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Abstract: Phenoxypyridine, the bioisostere of diaryl ethers, has been widely introduced into bioactive
molecules as an active scaffold, which has different properties from diaryl ethers. In this paper, the
bioactivities, structure-activity relationships, and mechanism of compounds containing phenoxypyri-
dine were summarized, which may help to explore the lead compounds and discover novel pesticides
with potential bioactivities.
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1. Introduction

Diaryl ether [1] is an important active fragment in pesticide molecules, which has good
lipid solubility, metabolic stability, cell membrane penetration, sufficient molecular flexibil-
ity [2], and can improve biological activity and photostability. So far, the structure of diaryl
ether has been widely studied and applied, such as aryloxyphenoxypropionate herbicides,
pyrethroid insecticides [3], and triazole fungicides. Pyridine [4], as a nitrogen-containing
heterocyclic ring, plays an important role in agrochemicals, and its derivatives have a wide
range of biological activities. The hydrophobicity (one of key properties affecting biological
activity) of pyridine is significantly higher than that of the benzene ring [5]. Meanwhile,
pyridine is an ionizable polar aromatic compound, which can optimize solubility and
bioavailability of the lead compound [6]. Replacing the benzene ring with a pyridine
ring [7] can usually increase the π-π stacking probability of the target molecule [8] and
improve the biological activity (Table 1). Therefore, phenoxypyridine may have properties
that are different from or even superior to those of diphenyl ether. The phenoxypyridine
structure has been widely used in the molecular structure of pesticides. At present, there
are many commercial pesticides containing the phenoxypyridine structure, as shown in
Figure 1. The active skeleton is of great significance for the creation of new pesticides and
there is no report on the summary of phenoxypyridine compounds. In this paper, we will
summarize the research about the relevant phenoxypyridine derivatives in the pesticide
field in the last ten years.
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Table 1. Comparison of the activity of diphenyl ethers and phenoxypyridine pesticides.

No.
Pesticides Containing Diphenyl Ether Compounds Containing Phenoxypyridine

Structure Activity Structure Activity

1
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Phomopsis asparagi 
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A [9] 
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IC50 = 6.53 mg/L 

Pythium 

aphanidermatum IC50 = 

8.62 mg/L 

Pyricularia grisea IC50 = 

11.46 mg/L 

Phomopsis asparagi 

IC50 = 16.2 mg/L 

2 

Difenoconazole [10] 

Rhizoctonia solani 

EC50 = 8.93 mg/L 

Pyricularia oryae 

EC50 = 2.42 mg/L 

Gibberella zeae 

EC50 = 4.40 mg/L 

Botrytis cinerea 

EC50 > 20 mg/L 

B [11] 

Botrytis cinerea 

ED50 = 2.7 mg/L 

Septoria tritici 

ED50 = 0.008 mg/L 

Pyricularia oryzae 

ED50 = 1.2 mg/L 

C [12] 

Botrytis cinerea 

ED50 = 8.9 mg/L 

Septoria tritici 

ED50 = 0.013 mg/L 

Pyricularia oryzae 

ED50 = 9.5 mg/L 

3 

Mefentrifluconazole [13] 

30% in vivo protective 

activity against 

Sphaerootheca at 10 mg/L  D [14] 

100% in vivo protective 

activity against 

Sphaerootheca at 10 

mg/L 

4 

E [15] 

EC50 = 8.62 mg/L 

F [15] 

EC50 = 0.19 mg/L 

5 

G [15] 

Cucumber Downy 

Mildew 

EC50 = 6.25–25 mg/L H [15] 

Cucumber Downy 

Mildew 

EC50 = 2.65 mg/L 

Famoxadone [9]

Rhizoctonia solani
IC50 > 100 mg/L

Pythium aphanidermatum
IC50 > 100 mg/L
Pyricularia grisea
IC50 > 100 mg/L

Phomopsis asparagi
IC50 > 100 mg/L
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Botrytis cinerea 

EC50 > 20 mg/L 

B [11] 

Botrytis cinerea 

ED50 = 2.7 mg/L 

Septoria tritici 

ED50 = 0.008 mg/L 

Pyricularia oryzae 

ED50 = 1.2 mg/L 

C [12] 

Botrytis cinerea 

ED50 = 8.9 mg/L 

Septoria tritici 

ED50 = 0.013 mg/L 

Pyricularia oryzae 

ED50 = 9.5 mg/L 

3 

Mefentrifluconazole [13] 

30% in vivo protective 

activity against 

Sphaerootheca at 10 mg/L  D [14] 

100% in vivo protective 

activity against 

Sphaerootheca at 10 

mg/L 

4 

E [15] 

EC50 = 8.62 mg/L 

F [15] 

EC50 = 0.19 mg/L 

5 

G [15] 

Cucumber Downy 

Mildew 

EC50 = 6.25–25 mg/L H [15] 

Cucumber Downy 

Mildew 

EC50 = 2.65 mg/L H [15]

Cucumber Downy Mildew
EC50 = 2.65 mg/L
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2. Herbicides Containing Phenoxypyridine Scaffold
2.1. Acetyl CoA Carboxylase Inhibitors

Acetyl CoA carboxylase (ACCase) inhibitors [16,17] target ACCase [18] to inhibit
fatty acid synthesis in gramineae plants. There are two classes of ACCase inhibitors:
aryloxyphenoxypropionate [17] (AOPP or fop) and cyclohexanediones (CHD or dim).
Aryloxyphenoxypropionate herbicides [19] occupy an important position in the world
herbicide market which have characteristics of high efficiency, low toxicity, crop safety, and
so on. In 1976, Ishihara discovered that the compound that was obtained by substituting the
benzene ring on one side with a pyridine ring had higher herbicidal activity and launched
the first aryloxyphenoxypropionate herbicide containing phenoxypyridine–pyrifenop [20].
Since then, extensive research on herbicides containing phenoxypyridine had been initiated.

The structure of aryloxyphenoxypropionate herbicides containing phenoxypyridine
is shown in the Figure 2, in which part A is phenoxypyridine with different substitutions,
most of which were electron withdrawing groups, such as F, Cl, Br, NO2, CN, and CF3;
part Y is the linking arm, where conformation R [19] was the active ingredient of herbicide;
and part Q are various heterocycles, both aromatic and non-aromatic (pyridine, thiazole,
benzofuran, etc.).
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Taking metamifop and clodinafop as the leader, phenoxypyridine was linked to vari-
ous aromatic rings through different linking arms to obtain active molecules with different
structures, as shown in Figure 3. The synthesis of newer aryloxy phenoxycarboxylic
acid amide derivative Compound 1 that was equipped with arylalkoxy was reported by
Huang et al. [21] and assessed for herbicidal activities. Compounds 1a and 1b all showed
100% control efficiency against Digitaria sanguinalis in post-emergence applications, even at
doses as low as 37.5 g a.i/ha and 18.75 g a.i/ha. Likewise, Wang et al. [22] designed and
synthesized compound 2 by introducing an arylalkyl group into the structure of aryloxy
phenoxycarboxylic acid amide. The inhibitory activity of Compounds 2a and 2b against
Digitaria sanguinalis, Echinochloa crus-galli, and Setaria viridis under post-emergence was
100% at a dose of 60 g ai/ha. At the same time, Compound 2b was very safe for rice, and 2a
was slightly less than 2b. The thiazole groups with different substituents were directly con-
nected to an amido bond to yield Compound 3 [23], most of which showed a 100% inhibition
rate against Digitaria sanguinalis, Echinochloa crus-galli and was comparable to metamifop.
The effect of these compounds under post-emergence was slightly better than that under
soil treatment, which could be used as post-seedling herbicide. The structure-activity
relationship showed that 3-fluoro-5-clopyridine > 3-chloro-5-trifluoromethylpyridine; the
order of influence of R1 groups was: NO2, 4-CH3OC6H4CH2, 2, 4-Cl2C6H4CH2>H.

Using clodinafop-propargyl and metamifop as a lead structure, Compound 4 was
synthesized by Yang et al. [24] through active group splicing and exhibited high selective
herbicidal activity against monocotyledonous grass weeds (Beckmannia syzigachne (Steud.)
Fern., Polypogon fugax Nees ex Steud., and Poa annua L.) at 150 g/ha. The chlorine-substituted
target compound showed higher inhibitory activity against Polypogon fugax Nees ex Steud.
than the compound with fluorine substituted. The control effect of Compound 5 that was
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synthesized by Xiao et al. [25] against Digitaria sanguinalis, Echinochloa crus-galli, and Setaria
viridis was 100% at the dose of 85 g ai/ha. Compound 6 [26] showed 100% inhibitory
activity against Echinochloa crus-galli and Setaria viridis at the concentration of 15 g ai/ha,
and was safe for rice. Liu et al. proposed that aryloxyphenoxyalkanoic acid ester analogues
7 [27] and 8 [28] showed selective herbicidal activity against monocotyledonous weeds
(Digitaria sanguinalis, Echinochloa crus-galli, and Setaria viridis) with more than 90% efficacy
in both post-emergence and soil treatment at 5 g/mu.

1 

 

 

Figure 3. ACCase inhibitors containing phenoxypyridine.

Lin et al. [29,30] integrated a benzofuran unit into the scaffold of aryloxy phenoxycar-
boxylic acid amide to yield Compound 9. Compound 9 exhibited 100% control efficiency at
the concentration of 2250 g/hm2 at both pre- and post-emergence applications. According
to the SARs, substituents on pyridine had little effect on the herbicidal activity. The group
of R plays a crucial role in herbicidal activities, and the herbicidal activity decreases with
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the increase of the carbon chain length of R. The aryloxyphenoxy propionamide could be
linked with benzofuran via an alkoxy chain to give Compound 10 [31]. Compound 10
displayed a 98.7% inhibition rate against Echinochloa crus-galli whether with treatment by
post-emergence or soil treatment at 25 g/mu. The linker between phenoxypyridine and
benzofuran in Compound 10 was changed to an amido bond by Yan et al. [32], and the
resulting compounds presented significantly better herbicidal activity against monocotyle-
donous weeds than dicotyledonous weeds. For monocotyledonous weeds, the herbicidal
effect of post-emergence treatment was equivalent to that of pre-emergence treatment.
Further analysis revealed that Compound 11 (100% inhibitory activity) exhibited better
herbicidal activity than clodinafop-propargyl (89.9% and 84.7% inhibitory activity) against
Echinochloa crus-galli either pre- or post-emergence application at 375 g.ai/ha.

The structure-activity relationship showed that the herbicidal activity of propionate
derivatives somewhat exceeded that of propionamide derivatives. The results showed that
increased lipid solubility was beneficial to the herbicidal activity of these compounds to a
certain extent; the activity was significantly increased after the introduction of pyridine;
in addition, the substitution in the pyridine ring had an important effect on the activity.
For propionate derivatives, the activities of the compounds with n = 3 of alkyl chain were
better than n = 2. However, for propionamide derivatives, increasing the length of the alkyl
chain was less effective. In addition, it was confirmed by an enzyme activity test that 11
was a pro-herbicide [33], which acts in plants by hydrolyzing the ester into acid.

The structure of oxime was introduced to the skeleton by Hu et al. [34] to give Com-
pound 12. Further analysis revealed that Compound 12a exhibited the highest herbicidal
activity (100% inhibition rate) against Digitaria sanguinalis and Echinochloa crus-galli un-
der soil treatment at a dose of 100 g/mu, and the control effect of Compound 12b under
post-emergence was 100%. The phenoxypyridine could be linked with benzofuran via
acylhydrazine to give aryloxyphenoxypropionic hydrazide derivatives and the herbicidal
activity was tested by Yang et al. [35]. At the dose of 75 g/hm2, Compound 13 showed
greater than 90% inhibition against Beckmannia syzigachne (Steud.) Fern. Under soil treat-
ment, close to 100% inhibition against Eleusine indica (L.) Gaertn. when used post-emergence,
and a certain inhibition effect on dicotyledonous weeds.

Xu et al. [36] took haloxyfop-methyl as the lead compound, introduced the structure of
aryloxyanilino group based on bioisosterism, and designed a series of compounds contain-
ing pyridoxyanilino propionic acid/ethyl acetate. The new compounds showed a certain
herbicidal activity against Echinochloa crus-galli, and the IC50 of 14 was 27.692 mg/L, which
was at the similar level to that of the control haloxyfop-methyl (26.959 mg/L). Preliminary
structure-activity relationships revealed that the new compounds exhibited enhanced herbi-
cidal activity with the introduction of the strong electron-withdrawing substituent nitro on
the pyridine ring. Moreover, the bioactivity of the compound with an electron-withdrawing
substituent at position 3 of the pyridine ring was higher than at position 5. This provides a
novel structural skeleton for the study of this class of compounds. Compound 15, which
was reported by Kalhor et al. [37], showed fair to good activity, in which the 1,2,4 triazole
structure contributed to the improvement of herbicidal activity and crop selectivity.

2.2. Protoporphyrinogen IX Oxidase Inhibitors

Protoporphyrinogen oxidase (PPO) [38] is a key enzyme in the biosynthesis of chloro-
phyll and heme in plants and is one of the important targets for the creation of novel herbi-
cides. At present, PPO-inhibiting herbicides mainly include diphenyl ethers, phenylpyra-
zoles, triazolinones, N-phenyl phthalimides, and diazoles [39]. Among these herbicides,
diphenyl ethers (DPEs) [40] had been widely studied by researchers in the creation of novel
pesticides due to their high efficiency, low toxicity, high selectivity, and simple synthesis
process; Ye Fei’s team committed to the research and development of PPO inhibitors for
a long time. Several series of compounds (Figure 4) containing phenoxypyridine had
been designed, studied for greenhouse herbicidal activity, PPO inhibitory activity, crop
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selectivity, and structure-activity relationships (SARs). These studies fully confirmed that
phenoxypyridine provided good herbicidal activity.
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PPO inhibitors were known to compete with protogen IX by mimicking part of its
structure, so they introduced pyrrolidone into the second ring side chain of diphenyl
ether structure to simulate the three rings of protoporphyrinogen IX. Diphenyl ether
derivatives with oxime substituents could significantly improve the herbicide activity and
crop selectivity. Therefore, the Compound 16 series were designed and synthesized with
the introduction of both oxime and pyrrolidone. Compounds 17 and 18 were synthesized
by introducing coumarin and five-membered heterocycle, respectively.

When diphenyl ether was replaced by phenoxypyridine, the herbicidal activity and
PPO inhibitory activity of the compounds were significantly increased, and herbicidal spec-
trum was significantly expanded. Most of the compounds showed strong PPO inhibitory
activity in vitro, which was consistent with their herbicidal activity. Most compounds
distinctly presented better inhibitory effects on dicotyledonous weeds than monocotyle-
donous weeds. Among them, the IC50 of Compound 16a [41] (IC50 = 0.041 mg/L), 16b [42]
(IC50 = 0.0262 mg/L), 17a [43] (IC50 = 0.01937 mg/L), 17b [44] (IC50 = 0.01252 mg/L),
18a [45] (IC50 = 0.032 mg/L), and 18b [8] (IC50 = 0.0468 µmol/L) against PPO was consis-
tent with or better than that of oxyfluorfen. At 150 g a.i./ha, Compound 16a achieved 100%
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inhibition against A. theophrasti for post-emergence treatment. The herbicidal activity of
Compounds 17a and 17b reached level A at 300 g a.i./ha−1.

The structure-activity relationship indicated that the herbicidal activity of the com-
pounds with electron-withdrawing substituents on the pyridine ring was significantly
higher than that of the compounds with electron-donating substituents. The introduction
of the pyrrole structure in the side chain could significantly improve the herbicidal activity
of the compound. The introduction of a coumarin ring at the para position of phenoxypyri-
dine was shown to enhance the inhibitory activity of target compounds. Meanwhile, the
type of substituents that were introduced on the coumarin ring had a significant effect
on the herbicidal activity of the compound. Compounds containing furan rings showed
better herbicidal activity than compounds containing thiophene rings. The most critical
finding for Compound 18 was that the introduction of a trifluoromethyl group on the
pyridine ring increased the inhibitory activity against PPO and varied when changing the
substitution position.

The typical characteristic of PPO inhibitors, which were previously known as albino
herbicides, is that the weeds are bleached and curled to death by inhibiting chlorophyll
synthesis. Most weeds exhibited unique bleaching that was consistent with the symptoms
following PPO herbicides application. Compared with the corresponding diphenyl ether
compounds, the compounds containing phenoxypyridine could significantly reduce Ca and
Cb contents of A. retroflexus, indicating that the compounds containing phenoxypyridine
had a better bleaching effect. Multiple crops showed strong tolerance to 16a (rice, peanut,
and cotton), 16b (rice, peanut, and cotton), 17a (maize, cotton, and soybean), 18a (rice,
wheat, maize, and soybean), and 18b (rice, wheat, maize, and soybean) at 300 g ai/ha.
Field tests showed that the compound had a good inhibitory effect on weed growth. The
amino acid residues PHE-392 and ARG-98 were important groups that were involved in the
catalysis of porphyrins in organisms. Molecular docking results showed that compounds
16a, 16b, 17a, 18a, and 18b acted more tightly on the active site than oxyfluorfen. Most of
them form two hydrogen bonds with surrounding amino acid residue AGR-98.

Considering that N-phenyl-phthalimide herbicides [46] had the advantages of fast
degradation rate, short residual time, and no pollution to the environment [47],
Zhao et al. [48] introduced tetrahydrophthalimide to improve the selectivity and degrad-
ability of herbicides. Compound 19 had an IC50 value of 0.00667 mg/L against PPO, and
exhibited similar herbicidal activity to oxyfluorfen. The structure-activity relationships
indicated that the introduction of weak electron-donating groups on the benzene ring of the
compounds was beneficial to increase the PPO inhibitory activity of the compounds. When
the phenoxypyridine structure was replaced with phenylthiopyridine, the PPO inhibitory
activity of the compound was significantly reduced. Similarly, most of the tested weeds
bleached and died. In general, Compound 19 had a bleaching effect on weeds, acted more
tightly on the active site, and showed higher safety and selectivity, making 19 a potential
new herbicide candidate in the field.

2.3. Other Herbicides

Cyanoacrylate derivatives [49] are photosystem II (PS II) inhibitors [50], which can
control weeds by interfering with electron transfer in the photosynthetic system of the plant,
preventing photosynthesis. This special mechanism makes cyanoacrylate extremely safe
for animals, in line with the requirements of the current social market for new herbicides.
The compounds (Figure 5) that were obtained by linking the trifluoromethyl-substituted
phenoxypyridine unit with cyanoacrylate skeleton showed good herbicidal activity. The
herbicidal activity of the target Compound 20 [51] against Digitaria sanguinalis, Echinochloa
crus-galli, Abutilon theophrasti Medicus, Amaranthus retroflexus L., and Eclipta prostrata (L.) L.
was 100%.

The mechanism of phytoene desaturase (PDS) inhibitors [52] is to inhibit the catalytic
action of phytoene desaturase in the biosynthesis pathway of carotenoids, and then inhibit
plant photosynthesis and cause the plant to stop growing until it dies. Therefore, PDS
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inhibitors belong to carotenoid biosynthesis inhibitors, and the most obvious manifestation
of plants that are treated are albino symptoms [53]. Compound 21 was designed by
Zhai et al. [54] based on picolinafen and diflufenican and showed moderate herbicide
activity against Brassica campestris L at a concentration of 100 mg/L. Compounds, where R1

was an electron-donating substituent, showed better activity than those with an electron-
withdrawing substituent, and when R2 was a methoxy group, the activity was better than
that of an ethoxy group.

Molecules 2022, 27, x FOR PEER REVIEW 9 of 21 
 

 

sanguinalis, Echinochloa crus-galli, Abutilon theophrasti Medicus, Amaranthus retroflexus L., 
and Eclipta prostrata (L.) L. was 100%. 

 
Figure 5. Other compounds with herbicidal activity containing phenoxypyridine. 

The mechanism of phytoene desaturase (PDS) inhibitors [52] is to inhibit the catalytic 
action of phytoene desaturase in the biosynthesis pathway of carotenoids, and then inhibit 
plant photosynthesis and cause the plant to stop growing until it dies. Therefore, PDS 
inhibitors belong to carotenoid biosynthesis inhibitors, and the most obvious 
manifestation of plants that are treated are albino symptoms [53]. Compound 21 was 
designed by Zhai et al. [54] based on picolinafen and diflufenican and showed moderate 
herbicide activity against Brassica campestris L at a concentration of 100 mg/L. Compounds, 
where R1 was an electron-donating substituent, showed better activity than those with an 
electron-withdrawing substituent, and when R2 was a methoxy group, the activity was 
better than that of an ethoxy group. 

The pyridazinone Compound 22, reported by Syngenta [55], showed 80–100% 
activity against Solanum nigrum L. and Amaranthus retroflexus L. at 25 g a.i./ha. The 
bis(aryl)catechol derivatives 23 designed and synthesized by DuPont [56] had excellent 
inhibitory activity against a variety of weeds. The novel herbicidal phenoxypyridine 
compounds that were reported by Syngenta [57] showed improved properties compared 
to the known pyrimidine compounds—especially improving crop (soybean) selectivity. 
Compound 24 had significant effects on various weeds (Lolium perenne, Solanum nigrum, 
Amaranthus retoflexus, Setaria faberi, Echinochloa crus-galli, and Ipomoea hederacea) at a 
concentration of 500 g/ha. In 2020, two kinds of phenoxypyridine-containing compounds 
with herbicidal activity were discovered and reported by Bayer [58,59]. At 1280 g/ha, 
Compounds 25 and 26 showed more than 90% activity against a variety of weeds whether 
with treatment by preemergence (Amaranthus retroflexus, Stellaria media, and Veronica 
persica) or post-emergence (Poa annua, Amaranthus retroflexus, Stellaria media, and Bassia 
scoparia). 

3. Fungicides and Bactericides Containing Phenoxypyridine Scaffold 
3.1. Complex I Inhibitors 

Figure 5. Other compounds with herbicidal activity containing phenoxypyridine.

The pyridazinone Compound 22, reported by Syngenta [55], showed 80–100% activity
against Solanum nigrum L. and Amaranthus retroflexus L. at 25 g a.i./ha. The bis(aryl)catechol
derivatives 23 designed and synthesized by DuPont [56] had excellent inhibitory activity
against a variety of weeds. The novel herbicidal phenoxypyridine compounds that were
reported by Syngenta [57] showed improved properties compared to the known pyrimidine
compounds—especially improving crop (soybean) selectivity. Compound 24 had significant
effects on various weeds (Lolium perenne, Solanum nigrum, Amaranthus retoflexus, Setaria
faberi, Echinochloa crus-galli, and Ipomoea hederacea) at a concentration of 500 g/ha. In
2020, two kinds of phenoxypyridine-containing compounds with herbicidal activity were
discovered and reported by Bayer [58,59]. At 1280 g/ha, Compounds 25 and 26 showed
more than 90% activity against a variety of weeds whether with treatment by preemergence
(Amaranthus retroflexus, Stellaria media, and Veronica persica) or post-emergence (Poa annua,
Amaranthus retroflexus, Stellaria media, and Bassia scoparia).

3. Fungicides and Bactericides Containing Phenoxypyridine Scaffold
3.1. Complex I Inhibitors

Diflumetorim is a member of aminoalkylpyrimidines [60] targeting mitochondrial
complex I (MET I) [61] which has a unique mode of action that is different from the MET
I inhibitor acting as insecticide [62]. Therefore, it has no cross-resistance with existing
traditional fungicides and is safe for non-target organisms. Liu and co-workers devoted
to the research of pyrimidine amine compounds (Figure 6), and the fungicidal activity of
the compounds that were synthesized by introducing a phenoxypyridine structure was
significantly improved.

Several series of aminoalkylpyrimidine analogs containing phenoxypyridine frag-
ments were designed and synthesized to study the control effect of cucumber downy
mildew and the structure-activity relationships. The structure-activity relationships indi-
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cated that the compounds with Alk = CH2CH2 exhibited higher fungicidal activity than
the corresponding analogues with Alk = CH2. When the pyrimidine group was attached
to the pyridine ring at position 3 or 4, the fungicidal activity of these compounds de-
creases sharply. The substitutions of R1 and R2 on the pyrimidine ring were critical to
exert fungicidal activity, while R3 does not contribute significantly to enhance fungicidal
activity. Compounds containing phenoxypyridine had better activity than those containing
diphenyl ether. Among them, the activity of Compounds 27 [63] (EC50 = 0.19 mg/L) and
28 [15] (EC50 = 0.10 mg/L) against cucumber downy mildew was significantly higher than
that of diflumetorim (EC50 = 23.06 mg/L). In addition, the researchers found that the intro-
duction of phenoxypyridine led to a significant increase in the activity against southern corn
rust (SCR). The newly designed Compound 29 [64] displayed an EC50 value of 2.16 mg/L,
which was superior to the commercial control diflumetorim. (EC50 = 53.26 mg/L). In the
past few years, BASF had reported several aminoalkylpyrimidine derivates 30–37 [65–72]. As
shown in the Figure 6, phenoxypyridine was linked to aminoalkylpyrimidine in various
link arms resulting in some molecules with good protective fungicidal activity.
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3.2. Complex III Inhibitors

Strobilurin [73] were derived from strobilurin A [74], a natural antibiotic with bacterici-
dal activity, and were a kind of agricultural fungicide with great development potential and
market vitality [75,76]. Strobilurins act on the Qo site of mitochondrial electron transport
chain complex III and are also known as Qo site inhibitors. Some strobilurin derivatives
containing phenoxypyridine are shown in Figure 7. A series of strobilurin analogues con-
taining oxime ether structures were synthesized through introducing a phenoxypyridine
group by Liu et al. [77]. Most of the compounds showed good fungicidal activity, with a
significantly broadened antifungal spectrum compared to the compounds containing diaryl
ether previously that were reported by BASF [78], among which the EC50 of 38 [79] against
Sclerotinia sclerotiorum could reach 0.47 µg/mL. The trans-configuration was a dominant
configuration. The disubstituted compounds on the benzene ring were less active than the
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monosubstituted compounds. Wang et al. [80] constructed a phenoxypyridine structure
by modifying the bridge structure in strobilurins. The newly synthesized compounds
showed certain fungicidal activity, among which the IC50 values of 39 against Botrytis
cinerea and Sclerotinia sclerotiorum could reach 0.98 µg/mL and 0.64 µg/mL, respectively.
The alkoxyiminoacetamide derivatives 40, reported by Hayase et al. [81], had good ac-
tivity against a variety of pathogenic fungi (Botrytis cinerea, Pseudoperonospora cubensis,
Sphaerotheca fuliginea, and Pyricularia oryzae). The pyramoxadone 41, developed by Qin
et al. [9], had strong inhibitory activity against a variety of plant pathogens (Rhizoctonia
solani, Pythium aphanidermatum, Pyricularia grisea, Phytophthora capsica, and Phomopsis as-
paragi (Sacc.) Bubak). Meanwhile, the IC50 value of the inhibitory activity of pyramoxadone
against sporangium release of Phytophthora capsica was 13.85 µg/mL.
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3.3. Sterol Biosynthesis Inhibitors

Triazole fungicides are a new type of fungicide with broad spectrum, high efficiency,
low residue, long effect, good systemic translocation, and both protective and curative
effects. Triazole fungicides belong to ergosterol biosynthesis inhibitors, which mainly
inhibit the activity of sterol 14α-demethylase in sterol biosynthesis to achieve fungici-
dal effects [82,83]. The triazole derivatives (Figure 8) that were synthesized by Bayer
exhibited good protective activity against a variety of pathogenic fungi (Puccinia recondite,
Sphaerotheca fuliginea, Uromyces appendiculatus, and Blumeria). The protective activity of
compound 42 [84] against Septoria tritici reached 100% at 100 mg/L. The ED50 of Compound
43a [11] against Alternaria and Pyricularia oryzae Cav. reached 0.12 mg/L and 0.56 mg/L,
respectively, while 43b [11] was 2.7 mg/L, 0.008 mg/L and 1.2 mg/L against Botrytis cinerea,
Sphaerotheca fuliginea and Pyricularia oryzae Cav. 44a, 45b, 42c, and 45d [14] showed 100%
protective activity against Sphaerotheca at 10 mg/L. Compound 46 [85] had 90–100% control
effect against various pathogens at 500 mg/L. Some imidazole derivatives (such as clotri-
mazole, ketoconazole, imidazole, and oxazole) also inhibited 14 α-demethylase (CYP51).
Jeanmart et al. [86] reported a series of novel compounds that were based on the modifica-
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tion of imidazole-based ketene dithioacetals lanoconazole and luliconazole. Compound 47
with the ketene dithioacetal [87,88] scaffold showed certain fungicidal activity, with 79%
inhibitory activity against Alternaria solani.
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3.4. Succinate Dehydrogenase Inhibitors

Succinate dehydrogenase inhibitors are a class of fungicides with a long history of
development, accounting for a considerable proportion of fungicides. Succinate dehydroge-
nase inhibitors mainly bind to the ubiquinone pocket of SDH and mainly affect the electron
transfer of the respiratory chain, to inhibit the growth of pathogenic fungi and eventually
lead to death. Most of the pyrazole amide, such as Compounds 48 (Figure 9), that were
designed and synthesized by Guan et al. [89] showed good protective activity against
Pseudoperonospora cubensis (Berk.et Curt.) Rostov., Blumeria graminis, and Puccinia sorghi in
addition to certain insecticidal activity. The control effect of Compound 49 [90] against Pseu-
doperonospora cubensis (Berk.et Curt.) Rostov. was 100% at 12.5 ppm, and the control effect in
the field was also better than that of dimethomorph. The activity of Compound 50 which
was synthesized by Sun et al. [91] against Pyricularia grisea was significantly better than
that of diphenyl ether and other skeleton compounds, with an EC50 value of 2.286 µg/mL,
similar to fluxapyroxad (2.101 µg/mL), more than eight-fold higher than isopyrazam and
more than 15-fold higher than the aminopyralid boscalid. Preliminary mechanistic studies
suggested that these compounds may not be SDH inhibitors, but inhibited fungal growth
by inducing plant defense responses.
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3.5. Other Fungicides and Bactericides

Some other types of compounds containing phenoxypyridine structures with fungi-
cidal or bactericidal activity are summarized in Figure 10. Phenoxypyridine was linked
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to isothiazolinone, resulting in Compound 51 [92] with good control effects on Blumeria
graminis, Botrytis cinereal, and Pyricularia grisea at low doses. The introduction of chlorine
at 4-position of isothiazolinone made the compound lose its inhibitory effect on Botry-
tis cinereal [93]. The Compounds 52 that were synthesized by Nippon Soda Co., Ltd.
(Tokyo, Japan) [94] showed more than a 75% control effect against cucumber gray mold at
500 mg/L and did not cause any damage to the plant.
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A series of vanillin derivatives [95] containing 1,3,4-thiadiazole moiety were synthe-
sized and their antibacterial activities were evaluated against Xanthomonas oryzae pv. oryzae
(Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc). Among them, Compound 53 [96] showed
good antibacterial activity against Xoo and Xoc with EC50 values of 38.74 µg/mL and
46.97 µg/mL, respectively. The preliminary mechanism of action of these compounds
were explored, and it was found that these compounds could inhibit the production of
exopolysaccharides of Xoo and increase the permeability of the cell membrane.

4. Insecticides Containing Phenoxypyridine Scaffold
4.1. Transient Receptor Potential Vanilloid Channel Blockers

Pymetrozine [97] is a triazinone insecticide [98] that acts on the specific insecticide
target protein transient receptor potential vanilloid (TRPV) ion channel, and showed no
cross-resistance with other insecticides [99]. Compounds 54–55 (Figure 11) were developed
by Nankai University with both phenoxypyridine groups and triazinone groups. The
activity against aphids of Compound 54, which was synthesized by Yang et al. [100] by con-
structing phenoxypyridine structure and introducing a methyl group to the imino group,
was significantly improved. At the concentration of 5 mg/kg, the activities against aphids
of 54a (80%) and 54b (80%) were both higher than those of pymetrozine (30%). Meanwhile,
54 also exhibited significant insecticidal activity against mosquitoes and lepidopteran pests
(cotton bollworm, corn borer, and oriental stick insect). By modifying the linker arm,
Wang et al. [101,102] designed and synthesized a series of triazinone derivatives 55 contain-
ing an acylhydrazone structure. These compounds had certain activities against aphids,
cotton bollworm, corn borer, and armyworm.
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4.2. Complex I Inhibitors

Some insecticides and acaricides (flufenerim, purimidifen, tebufenpyrad, and tolfen-
pyrad [103]) worked by inhibiting the mitochondrial electron transport (MET) at complex I to
disrupt respiration, known as complex I inhibitors [104]. Most of the 4-aminopyrimidine [105]
derivatives that were synthesized by Wang et al. [106] through intermediate derivatiza-
tion methods showed good activity against Myzus persicae, among which 56 (Figure 12)
had the highest activity and the lowest LC50 value of 0.34 mg/L. The structure-activity
relationships suggested that the linker of -CH2CH2- was favorable for bioactivity; the
halogen substituent at the X position (X = Cl, Br) was more beneficial to the activity; for
R1, the ethyl group with large steric resistance was generally conducive to improve the
activity. The substituted thienopyrimidine amines 57 (Figure 12) that were synthesized
by Chai et al. [107] had broad-spectrum insecticidal and acaricidal activity, which were
very effective against lepidoptera pests, homoptera, and mites even at a very low dose,
especially against aphids, Tetranychus cinarcini, Plutella xylodes, and armyworm.
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Pyrazole-5-carboxamide insecticides 58 (Figure 13) containing an azo structure were
synthesized by Shao et al. [108], many of which had 100% activity against Aphis craccivora
Koch and Tetranychus cinnabarinus. Compound 59 [109] showed broad-spectrum insecti-
cidal activity and a 100% mortality rate against Plutella xylostella and Myzus persicae at
600 mg/L. At the same time, several compounds had good activity against Blumeria grami-
nis and southern corn rust. Pyrazole derivatives 60 that were designed and synthesized by
Okada et al. [110] had good insecticidal activity against various insect pests (Plutella xy-
lostella, Nilaparvata lugens, and the eggs and adults of Tetranychus urticae).

4.3. Other Insecticides

Phenoxypyridine-containing compounds with insecticidal activity are summarized
in Figure 14. Pyridalyl [111] inhibited cellular protein synthesis in insect cell lines but
not mammalian cell lines. The novel dihalopropene ether insecticides that were synthe-
sized by Liu et al. [112] exhibited good insecticidal activity. The LC50 of Compound 61,
which introduced phenoxypyridine, was 4.05 mg/L and 9.82 mg/L against M. separate
and P. litura, respectively, was better than the control pyridalyl (LC50 = 4.81 mg/L and
10.07 mg/L) and better than the compounds with other aromatic ring substitutions.
Alkylphenyl sulfide derivatives 62 that was reported by Kumiai Chemical Industry Co.,
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Ltd. [113] had more than 90% control of Tetranychus urticae (Koch) at a concentration of
4 mg/L. Inspired by juvenile hormone, the analogues 63 that were prepared by Li et al. [114]
with the introduction of phenoxypyridine were more than 85% effective against Nilaparvata
lugens at a concentration of 200 mg/L. Using phenoxypyridine molecular plug-ins, the
sulfoximine and oxime ether, Compounds 64 and 65 with insecticidal activity were syn-
thesized by Liu et al. [115] and Du et al. [116]. The neonicotinoids 66 that was designed
and synthesized by Tang et al. [117] had certain activities against lepidoptera, homoptera,
coleoptera, and the larvae and adults of orthoptera.
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5. Conclusions

In pesticide applications, phenoxypyridine played an important role in the develop-
ment of lead compounds. Compounds that were derived by linking phenoxypyridine to
different active fragments or changing the substituents of phenoxypyridine exhibited a
wide range of biological activity, such as herbicidal, fungicidal, bactericidal, and insecti-
cidal activities. In this paper, the derivatives with different activities were classified. The
summary of the structure-activity relationship of the derivatives indicated that structural
modifications at different positions of phenoxypyridine could improve its activity. Previous
studies had focused on compounds that were linked to the phenoxy group at position 2
of pyridine, possibly due to the difficulty of synthesis, so the relationship between the
position of the N atom on pyridine and biological activity was unclear. The inhibitory
effects of these compounds may be performed by different mechanisms and, therefore,
further studies on the mechanism (or targets) are necessary for better evaluations. Still, a
lot of activity of phenoxypyridine needs to be prospected in bactericides. In conclusion,
phenoxypyridine could be considered as the promising active scaffold for pesticides.
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