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With rapid urbanization and increasing climate risks, enhancing the resilience of urban systems has
never been more important. Despite the availability of massive datasets of human behavior (e.g., mobile
phone data, satellite imagery), studies on disaster resilience have been limited to using static measures
as proxies for resilience. However, static metrics have significant drawbacks such as their inability to
capture the effects of compounding and accumulating disaster shocks; dynamic interdependencies of
social, economic, and infrastructure systems; and critical transitions and regime shifts, which are essential
components of the complex disaster resilience process. In this article, we argue that the disaster resilience
literature needs to take the opportunities of big data and move toward a different research direction,
which is to develop data-driven, dynamical complex systems models of disaster resilience. Data-driven
complex systems modeling approaches could overcome the drawbacks of static measures and allow
us to quantitatively model the dynamic recovery trajectories and intrinsic resilience characteristics of
communities in a generic manner by leveraging large-scale and granular observations. This approach
brings a paradigm shift in modeling the disaster resilience process and its linkage with the recovery
process, paving the way to answering important questions for policy applications via counterfactual
analysis and simulations.

disaster resilience | urban science | complex systems | big data

Increasing Urban Complexity and Disaster Risks
Intensity and frequency of natural hazards have
increased across the globe in recent years, due to
effects of climate change (1–3), causing ∼1.3 million
deaths and leaving a further 4.4 billion people injured,
homeless, displaced, or in need of emergency
assistance between 1998 and 2017 (4). Over the past
20 y, the total direct economic losses experienced
by disaster-affected countries are estimated to be
US$2.9 trillion. In addition to climate change, the
rapid urbanization trend, where nearly 7 of 10 people
in the world are projected to be living in cities
by 2050, poses a wide range of challenges for
government agencies to build resilient, sustainable,
and inclusive urban systems. Almost half a billion
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urban residents live in coastal areas, and around 90%
of urban expansion in developing countries is near
hazard-prone areas and built through informal and
unplanned settlements, which could exacerbate the
negative impacts of natural hazards (5).

Increasing urbanization is reflected in the expansion
of urban agglomerations and multiple infrastructure
networks to meet the increasing demands for critical
infrastructure services (transport, water, wastewater,
energy, communications, etc.). The urban infras-
tructure networks are often geospatially colocated,
functionally interdependent, and managed by cen-
tralized public/private utilities. Rapid urbanization and
growing demands for services, which are often met
by drawing on natural resources from distant sources,
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Fig. 1. Overview of a data-driven, dynamical complex systems approach to disaster resilience. Big data enable observation of postdisaster recovery
dynamics at a high spatial and temporal granularity, from multiple disaster events across regions. Generalizable insights from big data can be used as
input to calibrate dynamical complex systems models, which capture various characteristics of the disaster resilience process illustrated in the DROP
model (9), such as antecedent conditions, intrinsic community resilience, system interdependencies, and regional heterogeneity. Recovery predictions
and insights obtained from the dynamical models can be used for evaluating policy impacts and assessing the resilience of urban systems to
counterfactual disaster event scenarios.

increase functional interdependencies among social, economic,
and technical systems. Such complex interdependencies could
exacerbate the impact of natural hazards and external shocks
due to cascading shocks and disruptions and could contribute
to unsustainable development (6). Given these increasing threats
of natural hazards, reducing people’s vulnerability and improving
the resilience of communities have become a policy priority
among governments and multilateral development agencies (7).
Yet, the ability to provide the evidentiary basis for reducing
disaster risk through enhanced resilience is constrained by the
present inability to characterize, monitor, measure, and model the
interdependencies that underlie urban systems (8).

Our analysis focuses on several key questions:

• How can disaster recovery trajectories of diverse urban com-
munities after various disasters be efficiently tracked at multi-
ple spatial and temporal scales?

• How do dynamic conditions, including antecedent conditions,
recurring and compounding disaster events, affect the intrinsic
resilience of a community and the recovery trajectories?

• How does intrinsic community resilience to disasters relate to
the dynamic complex interdependencies between socioeco-
nomic, technological, and environmental systems?

• How can we create a generalizable and quantitative frame-
work based on consistent emergent patterns of recovery for
various disaster types and heterogeneous regions?

• How can we right size models that characterize the inherent re-
silience and its linkage to the disaster recovery process, which
may be used to inform urban management and development
policy?

Fig. 1 shows the overview of a data-driven, dynamical complex
systems approach to disaster resilience. Large-scale disasters,
such as hurricanes, earthquakes, and pandemics, generate het-
erogeneous impacts among the urban communities with different
abilities to recover in the affected regions. We first highlight the
availability of high-resolution spatial and temporal mobility data
and advances in big data analytics, which can be used to quanti-
tatively measure the recovery trajectories of communities across
regions after such diverse disaster events. This opportunity mo-
tivates us to develop data–model frameworks that can infer the
inherent resilience of communities and further be used to model
the dynamics of the disaster recovery process. We then discuss
the need for data–model integration and cross-comparison of
multiple modeling approaches of urban community resilience.
We close with a discussion of opportunities and challenges for
translation of models and data to urban management, policy, and
development.

Measuring Recovery Trajectories Using Big Data
With the ubiquity of mobile devices and low-cost sensors, we
are now capable of collecting various types of data from indi-
vidual users at an unprecedented scale, including mobile phone
location data (for reviews, see refs. 10 and 11), satellite imagery
data (12), and social media data (13), which have been leveraged
for numerous disaster recovery and resilience applications. In
particular, recent studies have used mobile phone location data
to analyze and quantify disaster recovery trajectories, such as
the population displacement patterns after the Nepal earthquake
in 2015 (14), migration patterns in regions stressed by climate
shocks in Bangladesh (15), and evacuation behavior after several
earthquakes in Japan (16). Lu et al. (17) revealed the predictability
of displacement destinations from behavioral patterns observed
prior to the Haiti earthquake in 2010. Other studies have de-
veloped machine-learning approaches to predict the population
flow after disasters using real-time location data in an online
manner (18). Yabe et al. (19) studied the spatial heterogeneity in
population displacement and recovery patterns after five disaster
events, including Hurricanes Maria and Irma, earthquakes, floods,
and tsunami using mobile phone global positioning system (GPS)
datasets from Japan and the United States. Apart from popula-
tion recovery and migration analysis, mobile phone location data
have been used to quantify the recovery of businesses, hospitals,
and schools using foot traffic counts (20).

Often, such measurements obtained from big data sources
are fed into state-of-the-art machine-learning and artificial in-
telligence (AI) models to predict future outcome trends [e.g.,
predicting disaster evacuation dynamics using long short-term
memory (LSTM) models (21)]. Although studies have shown the
high predictability of postdisaster dynamics with such models
using selected case studies, such models are “black box” and
often lack interpretability that is crucial for informing policy mak-
ing. This is exacerbated by the fact that disaster resilience is a
complex process, with heterogeneity in outcomes and the long-
range nature of the recovery trends, due to multiple types of
dynamic interdependencies across infrastructure and socioeco-
nomic system components (22). Therefore, we need to move
beyond simply fitting machine-learning models to measurements
collected via big data and embrace the complexity of the disaster
resilience process.

Despite the increasing availability and the abundance of stud-
ies using large-scale mobility data sources for analyzing disas-
ter displacement and recovery, there are still very few works
that combine such insights to understand the holistic disaster
resilience process and its relationship to the recovery trajectories.
This is a huge missed opportunity, when big data allow us to
quantitatively measure the recovery processes of social, technical,
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Table 1. Summary of disaster resilience modeling approaches

Modeling approach Utility/advantages Limitations Examples (refs.)

Index based Comparison and ranking of regions Neglects dynamical process of resilience (29, 30, 32)
System dynamics Compartment process based; dynamic, scalable Aggregated; parameter estimation (27, 33, 34)
Agent-based models Based on microscopic interactions; high resolution High computational cost; parameter estimation (35–39)

economic, and institutional dynamics after disaster events in an
unprecedented scale. Moreover, big data enable us to collect
data from multiple disaster events of different types (e.g., hur-
ricanes, wildfires, floods, earthquakes) across regions and cities
with low cost. Cross-comparative analysis of various disaster
events across cities and countries would contribute toward a more
generalized understanding of the dynamical processes of disaster
resilience and the recovery trajectories.

Communities as Dynamical Complex Systems
During the past couple of decades, urban agglomerations (com-
munities and cities) have been perceived as complex systems,
composed of heterogeneous components—social, technical,
institutional, and natural—with dynamic interactions and interde-
pendencies (23, 24). Several disaster events have revealed that
the complexity and uncertainty lead to drastically heterogeneous
recovery trajectories across communities and regions after
disaster events (19, 25). Understanding the interplay between
the physical infrastructure systems and social systems and their
impacts on urban recovery after large-scale disasters is essential
for developing policies that could enhance effective population
recovery in communities and foster sustainable development in
hazard-prone areas (26). Moreover, “shocks” are not limited to
acute events (e.g., earthquakes, hurricanes), but also include
various chronic stresses that are less severe in intensity but
are more persistent. Recurring and compounding sequences of
stochastically occurring chronic and acute shocks may exacerbate
the disaster impacts and could contribute to the loss of resilience
of urban systems (27). The dynamic nature and spatiotemporal
contingency of the disaster resilience process, as well as the
complex interdependencies among heterogeneous components
in urban systems, were first conceptualized in the disaster
resilience of place (DROP) framework (9). A recent article argued
for the need to consider complexity in infrastructure resilience
(28). We further argue the need for dynamical, complex systems
models that capture emergent patterns that can be observed
using large-scale observations.

Despite the complex and dynamic conceptualization of re-
silience in the DROP framework, the study was followed by a
plethora of studies that measure the disaster resilience of commu-
nities using static indexes (29, 30). Such index-based approaches
attempt to quantify the inherent resilience of communities us-
ing a predefined list of measures including ecological, social,
economic, institutional, and infrastructure variables. However,
such index-based approaches have three significant drawbacks:
1) Index-based approaches do not account for complex inter-
dependencies (feedbacks and cascading effects) among urban
social, physical, institutional, and natural components during
the disaster recovery process. 2) They do not account for the
dynamic process of resilience, which could result in neglecting
potential critical thresholds of urban systems (as shown in ref.
31). 3) They are difficult to validate and test. To fully connect
such measures of inherent resilience with other contributing
factors of the resilience process including socio-technical–natural

interdependencies, antecedent conditions, shock characteristics,
and adaptive capacity, multiple modeling approaches have been
proposed and tested (summarized in Table 1). Despite such
advancements in modeling the dynamic complex urban systems’
resilience, existing studies are calibrated and tested based on
relatively small datasets often collected by household surveys or
secondary data sources such as censuses.

Interestingly, global analyses of cities, enabled by big data,
have revealed striking similarities, where various urban metrics
(e.g., gross domestic product, total road mileage) scale super-
linearly with the population of the city (40). Such scaling relation-
ships are prevalent in urban infrastructure networks, such as water
pipe networks (41), road networks (42), human settlement with
respect to river networks (43), and urban heat island topology
(44). Global similarities are observed after disaster events as
well, where population displacement and recovery patterns after
different types of disasters (e.g., floods, earthquakes, hurricanes)
occurring in different regions around the world (e.g., Puerto Rico,
Florida, Tohoku, Mexico City) all followed exponential decay
dynamics (19). This emergence of consistent patterns across
geographical regions and disaster events motivates us to pursue
a generalizable framework for modeling the disaster resilience
process and recovery trajectories.

Modeling the Dynamical Resilience Process
To bridge this gap, a recent study proposed a framework to
understand the dynamical disaster resilience process using the
recovery trajectories measured from big data, shown in Fig. 2
(34). The framework operationalizes the dynamical process of
resilience, integrating socio-technical–natural antecedent condi-
tions and interdependencies, event characteristics (intensity and
frequency), coping capacity, and adaptive resilience (many of the
elements in the DROP model) with recovery trajectories (which
are measured using big data). The dynamical complex systems
model was composed of two coupled differential equations,
each representing the social and physical system states, respec-
tively. In this model, there are four parameters that characterize
the functionality of the systems, two parameters describing the
strength of coupling between social and physical systems, and
a parameter representing external shocks (i.e., natural hazards)
that affect the system. A control is used to gauge how much
the social systems are affected by external shocks. The cities
may be connected with each other via a network matrix term
(e.g., using an adjacency matrix) to capture any spillover effects
and interdependencies across cities. Moreover, each system may
be disaggregated into different subcomponents, which could
characterize intracity heterogeneities (e.g., income inequality).
While the general model formulation has substantial flexibility,
the key principles of such dynamical complex systems models
are to construct a set of ordinary differential equations for each
system variable of interest (e.g., social systems, economic per-
formance, physical infrastructure deficit). Each system equation
is constituted by the 1) replenishment, 2) depletion, 3) external
shock factors, and 4) any network effects, and they are coupled
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Fig. 2. Application of data-driven, dynamical complex systems approach. (A) The data–model approach was tested using data from Puerto Rico, which
was devastated by Hurricane Maria. Darkness of red color indicates housing damage rates in each municipio. (B) Proposed dynamical model of coupled
socio-physical systems. (C) Model estimation results (solid line) had high agreement with actual social and physical recovery data collected from mobile
phones (dashed line). (D) Resilience of San Juan under different policy levers can be evaluated using the dynamical model. (Figures obtained and
modified from ref. 34.)

with each other via coupling model parameters. The functional
forms and the ways in which the systems are coupled should be
determined based on the characteristics of the systems being
studied.

Large-scale mobile phone location data were used to estimate
the recovery trajectories of various social systems across different
regions in Puerto Rico. The dynamical complex systems model
was used to estimate the regional intrinsic resilience character-
istics using the measured recovery trajectories after Hurricane
Maria. As a result, the model revealed high but regionally het-
erogeneous interdependencies between social and physical sys-
tems, and the estimated recovery trajectories matched well with
the measured outcomes from big data. The dynamical complex
systems model allows the investigation of various counterfactual
scenarios of recovery trajectories when the community’s inherent
resilience and coping capacity are changed through policy inter-
ventions.

By fully leveraging the two scientific advancements in dynami-
cal complex systems modeling and big data analytics, we are able
to substantially push the boundaries of disaster resilience mod-
eling and measure dynamic outcomes of recovery. Compared
with big data analytics approaches, the data-driven, dynamical
complex systems modeling approach has three main advantages:

1) better understanding of the underlying disaster resilience
process (e.g., antecedent conditions, system interdependen-
cies, impacts of shocks, absorptive capacity, and adaptive
resilience);

2) prediction of the disaster recovery trajectories and revealing
the underlying mechanisms across a large spatial and temporal
timeframe, allowing comprehensive cross-regional compar-
isons and time series analysis of recovery and urban resilience;
and

3) counterfactual scenario analyses using various system model
parameters and shock sequences as input information, and
potential search for tipping points of urban complex systems.

Data-driven, dynamical complex systems modeling allows us to
estimate the inherent resilience of communities and the dynamical
resilience process by leveraging the recovery trajectories ob-
served using big data. This approach provides high interpretability
and accountability of outputs, which are essential for informing
policy decision making. The outputs of evaluating counterfactual
scenarios could benefit in identifying locations that are in most
need for investments and conducting cost–benefit analysis of
multiple policy levers. Moreover, this approach has substantial
flexibility in design, implementation, and validation, depending
on the characteristics of the systems of interest, available data
sources, and computational power. A big-data–enabled, dynam-
ical complex systems approach represents a paradigm shift in
modeling the disaster resilience process, enabling us to return to
and to operationalize the complex characteristics of the disaster
resilience process conveyed originally in the DROP framework (9).

Future Steps and Challenges
Moving Toward Dynamical, Complex, and Generalizable
Frameworks. The DROP framework introduced the key con-
cepts of disaster resilience, including the dynamic nature and
complex interdependencies among heterogeneous entities.
The revolution in the spatiotemporal granularity and scale
of the available data after disaster events poses significant
opportunities to make a paradigm shift in modeling the disaster
resilience process, by using the measured recovery trajectories
to infer the inherent community resilience characteristics. To
further capture the complex and interdependent dynamics
among social, economic, technical, and natural systems, mobile
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phone location data can be integrated with various other
datasets that capture different dimensions of urban dynamics,
including satellite imagery data (e.g., to monitor changes in
built environment), household survey data (e.g., to unravel
behavioral adaptations of households and communities), and
social media data (e.g., to understand opinion and sentiment
dynamics). Big data have revealed the emergence of a wide
range of consistent patterns in urban characteristics across
different cities and disaster events (19). Such consistent patterns
across geographical regions and disaster events motivate us to
investigate generalizable frameworks for modeling the disaster
resilience process and recovery trajectories.

Right Sizing the Model for Policy and Management. While
the usage of big data and dynamical complex systems mod-
els presents immense opportunities, there exist significant chal-
lenges in right sizing the models for the intended applications
and stakeholders. Models could be designed to include a wide
spectrum of complexities, ranging from parsimonious systems
models to spatially explicit agent-based models. The coupled
socio-physical model (34) and its applications to water systems
resilience (45) are examples of parsimonious models where so-
cial and physical systems were aggregated over regions (with
∼500,000 residents) and cities. Empirical evidence has revealed
that cities are “fractal” (44, 46), and Verbavatz and Barthelemy
(47) have modeled the growth of urban agglomerations. Seeking
the right approaches for modeling resilience in the future as cities
and populations grow is an important research question.

The aggregation levels and specification details of the model
can be designed with the intended applications and use cases
in mind, so that the model outputs can lead to effective policy
prescriptions. For example, the coupled socio-physical systems
model described in the previous section can be used by policy
makers to predict the recovery trajectories of social systems
including local businesses and education systems (e.g., schools)
over time. Such information can be used to prescribe various
policies during the disaster recovery phase, such as allocation
strategies of reconstruction subsidies for local micro-, small, and
medium enterprises and determining the locations and capacities
of temporary school facilities for areas where schools were not
able to continue due to heavy structural damage. To inform policy
makers in the power infrastructure sector, we may emphasize
the effects of interdependencies between physical and cyber
systems (wireless sensor networks and power grids) that connect
households and vehicles during disaster recovery (“cyber-social–
physical systems”), to assess the resilience of cyber systems to
future shocks (48). To account for the needs of community-based
nongovernmental organizations (NGOs), the social systems can
be decomposed into various entities including household net-
works, public agency networks, and nonprofit organization net-
works, to study the intracity distributions of community social
capital more closely (49). The common denominators for all the
models in various granularities and scales are the importance of
considering dynamic and complex interactions among heteroge-
neous entities and the availability of large-scale data for model
calibration and validation.

Another important challenge that needs to be further ad-
dressed is to effectively connect the big data- and model-driven
insights into the policy-making and decision-making process.
The outputs need to be easy to understand and interpret and
ultimately useful for policy makers. The awareness of the gaps be-
tween research methods and policy implementation has recently

improved, mainly due to the frequently occurring disaster events
including COVID-19, and there are various efforts in translating
insights obtained from big data and quantitative models into
information that can be digested easily by policy makers. It is im-
portant that communities prone to disasters have a strong voice
in the decision-making process, which is a necessary condition to
achieve equitable outcomes in building resilience.

Such data–policy pipelines can be implemented in the form
of short diagnostic reports (50), interactive dashboards (51), data
science toolkits (52), or pre- and postevent learning exchanges
(53). In addition to such pipeline tools, effective frameworks
for researchers and policy makers to share experiences, knowl-
edge, and knowhow across different regions and stakeholders
are needed to improve the uptake of data- and model-driven
insights.

Cross-Comparative Benchmarking and Validation of Models
and Data. Despite the increasing availability of data, we still lack
comprehensive validation of the proposed model using data from
various disaster events and compound disasters. The data-driven
dynamical complex systems modeling approach in the disaster
resilience domain is nascent; therefore, there is not yet a standard
modeling framework that is widely accepted to function well
in various regional contexts and disaster events. For example,
in the epidemiological domain, susceptible–infected–recovered
(SIR) models and their variants have been analytically studied
for many decades and are widely accepted as the de facto
standard models in the domain (54). Therefore, when mobile
phone location datasets became available in the early 2000s,
integration of big data and dynamical models was seamlessly
accomplished (55) and they are now widely used across the world
to tackle the COVID-19 pandemic (56). Spurred by recent major
disaster events and background stressors such as COVID-19, the
use of big datasets for development is a very important tool for
public policy (57, 58) for understanding not only single-event
impacts and recovery but also compounding events such COVID-
19 followed by a hurricane or a wild fire. Large tech firms and
international agencies have also accelerated their engagement
in utilizing big data sources for development projects (e.g., De-
velopment Data Partnership; https://datapartnership.org/). How-
ever, to link the outputs of the data-driven dynamical complex
systems models with policy needs in a standardized manner, there
needs to be sufficient benchmarking of both the methods/models
and datasets. Using the significant availability and access to
data from various disaster events across the world, developing
a standardized framework and a collaborative effort in validating
such dynamical models is one of the key challenges in disaster
resilience research and policy.

To advance the efforts in cross-comparative benchmarking and
validation of models, it is also crucial to continue collective efforts
in understanding and overcoming the limitations of big data. Big
data, despite their size and high granularity, are prone to biases
in representation. For example, the sample populations in mobile
phone location datasets are often biased toward specific socio-
demographic and -economic segments of the population (59).
Efforts to improve the data collection and preprocessing steps to
quantify and overcome such biases are important to avoid pol-
icy recommendations that favor certain population groups over
others. However, all data come with different biases. Although
data gathered from surveys of households may be designed
with careful representation of the households, they are often
limited by small sample size, recall bias, and response bias (60).
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The COVID-19 crisis has pushed the democratization of big data
through data-sharing schemes; however, access to data sources
may be limited to specific groups of users, mainly due to privacy
concerns. Alleviating the inequality in access to big data while
protecting the users’ privacy is another challenge that needs to
be addressed.

Conclusions
Improving the resilience of cities has never been more impor-
tant given the rising risks of disasters due to rapid urbanization
and climate change trends. The dynamic disaster resilience pro-
cess is characterized by multiple factors, including antecedent
conditions and system interdependencies, event characteristics,
absorptive capacities, adaptive resilience, and the recovery tra-
jectories. Big data now enable us to measure the recovery

trajectories at an unprecedented high frequency, granularity, and
scale. Data-driven complex systems modeling approaches allow
us to further measure the intrinsic resilience characteristics of
communities using such big-data–enabled observations. This ap-
proach brings a paradigm shift in modeling the disaster resilience
process and its linkage with the recovery process, paving the
way to answering important questions for policy applications via
counterfactual analysis and simulations.

Data Availability. All study data are included in the main text.
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