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Characterization of tumor metabolism with spatial information
contributes to our understanding of complex cancer metabolic
reprogramming, facilitating the discovery of potential metabolic
vulnerabilities that might be targeted for tumor therapy. However,
given the metabolic variability and flexibility of tumors, it is still
challenging to characterize global metabolic alterations in heteroge-
neous cancer. Here, we propose a spatially resolved metabolomics
approach to discover tumor-associated metabolites and metabolic
enzymes directly in their native state. A variety of metabolites
localized in different metabolic pathways were mapped by airflow-
assisted desorption electrospray ionization mass spectrometry imag-
ing (AFADESI-MSI) in tissues from 256 esophageal cancer patients. In
combination with in situ metabolomics analysis, this method provided
clues into tumor-associated metabolic pathways, including proline
biosynthesis, glutamine metabolism, uridine metabolism, histidine
metabolism, fatty acid biosynthesis, and polyamine biosynthesis. Six
abnormally expressed metabolic enzymes that are closely associated
with the altered metabolic pathways were further discovered in
esophageal squamous cell carcinoma (ESCC). Notably, pyrroline-5-
carboxylate reductase 2 (PYCR2) and uridine phosphorylase 1 (UPase1)
were found to be altered in ESCC. The spatially resolvedmetabolomics
reveal what occurs in cancer at the molecular level, from metabolites
to enzymes, and thus provide insights into the understanding of
cancer metabolic reprogramming.
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Metabolic reprogramming represents cancer-associated
metabolic changes during tumorigenesis and has been

recognized as a new hallmark of cancer (1). Profiling the dif-
ferential metabolic dependencies of cancer at the highest
achievable coverage is significant for understanding the complex
molecular processes taking place in tumors and will yield im-
portant insights into how to target tumor metabolism (2). Me-
tabolites and metabolic enzymes are the two most important
constituents of biological metabolic networks. Metabolic en-
zymes, as important nodes in biological metabolic networks, can
regulate and control the flux of metabolites to maintain meta-
bolic homeostasis (3). Emerging work suggests that the dysregula-
tion of metabolic pathways contribute to the pathogenesis of cancer,
and this altered metabolism introduces metabolic liabilities that can
be exploited for cancer therapy (4–6). However, high-throughput
discovery of tumor-associated metabolic alterations at both the
metabolite and metabolic enzyme levels is still a great challenge.
A technique that enables a direct view of altered enzyme

features from cancer tissues will facilitate the exploitation of
metabolic enzyme driven tumor-targeting therapy. Liquid chro-
matography–mass spectrometry (LC-MS)-based proteomic pro-
filing of cancer tissue reveals differentially expressed proteins;
however, the spatial distribution discrepancy of heterogeneous

tissue samples is lost over the course of elaborate sample pre-
treatment (7). Matrix-assisted laser desorption ionization mass
spectrometry imaging (MALDI-MSI) is an effective tool to vi-
sualize the spatial location of proteins and metabolites with high
spatial resolution, but high-vacuum environments and matrix
assistance are usually needed for ionization (8–11). Immuno-
histochemistry (IHC) is a traditional tool to characterize the
distribution and intensity of specific enzymes in tissue based on
antibody–antigen interactions. However, its dependency on tar-
geted antibodies and its time-consuming procedure make it dif-
ficult to investigate multiple unknown features in tissues for
tumor-associated enzyme discovery (12).
Metabolites are the direct products or substrates of metabolic

enzymes, and the level of metabolites in tissue may reflect en-
zyme capacities (13). Characterization of the metabolic pathway-
related metabolites in heterogeneous cancer tissue provides
important insights into tumor-associated metabolic enzyme dis-
covery. Ambient MSI (AMSI) technology, represented by de-
sorption electrospray ionization (DESI)-MSI can directly extract
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and visualize numerous molecular features in tissue sections (9,
14–20). Untargeted AMSI has been regarded as a rational ap-
proach for monitoring lipid dysregulation in cancer tissues for
biological and clinical studies (21–25). Airflow-assisted desorption
electrospray ionization (AFADESI)-MSI is a high-coverage am-
bient molecular imaging technique that was developed by our
group, and it can map numerous functional metabolites located in
different metabolic pathways (26). However, the chemical noise
arising from tissue biomatrix makes the directly mapping of pro-
teins using AMSI techniques challenging, especially for the low-
content functional metabolic enzymes.
In this study, we propose a strategy for high-throughput dis-

covery of cancer-associated metabolites and metabolic enzymes
in their native state. The design of this strategy is shown in SI
Appendix, Fig. S1. High-coverage airflow-assisted desorption
electrospray ionization (AFADESI)-MSI was first applied to
acquire region-specific tissue metabolite profiles in 256 esopha-
geal squamous cell carcinoma (ESCC) patients. Then, MSI-
based metabolomics combined with multivariate statistical
analysis was applied to screen discriminating metabolites be-
tween cancerous and normal tissues, and metabolic pathway
matching analysis of the screened metabolites was conducted to
reveal potential tumor-associated metabolic enzymes. Afterward,
specific IHC staining was performed on adjacent tissue sections to
validate the spatial expression of the potential tumor-associated
enzymes. We report a method for the high-throughput discovery
of tumor-associated metabolite and enzyme alterations based on a
spatially resolved MSI metabolomics approach. Using this ap-
proach, the proline biosynthesis, glutamine metabolism, uridine
metabolism, histidine metabolism, fatty acid (FA) biosynthesis,
and polyamine biosynthesis pathways were found to be altered in
ESCC. Six abnormally expressed metabolic enzymes, including
pyrroline-5-carboxylate reductase 2 (PYCR2), glutaminase (GLS),
uridine phosphorylase 1 (UPase1), histidine decarboxylase (HDC),
FA synthase (FASN), and ornithine decarboxylase (ODC), which

are directly associated with the altered metabolites in pathways,
were further discovered. Notably, the expression levels of PYCR2
and UPase1 were found to be altered in ESCC. The integration of
spatially resolved enzyme information and the corresponding
downstream metabolite information will expand our understanding
of tumor metabolism and could further facilitate the discovery of
altered metabolic pathways. Furthermore, extensively altered tumor
metabolism provides insights for developing novel drugs to target
multiple metabolic abnormalities.

Results and Discussion
Region-Specific Molecule Profiling. Postoperative ESCC tissue
sections were divided into three histologic types based on the cell
type and components: cancer tissue, epithelial tissue, and mus-
cular tissue. After tissue MSI, microscopy was integrated with
the MS image to form a microscopy-MSI overlay image, which
delivers both the spatial resolution of microscopy and the
chemical signatures of MSI in one integrated whole (Fig. 1A).
However, it is worth noting that the combined image is just an
overlay of the histology and the MS image, and the discrimina-
tion of different tissue region still depends on the pathologist.
Based on microscopy-MSI overlay image, cancer, epithelium,
and muscle specific mass spectra were precisely extracted and
are illustrated in Fig. 1C and SI Appendix, Fig. S2. As shown in
the figures, the significant difference in the mass profiles among
cancer tissue, epithelial tissue, and muscular tissue is obvious. In
addition, the ion intensities of different molecules varied over a
dynamic range that spanned more than three orders of magni-
tude (SI Appendix, Fig. S3).
To explore the global discriminating molecules between dif-

ferent tissue types, a partial least squares discriminant analysis
(PLS-DA) model based on the MS image pixel point was built to
screen region-specific biomarkers. Because the ion signals were
measured on the same scale in the raw MSI data, ions that typi-
cally exhibit stronger intensities have a greater influence on

Fig. 1. The strategy to extract region-specific MS spectra in heterogeneous ESCC tissue. (A) Example of a microscopy-MSI overlay. (A1) H&E image of ESCC tissue
section. (A2) MS image of glutamate (m/z 146.0459) in ESCC tissue section. (A3) Microscopy-MSI overlay image. (B) PLS-DA models based on positive (B1) and
negative (B2) ionmode AFADESI-MSI data. (C) Representative mass spectra of cancer tissue (C1), muscular tissue (C2), and epithelial tissue (C3) in positive ion mode.
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multivariate statistical analysis and potential region-specific bio-
marker screening, resulting in the neglect of low-abundance
functional metabolites (27). To alleviate the dependency of heter-
oscedasticity on the ion signal intensity, metabolite peaks from all
pixel points were picked, underwent log transformation, and then
were subjected to PLS-DA analysis. As shown in Fig. 1B, the PLS-
DA models based on (±) AFADESI-MSI data achieved great
separation among cancer tissue, epithelial tissue, and muscular tis-
sue. Region-specific metabolite biomarkers were first screened
based on their respective classification loadings. Then, independent
t tests were carried out to validate the significance of the discrimi-
nated metabolites between cancer and normal tissues. A multitude
of region-specific small molecule metabolites and lipids were
screened and visualized in ESCC tissues (Fig. 2).

Tumor-Associated Metabolic Pathway Discovery. Tissue is the lesion
location of cancer and contains global biological metabolic in-
formation at both the metabolic enzyme and metabolite levels.
As important nodes in biological metabolic networks, metabolic
enzymes connect and regulate complex metabolic reactions and
have always been recognized as potential anticancer drug targets.
Here, MSI data combined with PLS-DA analysis enabled the
determination of region-specific discriminating metabolites.
Then, the discriminating metabolites were imported into Kyoto En-
cyclopedia of Genes and Genomes (www.kegg.jp) to perform meta-
bolic pathway matching analysis, facilitating the discovery of altered
metabolic pathways (28). This analysis suggested that arginine and
proline metabolism; FA biosynthesis; alanine, aspartate, and gluta-
mate metabolism; pyrimidine metabolism; and histidine metabolism
were significantly dysregulated in ESCC (SI Appendix, Fig. S4). Six
crucial metabolic enzymes that are directly associated with the altered
metabolites in pathways were chosen as potential tumor-associated
metabolic enzymes. The detailed metabolic enzymes and related
metabolite information are illustrated in SI Appendix, Tables S1 and
S2: PYCR2 catalyzes the biosynthesis of proline, GLS catalyzes the
first reaction in the primary pathway for the catabolism of glutamine,
UPase1 catalyzes the reversible phosphorolytic cleavage of uridine
to uracil, HDC stimulates the decarboxylation of histidine to form
histamine, FASN catalyzes the formation of long-chain FAs, and
ODC regulates amine and polyamine biosynthesis.

In Situ Validation of Crucial Metabolites and Metabolic Enzymes in
Tumor-Associated Metabolic Pathways. In this study, MSI-based in
situ metabolomics combined with metabolic pathway analysis
contributed to the discovery of potential tumor-associated met-
abolic enzymes in ESCC tissue. Then, targeted IHC testing of
the suspected metabolic enzymes was performed on successive
tissue sections (adjacent to the tissue section analyzed by
AFADESI-MSI) to validate our discovery.
Proline, as an important amino acid in the cellular microen-

vironment, participates in apoptosis and autophagy, and it is
drawing increasing attention for its crucial role in cancer me-
tabolism (29, 30). The MS image indicated that proline was
significantly up-regulated in the cancer region compared with the
normal epithelium and muscle region (Fig. 3A). Microscopy-MSI
overlay image facilitates the extraction of region-specific me-
tabolite profiles (Fig. 3B), which suggested that the ion intensity
of proline in cancer regions is significantly higher than that in
epithelium and muscle regions according to the statistical data of
256 ESCC tissue samples (P < 0.001, Fig. 3C). Based on the
proline biosynthesis metabolic pathway, PYCR2 is an essential
rate-limiting enzyme for the biosynthesis of proline. Emerging
studies have shown that PYCR2 is indispensable for cancer cell
proliferation and progression (31). We speculated that the up-
regulated expression of proline in ESCC tissue may be attributed
to elevated proline biosynthesis. IHC staining was performed to
explore the spatial expression of PYCR2 in ESCC tissue sections
and to evaluate the spatial matching of PYCR2 and proline (Fig.
3E). Interestingly, IHC analysis indicated that PYCR2 was mainly
expressed in the cancer region, which was consistent with the spatial
distribution of proline in ESCC tissue sections. The spatial ex-
pression of proline and PYCR2 in other ESCC tissue section is
illustrated in SI Appendix, Fig. S5. Notably, we identified dysre-
gulated PYCR2 in ESCC. In addition, we analyzed the PYCR2
expression in a tumor section that did not present changes in
proline level, and the results suggest that there was no difference
of PYCR2 (SI Appendix, Fig. S6).
Glutamine (Gln) is indispensable to the maintenance of cell

energy metabolism, nucleotide and amino acid biosynthesis, and
redox homeostasis (32). Extensive studies have demonstrated
that cancerous cells display a strong addiction to Gln, which

Fig. 2. Region-specific MS images of ESCC tissue section. GPC, glycerophosphorylcholine; GPE, glycerophosphorylethanolamine; PC, phosphatidylcholine; PE,
phosphatidylethanolamine; PI, phosphatidylinositol; PS, phosphatidylserine.
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makes glutamine metabolism an appealing target for cancer di-
agnosis and treatment (33). The catabolism of Gln is mediated
by GLS through the hydrolysis of Gln to glutamate (Glu). Here,
the elevated glutamine consumption in cancer tissue was further
proved by our MSI results. As shown in Fig. 4 A and C, Gln is
down-regulated in cancer tissues compared with normal muscle
and epithelial tissues. Instead, Glu as the hydrolysis product of
Gln was dramatically increased in cancer tissues (Fig. 4 B and D).
The MS image is composed of consecutive pixels, each of which
can reflect the relative content of the metabolites in the region.
Here, the pixel-by-pixel intensity ratio of Glu to Gln was calcu-
lated to construct an intensity ratio-based MS image (Fig. 4F),
and it suggested that the cancer tissue (red region) possessed a
higher ion-intensity ratio than normal tissue (green region).
Moreover, the ion-intensity ratio-based MSI offers an approach
to the diagnosis of esophageal cancer. The altered intensity ratio
across different tissue regions may reflect the in situ Gln hy-
drolysis rate, which is mediated by GLS. The subsequent IHC
assay showed that GLS was remarkably up-regulated in cancer
tissue compared with normal tissue, in good agreement with the
intensity ratio-based MS image (Fig. 4G). The spatial expres-
sions of Gln, Glu, and GLS in other tissue sections are demon-
strated in SI Appendix, Fig. S7.
Uridine, an important nucleoside precursor for the synthesis of

RNA, also participates in the regulation of purine nucleotide bio-
synthesis and carbohydrate metabolism (34). Moreover, the level of
uridine in tissue is critical to pyrimidine antimetabolite-based anti-
cancer treatment. A recent study indicated that uridine homeostatic
disorder can trigger p53-mediated DNA damage and lead to tu-
morigenesis (35). OurMSI and statistical data suggested that uridine
metabolism was severely dysregulated in ESCC tissues: although the
ion intensity of uridine in cancer regions is higher than that in paired
epithelium regions, it is lower than that in muscle regions (P < 0.001;
Fig. 5 A1 and A3). Meanwhile, the uracil level was dramatically up-
regulated in cancer tissue (P < 0.001, Fig. 5 A2 and A4). Based on
the pyrimidine metabolism pathway, UPase1, which reversibly cat-
alyzes the phosphorolysis of uridine into uracil, is the key enzyme of
pyrimidine nucleoside metabolism (Fig. 5A5). Thus, UPase1 is
regarded as a potential tumor-associated metabolic enzyme in
ESCC. The pixel-by-pixel intensity ratio of uracil to uridine was
calculated to map the intensity ratio-based MS image (Fig. 5A6).
Furthermore, we extracted the mass spectra of consecutive image
pixels along the illustrated path over an ESCC tissue section (Fig.
5A7). The dramatic intensity difference of uracil and uridine in
cancer, muscle, and epithelium are illustrated in Fig. 5A8. These
data suggest that the intensity ratio of uracil to uridine was

significantly increased in the cancer region and can serve as a bio-
marker to distinguish cancer from paracancerous normal tissue.
Considering all of the above findings, we predicted that the UPase1-
mediated phosphorolytic cleavage of uridine would be stronger in
cancer tissue than in paracancerous normal tissue. Excitingly, the
IHC data on the ESCC tissue section confirm our prediction that
UPase1 was up-regulated in the cancer region (Fig. 5A9). Further-
more, we report differentially expressed UPase1 in ESCC.
Histamine is derived from the decarboxylation of histidine, which

is exclusively catalyzed by HDC (36). There is growing evidence
suggesting that histamine is directly involved in carcinogenesis and
may serve as a potential cytoprotective agent to improve cancer
therapy (37). According to some investigators, histamine-based
therapies facilitate DNA damage, apoptosis, and senescence in
carcinoma cells and remarkably increase the survival of tumor-
bearing animals (38). In this study, histidine and histamine pre-
sented totally opposite spatial distributions. Histidine was signifi-
cantly up-regulated in cancer according to the MSI and statistical
data of 256 ESCC tissue samples (P < 0.001; Fig. 5 B1 and B3),
while histamine was dramatically down-regulated in cancer tissue
(P < 0.001; Fig. 5 B2 and B4). Meanwhile, methylhistamine, the
metabolic product of histamine, did not exhibit obvious dysregula-
tion in cancer tissue (SI Appendix, Fig. S9). The dramatic intensity
difference of histamine and histidine is illustrated in Fig. 5B7. The
pixel-by-pixel intensity ratio of histamine to histidine was calculated
and then imaged to investigate the HDC-mediated decarboxylation
of histidine (Fig. 5B6), and the decarboxylation rate was found to be
relatively weaker in cancer tissue than in muscular and epithelial
tissue. IHC validation was then applied to evaluate the expression
of HDC in ESCC tissue (Fig. 5B8). As predicted by the intensity
ratio-based MS image, cancer tissue demonstrated a lower level of
HDC expression than muscular and epithelial tissues.
FAs are important endogenous molecules for cellular energy

metabolism and biological signal transmission. SI Appendix, Fig.
S11 demonstrates that the ion intensities of representative FAs
were stronger in cancer and epithelial tissues than in muscle tissue.
Overall, the FA ion intensities demonstrated an increasing trend
from muscle to epithelium to cancer tissue in ESCC. It has been
reported that cancer cells rapidly produce FAs to meet the urgent
need for membrane biosynthesis, cellular signaling, and energy
consumption (3, 39). In the FA biosynthesis pathway, FASN is a

Fig. 3. In situ visualization of crucial metabolite and metabolic enzyme in
the proline biosynthesis pathway. (A) MS image of proline. (B) MSI and H&E
overlay image. (C) Proline levels in cancer and paired epithelium and muscle
tissues from 256 ESCC patients (means ± SD). ***P < 0.001. (D) H&E image of
ESCC tissue section. (E) Expression of PYCR2 in different regions of ESCC
tissue section. CT, cancer tissue; ET, epithelial tissue; MT, muscular tissue.

Fig. 4. In situ visualization of crucial metabolites and metabolic enzyme in
the glutamine metabolism pathway. (A and B) Glutamine (Gln) and glutamate
(Glu) levels in cancer and paired epithelium and muscle tissues from 256 ESCC
patients (means ± SD). **P < 0.01; ***P < 0.001. (C and D) MS images of Gln
and Glu in ESCC tissue section. (E) GLS-mediated metabolic process of con-
verting Gln to Glu. (F) The newly constructed MS image based on the ion-
intensity ratio of Glu to Gln. (G) Expression of GLS in different regions of the
ESCC tissue section. CT, cancer tissue; ET, epithelial tissue; MT, muscular tissue.
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key metabolic enzyme for the de novo synthesis of FAs. Therefore,
FASN was selected as a potential tumor-associated enzyme
according to the significantly increased levels of FAs in the cancer
tissue. Then, IHC staining of FASN was performed on adjacent
tissue sections. Notably, the spatial expression of FASN was
consistent with the distribution of FAs. FASN was mainly
expressed in cancer tissue, followed by epithelial tissue and mus-
cular tissue, which means that region-specific FAs may be able to
predict the expression of FASN in ESCC tissue. The MS images
and statistical data of other representative FAs in ESCC tissue are
illustrated in SI Appendix, Fig. S12.
Polyamines, including spermine and spermidine, have long

been recognized as indispensable components for cell growth,

especially for unwanted cancer cell proliferation (40). As dem-
onstrated in SI Appendix, Fig. S13, spermine and spermidine
were highly expressed in cancer tissue, which is consistent with
the stronger proliferation ability of cancer cells. Metabolic path-
way analysis suggested that ODC, which converts ornithine into
putrescine to form spermidine and spermine, is a rate-limiting
enzyme in polyamine biosynthesis. Therefore, ODC was selected
as another potential tumor-associated metabolic enzyme. IHC
testing verified our discovery that the expression of ODC in cancer
is higher than that in paired normal tissues (SI Appendix, Fig.
S13A9). Quantification of IHC signals of the six enzymes are
shown in SI Appendix, Fig. S14. Targeted inhibition/inducement of
the dysregulated enzymes or altering the levels of downstream
metabolites may shed light on metabolism-based therapy. How-
ever, what we offer is only potential metabolic vulnerabilities.
Further study of the roles of the altered metabolic pathway in
tumor progression is needed. Other kinds of detectable metabo-
lites are shown in SI Appendix, Figs. S15 and S16.

Diagnostic Features of Unknown Samples. To verify the diagnostic
ability of the MSI-based PLS-DA model on untested esophageal
cancer, we further analyzed 36 newly collected samples. The
spatially resolved metabolite profiles were extracted and then
imported into the PLS-DA classifier for automatic class identi-
fication and recognition. As shown in SI Appendix, Fig. S17, most
of the newly collected samples were correctly classified with few
exceptions, and the overall accuracy was 94.4% for identifying
the three different tissue types. The altered metabolites screened
by spatially resolved metabolomics still present tissue-specific
distributions in newly collected samples (SI Appendix, Fig. S18).

Conclusions
In summary, we have developed a spatially resolved metabolomics
approach for the high-throughput characterization of tumor-
associated metabolic alterations at both the metabolite and en-
zyme levels. Differentially expressed metabolic enzymes that are
closely associated with tumors were efficiently discovered based on
region-specific and pathway-related metabolites. A major advan-
tage of this approach is its direct predictive applicability to large
sets of candidate metabolites and metabolic enzymes without a
priori definition of specific targets of interest. Moreover, the
tumor-associated metabolic enzymes and corresponding metabo-
lites information expand our understanding of the complex tumor
metabolic reprogramming. However, it is worth noting that this
approach provides potentially altered metabolic enzymes based on
spatially resolved metabolomics, and the subsequent IHC valida-
tion is still needed. In addition, the screened tumor-associated
metabolic pathways have numerous potential metabolic enzymes;
we paid more attention to key enzymes that are directly related to
the remarkably dysregulated metabolites in certain pathways.
This MSI-based metabolomics study of 256 cases of cancer

and matched normal tissues suggests that the proline biosynthesis,
glutamine metabolism, uridine metabolism, histidine metabolism,
FA biosynthesis, and polyamine biosynthesis pathway were signifi-
cantly altered in ESCC. Six abnormally expressed metabolic en-
zymes, including PYCR2, GLS, UPase1, HDC, FASN, and ODC,
which are extensively involved in ESCC carcinogenesis, were dis-
covered. Most importantly, PYCR2 and UPase1 were found to be
differentially expressed in ESCC tissue. Furthermore, this spatially
resolved tumor metabolic information in ESCC offers insights for
understanding the complex cancer metabolic reprogramming.

Materials and Methods
Sample Preparation and Process. All cohort patients provided written in-
formed consent. Approval to perform metabolic analysis on tissue samples
was obtained from the local Ethical Review Board of Linzhou Esophageal
Cancer Hospital. A total of 256 pairs of matched human ESCC tissue samples,
including cancer tissues, adjacent noncancerous tissues (collected at 0–2 cm
surrounding the cancer tissue), and distal noncancerous tissue (collected at
5 cm away from the cancer tissue) were collected. The esophageal cancer
tissues were flash-frozen in liquid nitrogen for 10 s after resection, then

Fig. 5. In situ visualization of crucial metabolites and metabolic enzyme in
the uridine metabolism pathway (A) and histidine metabolism pathway (B).
(A1 and A2) MS images of uridine and uracil. (A3 and A4) Uridine and uracil
levels in cancer and paired epithelium and muscle tissues from 256 ESCC
patients (means ± SD). ***P < 0.001. (A5) UPase1-mediated metabolic pro-
cess of converting uridine to uracil. (A6) The newly constructed MS image
based on the ion-intensity ratio of uracil to uridine. (A7) Scanning path of
AFADESI-MSI. (A8) Plot of the intensity changes of uridine and uracil oc-
curring during the transition from cancer, muscle, to epithelial tissue. (A9)
Expression of UPase1 in different regions of an ESCC tissue section. (B1 and
B2) MS images of histidine and histamine. (B3 and B4) Histidine and hista-
mine levels in cancer and paired epithelium and muscle tissues from 256
ESCC patients. (B5) The HDC-mediated metabolic process of converting his-
tidine to histamine. (B6) The newly constructed MS image based on the ion-
intensity ratio of histamine to histidine. (B7) Plot of the intensity changes of
histidine and histamine occurring during the transition from cancer, muscle,
to epithelial tissue. (B8) Expression of HDC in different regions of an ESCC
tissue section. CT, cancer tissue; ET, epithelial tissue; MT, muscular tissue.
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were transferred to cryogenic vials, and were stored at −80 °C until sec-
tioned at 10-μm thickness using a CM 1860 UV cryostat microtome (Leica).
The tissue sections were thaw-mounted onto microscope slide and stored in
closed containers at −80 °C. Before AFADESI-MSI analysis, the microscope
slides were dried in a vacuum for ∼15 min. The typical H&E images of dif-
ferent tissues are illustrated in SI Appendix, Fig. S20, and it suggests that
adjacent noncancerous tissue include adjacent muscle and epithelium, while
distal noncancerous tissue include distal muscle and epithelium.

AFADESI-MSI Analysis. AFADESI-MSI analysis was carried out in both positive-
and negative-ion mode on a Q-Exactive mass spectrometer (Thermo Scien-
tific) over anm/z range of 70–1,000 at a nominal mass resolution of 70,000. A
mixture of acetonitrile and water (8:2, vol/vol) was used as the spray solvent
at a flow rate of 5 μL/min. The sprayer and transport tube voltages were set
at 7,500 and 2,000 V in positive-ion mode and at −5,500 and −1,500 V in
negative-ion mode. The extracting gas flow was 45 L/min, and the capillary
temperature was 350 °C. The MSI experiments were performed by contin-
uously scanning the tissue surface in the x direction at a constant rate of
200 μm/s, with a 200-μm vertical step separating the adjacent lines in the y
direction.

Data Processing. The collected .raw files were converted into .cdf format and
then imported into custom-developed imaging software (MassImager, a
dedicated imaging software based on the C++ programming language) for
ion image reconstructions and multivariate statistical analysis (41). After
background subtraction, region-specific MS profiles were precisely extracted

by matching high-spatial resolution H&E images. The discriminating en-
dogenous molecules of different tissue microregions were screened by a
supervised statistical analytical method: PLS-DA. The detailed process of
screening discriminant m/z features was illustrated in SI Appendix, Fig. S21.
Two-tailed t test and analysis of variance were performed using SPSS
statistical software (SPSS21.0).

Immunohistochemistry. The IHC characterization of PYCR2, GLS, FASN,
UPase1, HDC, and ODC in ESCC tissues are provided in SI Appendix.

Analyte Identification. Extracted adducted ions were compared with the free
databases the Human Metabolome Database (www.hmdb.ca), Metlin
(https://metlin.scripps.edu), and LIPID MAPS (www.lipidmaps.org) using ex-
act molecular weights and a mass accuracy of less than 5 ppm, combining
the isotope abundance from high-resolution MS help to give the elemental
composition and possible list of endogenous metabolites (42). Then, the
metabolites were performed high-resolution tandem MS directly from tissue
sections. Additional details are provided in SI Appendix.
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