Online Resource 1

Article title: Rapid nitrogen loss from ectomycorrhizal pine germinants signalled by their fungal

symbiont

Journal: Mycorrhiza

Authors: Joshua M Smith, Matthew D Whiteside and Melanie D Jones

Corresponding author: Melanie D Jones

Biology Department and Okanagan Institute of Biodiversity Resilience and Ecosystem Services,

University of British Columbia, Okanagan campus, Kelowna, British Columbia, V1V 1V7

Canada

melanie.jones@ubc.ca

Online Resource 1. 15N concentrations in shoots of *Pinus contorta* associated with *Suillus tomentosus*.

					¹⁵ N Analyses Replicates (Foliar Application)			Application)	¹⁵ N at% (± SD)			
Treatment Number	Foliar Treatment	Hyphal Well ³	Harvest Time (d)	Hyphae	Shoot (H ₂ O)	Shoot (N)	Root (H ₂ O)	Root (N)	Shoot (H ₂ O)	Shoot (N)	Root (H ₂ O)	Root (N)
1	Differential ¹	N/A	73	Intact	3	3	5 ⁴	-	0.36498 ± 0.00044	0.36467 ± 0.00044	0.36529 ± 0.00082^4	-
2	H_2O^2	N/A	73	Intact	6	-	4	-	0.36456 ± 0.00059	-	0.36546 ± 0.00065	=
3	Differential ¹	$\mathrm{NH_4}$	75	Intact	8	8	7	7	0.37013 ± 0.00714	0.37459 ± 0.02246	0.40144 ± 0.03624	0.44986 ± 0.13613
4	Differential ¹	Glycine	75	Intact	8	8	7	6	0.40763 ± 0.06895	0.41788 ± 0.12623	0.77019 ± 0.53239	0.96079 ± 1.14465
5	Differential ¹	H_2O	75	Intact	4	4	3	3	0.36481 ± 0.00044	0.36478 ± 0.00092	0.36525 ± 0.00094	0.36518 ± 0.00082
6	H_2O^2	$\mathrm{NH_4}$	75	Intact	8	-	7	-	0.37173 ± 0.00967	-	0.39652 ± 0.03413	-
7	H_2O^2	Glycine	75	Intact	8	-	6	-	0.36550 ± 0.00237	-	0.37652 ± 0.01550	-
8	H_2O^2	H_2O	75	Intact	8	-	5	-	0.36485 ± 0.00069	-	0.36476 ± 0.00079	-
9	Differential ¹	NH_4	75	Severed	4^4	-	4^4	-	0.36890 ± 0.00473^4	-	0.40152 ± 0.03464^4	-
10	Differential ¹	Glycine	75	Severed	5^4	-	4^4	-	0.36532 ± 0.00083^4	-	0.36819 ± 0.00521^4	-

¹Microcosms where the foliage of one of the two *P. contorta* seedlings was treated with 4.7 mM-N NH₄Cl and the other received deionized H₂O.

²Microcosms where the foliage of both seedlings received H2O.

³At 73 d; 9.46 mM-N NH₄Cl (98+ at% 15N), 9.46 mM-N glycine (99+ at% 15N), or deionized H₂O were added to wells accessible by hyphae but not roots; N/A indicates treatments that were harvested before N additions were made to the hyphal wells. 4Analyses where differential foliar applications were merged due to low replicate counts.