosterone treatment was found to pro-
mote thrombus formation after vascular injury in an MR dependent
manner [74]. However, the action of endothelial MR on thrombosis is
likely context-dependent: It seems that the pro-thrombotic effect of al-
dosterone only occurs upon endothelial denudation; In contrast, when
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endothelium is intact, MR overexpression in endothelial cells turns out
to be antithrombotic and this is seemingly associated with up-
regulation of endothelial cell protein C receptor and the consequent
protein C activity [75].

MR activation in human coronary artery endothelial cells promotes
expression of inflammatory mediators like vascular cell adhesion
molecule-1 (VCAM-1) [76], which promote endotheliitis by boosting
leukocyte entrapment. Patients with thrombosed AVF demonstrate in-
creased expression of VCAM-1within the fistula [77]. The level of soluble
VCAM-1, a fragmentofVCAM-1, alsoappears elevated. Studies confirmed
that soluble VCAM-1 could serve as a predictivemarker for increased risk
of AVF thrombosis in children undergoing hemodialysis [78].

5. Therapeutic strategies and Clinical Implications

Hemodialysis vascular access dysfunction continues to be a para-
mount challenge for clinical practice with no definitive treatment avail-
able yet. A number of approaches have been applied to address this
issue, including improving surgical skills, enhancing postoperative
care, and adaptive forearm/hand exercise as well as pharmaceutical in-
terventions.Far infrared therapy has been shown to improve patency of
AVF, but the effectiveness needs to be validated by large scale trials [79].
Although statin has been demonstrated to inhibit IH in vein grafts in ex-
perimental models [25], clinical studies exploring association between
Fig. 2. Contribution of MR signaling VSMC, endothelial cells and macrophages to vascular acces
nitric oxide by enhancing eNOS uncoupling, and amplifies inflammation and oxidative stre
vasoconstriction, inflammation, and VSMC activation. In VSMC, MR exerts non-genomic min
genomic mineralocorticoid actions, such as upregulation of PGF, endothelin and collagen I/III
responsible for VSMC proliferation migration and ECM deposition. In macrophages, MR prom
and activates NFκB and AP1 pathways via SGK1, which can trigger inflammatory response and
access failure, characterized by neointima hyperplasia and vascular fibrosis. Abbreviations: AP
glucose-6-phosphate dehydrogenase; MAPK, mitogen-activated protein kinase; MR: minera
reactive oxygen species; SGK-1, serum-and-glucocorticoid-regulated kinase1; VCAM-1, vascula
statin therapy and vascular access outcomes are controversial [80,81].
A 12-month clinical trial also indicated that neither fish oil which has
been proved to be beneficial for AVG [82] nor the antiplatelet agent, as-
pirin improves AVF patency [83]. In light of the critical role of MR in the
pathogenesis of hemodialysis vascular access dysfunction, it is tempting
to targetMR for preventing or improvingAVF non-maturationor failure.
MR antagonists (MRAs), like spironolactone and eplerenone, have been
applied to cardiovascular diseases with consistent beneficial outcomes
[40]. However, the effect of MR blockade on hemodialysis vascular ac-
cess dysfunction has not been well studied possibly due to a great con-
cern over the potential side effect of hyperkalemia in ESRD patients.
With a variable level of residual function, the failed kidney in ESRD pa-
tients may still respond to aldosterone and excrete potassium. As such,
MRA therapy is likely to diminish renal potassium excretion and cause
hyperkalemia. On the other hand, MRAs are able to mitigate potassium
disposal in other aldosterone responsive organs, like the intestine and
the sweat gland. However, there is evidence suggesting that MRA use
in ESRD patients seems to be safe. Indeed, a number of trials recently
demonstrated that use of MRAs by ESRD patients did not significantly
increase the risk of hyperkalemia but resulted in a better blood pressure
control, diminished left ventricularmass, improved left ventricular ejec-
tion fraction and reduced mortality rate, in agreement with an overall
cardiovascular benefit [84]. Even if MRAs precipitate hyperkalemia in
some dialysis patients, newpotassiumbinders, whichhave been proven
s dysfunction. In endothelial cells, MR signaling reduces production and bioavailability of
ss by promoting endothelial expression of VCAM-1 and inhibiting G6PD, which causes
eralocorticoid actions, including phosphorylation and activation of MAPK and c-Src, and
. In addition, MR signaling may diminish MiR-29b abundance. These effects in VSMC are
otes uncommitted M0 macrophages differentiation to M1 proinflammatory phenotype
activate VSMC. All these effects integrate synergistically ultimately resulting in vascular
1, activator protein-1; ECM, extracellular matrix; eNOS, endothelial NO synthase; G6PD,
locorticoid receptor; NFκB, nuclear factor-Κappa B; PGF, placental growth factor; ROS,
r cell adhesion molecule-1; VSMC, vascular smooth muscle cell.
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by recent clinical trials to effectively lower serum potassium with great
tolerance [85], may allow for testing MR blockades in man to preserve
AVFs. Moreover, the new generation of nonsteroidal MRAs like
finerenone, have a demonstrably improved safety profile and reinforced
efficacy than traditionalMRAs. Finerenone ismore selective forMR than
spironolactone and has greater affinity for MR than eplerenone [86].
Thus, nonsteroidal MRAs might provide an opportunity to maximize
the beneficial effects of targeting MR in hemodialysis vascular access
dysfunction without increasing the risk of hyperkalaemia. Taken to-
gether, based on the potential pathogenic role of MR in vascular remod-
eling, it is conceivable that combined therapy with MR blockades and
potassium binders or use of nonsteroidal MRAs in dialysis patients
may improve vascular access outcome. This warrants future animal
and clinical study to validate the feasibility and efficacy of this therapeu-
tic strategy.

6. Summary and outstanding question

The hemodialysis vascular access is the lifeline for ESRD patients.
Vascular access malfunction places substantial clinical, social and eco-
nomic burden on hemodialysis population. The principal cause of AVF
failure is vascular access stenosis histologically characterized by vascu-
lar fibrosis and IH. Great efforts have been dedicated to understanding
themechanisms involved in promotingneointima formation and vascu-
lar fibrosis. The crucial role ofMR in vascular remodeling causing neoin-
tima formation and vascuar fibrosis or thrombus is increasingly evident.
TheMR signaling pathways directly activate VSMC and promote its pro-
liferation, migration, and ECM deposition. MR in endothelial cells im-
pairs NO generation whereas increases production of noxious
superoxide. MR signaling in macrophages promotes macrophages dif-
ferentiation intoM1 phenotype and aggravates inflammatory response.
All these effects (Fig. 2) act synergistically to promote IH and vascularfi-
brosis and result in vascular access dysfunction. However, due to the
complexity of vascular pathophysiology in ESRD, it is imperative to fur-
ther decipher the exact role of MR and test the efficacy of MR blockade
in hemodialysis vascular access dysfunction in the settings of uremia in
future studies. Collectively, therapeutic targeting of MR seems to be a
novel and pragmatic modatlity for the prevention and treatment of vas-
cular access dysfunction in hemodialysis patients.

6.1. Search strategy and selection criteria

Data for this review were collected through Pubmed. The following
search terms were used: hemodialysis vascular access, arteriovenous
fistula (AVF), mineralocorticoid receptor (MR), aldosterone, intimal hy-
perplasia (IH), vascular smooth muscle cells (VSMC), endothelial cells,
and macrophages. Only articles published in English were included.
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