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Abstract
Introduction: Inferring connectivity between brain regions has been raising a lot of 
attention in recent decades. Copula directional dependence (CDD) is a statistical 
measure	of	directed	connectivity,	which	does	not	require	strict	assumptions	on	prob‐
ability distributions and linearity.
Methods:	 In	 this	 work,	 CDDs	 between	 pairs	 of	 local	 brain	 areas	 were	 estimated	
based on the fMRI responses of human participants watching a Pixar animation 
movie.	A	directed	connectivity	map	of	fourteen	predefined	local	areas	was	obtained	
for	each	participant,	where	the	network	structure	was	determined	by	the	strengths	
of	the	CDDs.	A	resampling	technique	was	further	applied	to	determine	the	statistical	
significance of the connectivity directions in the networks. In order to demonstrate 
the	effectiveness	of	the	suggested	method	using	CDDs,	statistical	group	analysis	was	
conducted based on graph theoretic measures of the inferred directed networks and 
CDD intensities. When the 129 fMRI participants were grouped by their age (3–5 
year‐old,	7–12	year‐old,	adult)	and	gender	(F,	M),	nonparametric	two‐way	analysis	of	
variance	 (ANOVA)	 results	 could	 identify	 which	 cortical	 regions	 and	 connectivity	
structures correlated with the two physiological factors.
Results:	Especially,	we	could	identify	that	(a)	graph	centrality	measures	of	the	frontal	
eye	 fields	 (FEF),	 the	 inferior	 temporal	gyrus	 (ITG),	and	 the	 temporopolar	area	 (TP)	
were	significantly	affected	by	aging,	 (b)	CDD	intensities	between	FEF	and	the	pri‐
mary	motor	cortex	(M1)	and	between	ITG	and	TP	were	highly	significantly	affected	
by	aging,	and	(c)	CDDs	between	M1	and	the	anterior	prefrontal	cortex	(aPFC)	were	
highly significantly affected by gender.
Software:	The	R	source	code	for	fMRI	data	preprocessing,	estimation	of	directional	
dependences,	network	visualization,	and	statistical	analyses	are	available	at	https://
github.com/namgillee/CDDforFMRI.
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1  | INTRODUC TION

Identifying brain connectivity engaged in various cognitive tasks is 
an important research topic in neuroscience. It has long been known 
that the brain can be segregated anatomically into several separate 
regions,	 which	 may	 also	 act	 as	 functionally	 distinguishable	 units	
(Brodmann,	1909,	2006).	On	the	other	hand,	brain	connectivity	con‐
cerns the integration of such segregated regions within a nerve sys‐
tem	at	several	levels	of	scales,	for	example,	microscale,	mesoscale,	
and	macroscale	 (Sporns,	 2010).	 The	 concept	of	 brain	 connectivity	
can be different and inconsistent across studies so it should be used 
with	caution	(Horwitz,	2003).	It	is	commonly	accepted	that	there	are	
three	types	of	brain	connectivity,	which	are	structural	connectivity,	
functional	 connectivity,	 and	effective	 connectivity	 (Friston,	1994).	
Among	 the	 three	 types,	 functional	 connectivity	 is	 defined	 as	 sta‐
tistical dependence between spatially remote neurophysiological 
events,	and	effective	connectivity	refers	to	the	influence	one	neural	
system	exerts	over	another,	while	their	operational	definitions	can	
vary	depending	on	the	model	we	use	(Friston,	1994).

The main purpose of this research was to identify and validate 
functional connectivity obtained by using a statistical measure of 
directional dependence which is called the copula directional de‐
pendence	(CDD)	(Kim	&	Hwang,	2017,	2018;	Sungur,	2006)	and	by	
using human brain functional magnetic resonance imaging (fMRI) 
data. One advantage of the CDD is that the CDD measure can be 
applied	 to	 non‐normal	 distributions	 and	 nonlinear	 relationships.	
Another	 advantage	 is	 that,	 whereas	 most	 of	 the	 functional	 con‐
nectivity measures such as correlations and mutual information are 
undirected	(Wang	et	al.,	2014),	the	CDD	can	produce	bidirectional	
connectivity which identifies statistical influence from one brain re‐
gion to another.

The directional connectivity inferred by CDDs is different from 
and has some advantages over the popular effective connectivity 
measures as follows.

1.1 | Advantages over dynamical systems models

Although	both	 the	CDD	and	effective	connectivity	measures	pro‐
duce	directed	connectivity,	the	CDD	is	distinguished	from	effective	
connectivity in that it does not rely on dynamical systems modeling 
of	 time‐dependent	 brain	 activity.	 Research	 on	 inferring	 effective	
connectivity using fMRI data mostly focuses on stochastic dynami‐
cal	 system	modeling	 (Stephan	 &	 Friston,	 2010).	 For	 example,	 the	
dynamic causal models (DCMs) incorporate a set of partial differ‐
ential	 equations	 of	 time‐dependent	 state	 variables	 representing	
the	 postsynaptic	membrane	 potentials	 of	 neural	 systems	 (Friston,	
Harrison,	&	Penny,	2003;	Stephan	et	al.,	2007).	For	another	example,	
multivariate/vector	 autoregressive	 models	 (MAR/VAR)	 have	 been	
applied	 for	discrete‐time	stochastic	dynamical	 system	modeling	of	
fMRI	(Goebel,	Roebroeck,	Kim,	&	Formisano,	2003;	Harrison,	Penny,	
&	Friston,	2003;	Roebroeck,	Formisano,	&	Goebel,	2005).	Besides	
stochastic	 dynamical	 system	 modeling	 or	 Granger	 causality	 (GC),	
several	other	measures	of	directed	connectivity	are	often	used;	see,	

for	example,	transfer	entropy	(TE)	(Vicente,	Wibral,	Lindner,	&	Pipa,	
2011),	directed	information	(DI)	(Wang,	Alahmadi,	Zhu,	&	Li,	2016),	
and	convergent	cross	mapping	(CCM)	(Sugihara	et	al.,	2012).

In	 principle,	 identifying	 which	 variables	 are	 causes	 and	 which	
are effects is not a trivial task. In order to avoid the identification 
problem,	dynamical	system	modeling	approaches	include	a	temporal	
delay of all	the	relevant	variables	in	the	system	equations	(Granger,	
1969;	 Sims,	 1980),	 which	 inevitably	 increases	 model	 complexity.	
Typically,	a	suitable	model	selection	procedure	should	follow	the	dy‐
namical system modeling to reduce model complexity and to prune 
spurious	 cause–effect	 relationships	 (Lee,	 Kim,	 Park,	 &	Kim,	 2016;	
Stephan	&	Friston,	2010).	Whereas	such	model	selection	procedures	
usually	include	assumptions	on	specific	probability	distributions,	the	
suggested	CDD	does	not	require	strict	distribution	assumptions.

In	addition,	we	note	that	the	temporal	resolution	of	fMRI	is	rel‐
atively	 low,	which	 can	 cause	 a	problem	 in	 the	decision	on	 cause–
effect	 relationships	 in	 dynamical	 systems	 modeling.	 Specifically,	
the	temporal	resolution	of	fMRI	 is	as	 low	as	two	or	three‐seconds	
per	scan,	whereas	the	time	taken	for	information	transfer	in	neural	
systems associated with cognitive functions is roughly 250 to 500 
milliseconds	when	measured	 as	 event‐related	 potentials	 (ERPs)	 by	
electroencephalography	 (EEG)	 (Polich,	 2007).	 Such	 low	 sampling	
rates can result in reversed cause–effect relationships in dynami‐
cal system models. See Section Simulation Evaluation for an example 
using	VAR	models.

1.2 | Advantages over graphical causal models

On	the	other	hand,	besides	the	popular	dynamical	systems	modeling	
approaches	for	causal	inference,	there	have	been	various	approaches	
to defining and modeling causal relations from observational sample 
data	or	 experimental	 data	 in	 statistics	 and	machine‐learning	 com‐
munities,	 which	 are	 often	 called	 graphical	 causal	 models	 (Spirtes,	
2010).	 Graphical	 causal	models	 include	 causal	 Bayesian	 networks	
and	structural	equation	models	(SEMs).

In	principle,	the	graphical	causal	modeling	approaches	select	di‐
rected	graph	structures	which	satisfy	the	so‐called	Markov	assump‐
tion	and	faithfulness	assumption	(Pearl,	2000;	Spirtes,	2010;	Spirtes,	
Glymour,	&	Scheines,	1993).	Roughly	speaking,	a	directed	graph	sat‐
isfies the Markov assumption if the observed distribution satisfies 
the conditional independences imposed by the graph structure; it 
satisfies the faithfulness assumption if every conditional indepen‐
dence in the observed distribution is entailed by the graph struc‐
ture.	 However,	 even	 if	 the	 Markov	 and	 faithfulness	 assumptions	
are	 imposed,	 the	 true	 causal	model	 cannot	 be	 determined	 among	
several directed acyclic graphs that possess the same independence 
structures,	which	is	called	the	Markov	equivalence	class.	 In	partic‐
ular,	the	directed	graphs	X	→	Y and Y	→	X for two variables cannot 
be distinguished.

An	 advantage	of	 the	CDD	over	 the	 graphical	 causal	models	 is	
that the CDD produces bidirectional connectivity between two vari‐
ables,	that	is,	for	a	pair	

(
X,Y

)
	of	variables	of	interest,	a	CDD	measure	

from X to Y and one from Y to X are produced. Such bidirectional 
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connectivity enables us to compare the relative strengths of the di‐
rectional dependences and to determine the statistical significance 
of inferred directionalities.

1.3 | Copula directional dependence and beta 
regression in literatures

Numerous	studies	have	suggested	regression‐based	approaches	for	
the	determination	of	cause	and	effect	for	two	time‐independent	var‐
iables,	say	X and Y. These approaches investigate asymmetry in the 
distribution of the two variables by comparing the regression models 
in	alternate	directions.	Kano	and	Shimizu	(2003)	and	Shimizu,	Hoyer,	
Hyvärinen,	 and	Kerminen	 (2006)	 suggested	 a	method	 for	 a	 linear	
non‐Gaussian	acyclic	model	(LiNGAM),	which	can	be	written	as

where f is a linear function and N	 is	 a	 non‐Gaussian	 independent	
noise.	Hoyer,	Janzing,	Mooij,	Peters,	and	Schölkopf	(2009)	and	Mooij,	
Janzing,	 Peters,	 and	 Schölkopf	 (2009)	 generalized	 the	 LiNGAM	
to	 nonlinear	 additive	 noise	models	 (ANMs).	 Zhang	 and	Hyvärinen	
(2009)	introduced	a	generalization	of	ANMs	as	post‐nonlinear	causal	
models	(PNL).

A	common	criterion	to	distinguish	between	cause	and	effect	
for these methods is that whenever a regression model with in‐
dependent	noise	can	be	fit	in	only	one	direction,	one	infers	that	
direction	to	be	the	causal	direction.	Janzing	and	Steudel	(2010)	
investigated theoretical properties of the criterion by using the 
concept	 of	 Kolmogorov	 complexity.	 The	 information‐geomet‐
ric	 approach	 for	 causal	 inference	 (IGCI)	 was	 proposed	 based	
on a certain independence condition between the conditional 
distribution and the marginal distribution in information space 
(Janzing	et	al.,	2012).	The	causal	inference	with	unsupervised	in‐
verse	regression	(CURE)	method	proposed	by	Sgouritsa,	Janzing,	
Hennig,	 and	Schölkopf	 (2015)	uses	 the	 same	principle	of	 inde‐
pendence in an unsupervised manner.

Recently,	it	was	proven	that	the	criterion	for	causal	inference	
under the independent additive noise models can be reduced to a 
much	simpler	form	based	on	regression	errors	(Blöbaum,	Janzing,	
Washio,	Shimizu,	&	Schölkopf,	2018).	Simply	speaking,	the	mean‐
squared	 error	 (MSE)	 of	 prediction	 in	 the	 correct	 cause–effect	
direction is smaller than that in the other direction under mild 
independence	 assumptions.	 Moreover,	 the	 simplified	 criterion	
can yield an inference method with a significantly lower com‐
putational	cost	 than	previously	known	methods	 (Blöbaum	et	al.,	
2018).	However,	simple	criteria	such	as	the	MSE	cannot	be	used	
unless the cause and effect variables are properly scaled. Since 
most	of	the	real	world	data	are	non‐normally	distributed	with	var‐
ious	scales,	it	is	important	to	propose	a	simple	criterion	that	does	
not sensitively depend on marginal distributions of the cause and 
effect variables.

A	copula	 is	a	multivariate	 function	which	provides	 flexible	and	
effective	 ways	 for	 describing	 statistical	 dependencies,	 especially	
between	 non‐normal	 random	 variables.	 It	 was	 shown	 that	 any	
joint distribution function can be expressed as a copula function 
which	 combines	 one‐dimensional	 marginal	 distributions	 (Sklar,	
1973).	Accordingly,	an	attractive	property	of	copulas	 is	that	statis‐
tical dependence structures can be modeled by choosing a copula 
function	 independently	 of	 the	 marginal	 distributions.	 Moreover,	
the dependence structure determined by a copula function is in‐
variant	under	one‐to‐one	continuous	transformations	of	each	vari‐
able.	 In	 addition,	 a	 normal	 distribution	 assumption	 or	 linearity	 is	
not	required	for	copula‐based	dependence	modeling.	Copulas	have	
been widely applied in many fields such as macroeconomics and fi‐
nance	(Cherubini,	Luciano,	&	Vecchiato,	2004;	Cherubini,	Mulinacci,	
Gobbi,	&	Romagnoli,	2012),	genetics	(Kim	et	al.,	2008;	Li,	Boehnke,	
Abecasis,	&	Song,	2006),	and	neuroscience	(Hu	&	Liang,	2014;	Ince	
et	al.,	2015,	2017).

Regression models using copulas have been studied widely in 
various	ways.	Especially,	the	Gaussian	copula	regression	method	can	
conveniently express dependence in the form of a correlation ma‐
trix,	 and	 the	 likelihood	 inference	 for	 continuous	 responses	can	be	
carried	out	efficiently	(Masarotto	&	Varin,	2012;	Pitt,	Chan,	&	Kohn,	
2006;	Song,	2000;	Song,	Li,	&	Yuan,	2009).

However,	the	standard	Gaussian	copula	regression	method	has	
a limitation in that it cannot deal with asymmetric dependence. 
Directional dependence refers to asymmetric dependence between 
variables.	Initially,	the	concept	of	directional	dependence	was	stud‐
ied	under	 linear	regression	models	regardless	of	copulas	 (Dodge	&	
Rousson,	2000,	2001).	 Its	 concept	was	defined	and	 studied	 in	 re‐
gression settings using copulas by Sungur (2006).

Recently,	 a	 new	 directional	 dependence	measure	 based	 on	
the	beta	regression	model	of	Guolo	and	Varin	(2014)	and	copula	
regression	was	proposed	in	Kim	and	Hwang	(2017,	2018).	A	beta	
regression is a regression model for continuous responses taking 
values in unit intervals such as rates and proportions (Ferrari 
&	Cribari‐Neto,	2004).	The	 regression	model	 is	 called	 the	beta	
regression model because it uses beta distribution for modeling 
the response variables. Due to the flexibility of the beta distri‐
bution,	it	can	handle	a	wide	variety	of	distributions	with	various	
shapes	and	asymmetries,	and	the	beta	regression	model	can	deal	
with heteroscedasticity and asymmetry in regression problems. 
Several variants of the beta regression model have been pro‐
posed such as beta regression with nonlinearity and variable 
dispersion	 (Cribari‐Neto	&	Zeileis,	 2010),	 Bayesian	 approaches	
(Casarin,	 Leisen,	 Molina,	 &	 ter	 Horst,	 2015;	 Casarin,	 Valle,	 &	
Leisen,	2012;	Figueroa‐Zuniga,	Arellano‐Valle,	&	Ferrari,	2013),	
and	 zero‐or‐one	 inflated	 beta	 regressions	 (Ospina	 &	 Ferrari,	
2012).	 A	 beta	 regression	 model	 for	 bounded	 time	 series	 was	
proposed	in	Guolo	and	Varin	(2014),	where	the	serial	correlation	
is	addressed	by	the	Gaussian	copula	with	a	correlation	matrix	of	
the	stationary	autoregressive	moving	average	(ARMA)	process.

In	this	paper,	we	apply	the	CDDs	proposed	in	Kim	and	Hwang	
(2017,	2018)	to	the	inference	of	brain	connectivity	and	statistical	

Y= f
(
X
)
+N,
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group analysis from fMRI data. The main advantage of the sug‐
gested	method	 is	 that	 the	non‐normality	and	nonlinearity	 in	 the	
distributions for fMRI data can be effectively addressed by the 
CDD measures. The experimental results based on simulated data 
and real fMRI data demonstrate that the estimated CDD connec‐
tivity measures could produce biologically plausible networks of 
brain regions relevant to participants’ physiological factors. We 
remark	that	previous	studies	on	copula‐based	methods	for	brain	
imaging data analysis focused either on inferring effective con‐
nectivity	with	Granger	 causality	 using	 time‐dependent	 variables	
(Hu	 &	 Liang,	 2014)	 or	 on	 deriving	 symmetric	 connectivity	mea‐
sures	such	as	mutual	information	(Ince	et	al.,	2015,	2017).	In	con‐
trast,	the	CDD	measure	suggested	in	this	study	infers	asymmetric	

connectivity	based	on	time‐independent	variables	with	serial	cor‐
relation removed.

1.4 | Directional dependence using beta regression

1.4.1 | Directional dependence by copula regression

A	copula	is	a	multidimensional	distribution	function	with	uniformly	
distributed	marginal	distributions.	 In	 this	paper,	we	 focus	on	 two‐
dimensional	 copulas.	 A	 joint	 cumulative	 distribution	 function	
(CDF),	 FXY (x,y)=Pr

(
X≤x, Y≤y

)
,	 can	 be	 represented	 by	 the	 com‐

position	of	a	bivariate	function,	C (u,v),	with	the	two	marginal	CDFs	
FX (x)=Pr

(
X≤x

)
 and FY (y)=Pr

(
Y≤y

)
	(Sklar,	1973)	as

F I G U R E  1   Illustration of the data 
generation procedure for the simulated 
fMRI data. (a) The original bivariate data 
generated by the predefined asymmetric 
copula	distribution	on	the	square	region	[
0,1

]2 with β = 0.1 and T	=	15,	that	is,	
n = 60T/a = 9000. (b) The transformed 
data to the standard normal distribution. 
(c)	The	simulated	bivariate	BOLD	time	
series data after the convolution with the 
Gaussian	HRF	with	the	FWHM	of	4	s.	
(d) The simulated fMRI data subsampled at 
every TR = 2 s
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where C (u,v) is called the copula. We can see that the copula C (u,v) 
determines the dependency structure between two random vari‐
ables X and Y.	Note	that	U=FX

(
X
)
 and V=FY

(
Y
)
 have uniform dis‐

tribution on 
[
0,1

]
.	 Hence,	 the	 copula	 is	 independent	 of	 marginal	

distributions	and	any	one‐to‐one	transformations	of	them.
In	 general,	 directional	 dependence	 can	 be	 defined	 in	 terms	 of	

regression	using	a	copula	function	(Sungur,	2006).	Let	
(
U,V

)
 denote a 

pair of random variables whose marginal distributions have uniform 
distribution on 

[
0,1

]
 and the joint distribution is a copula function 

FUV (u,v)=C (u,v).	 Let	Cu (v) denote the conditional distribution of V 
given U = u as Cu (v)≡P(V≤v|U=u)=�C (u,v) ∕�u. The copula regres‐
sion function of U on V is the conditional expectation of V given 
U = u,	which	can	be	expressed	by	the	copula	as

The directional dependence from U to V is defined by using the 
copula regression function on V as

which can be interpreted as the proportion of total variance of V 
that has been explained by the copula regression function rV|U (u). In 
the	same	way,	the	directional	dependence	from	V to U is defined by 
the proportion of total variance of U that has been explained by the 
copula regression function rU|V (v) as

Note	 that	 if	 U and V	 are	 independent,	 then	 C (u,v)=uv and 
rV|U (u)= rU|V (v)=0.5,	which	implies	that	the	directional	dependences	in	

Equations	(1)	and	(2)	can	be	interpreted	as	measures	of	deviations	from	
independence.	Moreover,	we	can	compare	the	two‐directional	depen‐
dences to identify which copula regression can explain more variances 
and has higher prediction capabilities.

1.4.2 | Beta regression

To	model	directional	dependences	by	copula,	it	is	necessary	to	deter‐
mine an appropriate and efficient parametric form of the copula regres‐
sion function for the inference of a dependence structure from data. 
In	beta	regression	(Ferrari	&	Cribari‐Neto,	2004;	Guolo	&	Varin,	2014),	
a response variable Vt given Ut = ut	has	a	beta	distribution,	Beta

(
�t,�t

)

,	with	the	mean	parameter	0	<	μt	<	1	and	the	precision	parameter	κt > 0. 
The density function of Vt|Ut=ut is written as

where Γ (⋅) is the gamma function. The mean parameter μt is linked 
with the covariate ut by the logit function as

By	using	the	beta	distribution,	we	can	model	a	wide	variety	of	distri‐
butions with various locations and shapes over bounded intervals. The 
parameters β0 and β1	can	be	estimated	based	on	maximum‐likelihood	
approaches	(Guolo	&	Varin,	2014;	Masarotto	&	Varin,	2012).	The	serial	
correlation which was not explained by the beta regression model in 
(3)	can	be	modeled	by	a	marginal	regression	model	developed	in	Guolo	
and	Varin	(2014).	See	Guolo	and	Varin	(2014)	for	more	technical	details.

1.5 | Statistical significance of connectivity 
direction based on bootstrap confidence intervals

In	studies	of	brain	connectivity,	an	important	issue	is	to	determine	the	
direction of each connection between brain regions. Since the sug‐
gested	CDD	connectivity	network	is	bidirectional,	that	is,	connectivity	

FXY (x,y)=C
(
FX (x) ,FY (y)

)
,

rV|U (u)≡E[V|U=u]=1−
1

�
0

Cu (v) dv.

(1)�2
U→V

≡
Var

(
rV|U

(
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(
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E[
(
rV|U

(
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−0.5)2

]
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=12E

[
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(
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)
)2
]
−3,
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(
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(
V
))
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(
U
) =

E[
(
rU|V

(
V
)
−0.5)2

]

1∕12
=12E

[
(rU|V

(
V
)
)2
]
−3.

f(vt|�t,�t)=
Γ
(
�t
)

Γ
(
�t�t

)
Γ
((
1−�t

)
�t
) v�t�t−1

t
(1−vt)

(1−�t)�t−1,

(3)logit
(
�t
)
=ut�1+�0.

F I G U R E  2   Scatter plots of the simulated fMRI data for �=0.1, 0.3, 0.5 and T	=	15,	together	with	the	regression	curves	fitted	by	the	
proposed method
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measures	exist	in	both	directions,	the	connectivity	direction	is	defined	
as	the	direction	of	the	stronger	CDD	measure.	Therefore,	the	direction	
is	determined	based	on	the	sign	of	the	difference,

for a pair of brain regions 
(
U,V

)
.

In	this	study,	we	applied	a	basic	bootstrap	resampling	technique	
in order to compute a 95% confidence interval for the difference 
Δ�2

U,V
,	which	is	denoted	by

where LB
(
Δ�2

)
 and UB

(
Δ�2

)
 are the lower and upper limits of the 95% 

confidence	interval.	Specifically,	we	used	the	ordinary	nonparametric	
bootstrap with 100 bootstrap replicates and produced basic bootstrap 
confidence intervals.

1.6 | Simulated experiments

We conducted two different types of simulated experiments in 
order to validate the performance of the proposed CDD measure for 
inferring causal relationships.

1.7 | Sensitivity analysis based on simulated fMRI 
data from asymmetric copula distribution

Note	that	a	cause–effect	relationship	between	two	variables	X and Y 
can be formed when their joint distribution is not symmetric. In this sec‐
tion,	simulated	resting‐state	fMRI	(RS‐fMRI)	data	of	two	regions‐of‐in‐
terest (ROIs) were generated from an asymmetric distribution based on 
R packages copBasic and neuRosim as follows. The data generation 
procedure is also described in Figure 1.

•	 An	asymmetric	 copula	distribution	 function	on	unit	 square	
[
0,1

]2 
was	constructed	by	combining	two	symmetric	copulas	as	(Durante,	
2009) 

where �,�∈
(
0,1

)
,	�̄�=1−𝛼,	𝛽=1−𝛽,	and	A� (u,v) is a Plackett copula 

with parameter θ	>	0	(Plackett,	1965).	The	Plackett	copula	is	available	
as the function PLACKETcop() in the R package copBasic. For sim‐
ulation,	we	set	θ1	=	5000,	θ2	=	5,	α	=	1	‐	β,	and	�=0.1, 0.2, … , 0.5. 
We remark that the copula C�,� (u,v) with α = β is symmetric.

Δ�2
U,V

=�2
U→V

−�2
V→U

,

[
LB

(
Δ�2

)
,UB

(
Δ�2

)]
,

(4)C𝛼,𝛽 (u,v)=A𝜃1

(
u𝛼 ,v𝛽

)
A𝜃2

(
u�̄� ,v𝛽

)
,

β T = 5 T = 10 T = 15 T = 20 T = 25 T = 30

0.1 Bias −0.0005 −0.0004 0.0005 0.0009 −0.0003 −0.0004

SD 0.0036 0.0091 0.0044 0.0039 0.0035 0.0025

RMSE 0.0037 0.0091 0.0044 0.0040 0.0035 0.0026

0.2 Bias 0.0021 −0.0003 −0.0006 0.0003 −0.0001 0.0000

SD 0.0167 0.0139 0.0063 0.0054 0.0063 0.0077

RMSE 0.0168 0.0139 0.0063 0.0054 0.0063 0.0077

0.3 Bias −0.0024 0.0010 −0.0021 0.0014 −0.0001 0.0000

SD 0.0200 0.0134 0.0125 0.0104 0.0104 0.0085

RMSE 0.0202 0.0134 0.0126 0.0105 0.0104 0.0085

0.4 Bias −0.0022 −0.0002 −0.0001 −0.0009 −0.0015 −0.0016

SD 0.0178 0.0155 0.0115 0.0120 0.0096 0.0100

RMSE 0.0179 0.0155 0.0115 0.0120 0.0097 0.0101

0.5 Bias −0.0033 0.0014 0.0025 0.0001 0.0015 −0.0003

SD 0.0281 0.0181 0.0153 0.0119 0.0107 0.0111

RMSE 0.0282 0.0181 0.0155 0.0119 0.0108 0.0111

TA B L E  1   Sensitivity analysis for the 
proposed CDD measure based on 
simulated fMRI data generated from 
asymmetric distributions

F I G U R E  3  The	root‐mean‐squared	error	(RMSE)	values	for	
various values of the model parameter β and the data length T for 
the simulated fMRI data in the simulated experiments
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•	 The	simulated	RS‐fMRI	data	are	assumed	to	have	a	time	length	of	
T	minutes,	T	=	5,	10,	…,	30.	With	an	accuracy	parameter	of	a	=	0.1,	
we generated the bivariate data set 

(
ui,vi

)
, i=1,… ,n,	 of	 length	

n = T * 60/a	from	the	asymmetric	copula	in	(4).	See	Figure	1a	for	an	
illustration of the generated data for β = 0.1 and T = 15.

• The data set was transformed to have the standard normal distribu‐
tion as its marginal distribution by the probability integral transform 
as xi=Φ−1

(
ui
)
,yi=Φ−1

(
vi
)
,	where	Φ is the standard normal CDF. 

See Figure 1b.
•	 The	Gaussian	hemodynamic	response	function	(HRF)	with	the	Full	
Width	Half	Maximum	(FWHM)	of	4	(s)	was	convolved	with	each	of	
the time series variables xi and yi	 to	yield	the	simulated	BOLD	re‐
sponses. See Figure 1c.

• The fMRI measurements at the repetition time (TR) of 2 (s) were 
subsampled	from	the	simulated	BOLD	responses.	See	Figure	1d.

Figure 2 illustrates the scatter plots of the simulated fMRI data for 
�=0.1, 0.3, 0.5 and T	=	15,	together	with	the	regression	curves	fitted	
by the proposed method. The regression curves are nonlinear as de‐
scribed	in	Equation	3.	 In	addition,	we	can	find	that	the	correlation	or	
slope increased as β increased.

The	sensitivity	of	the	proposed	method	was	analyzed	based	on	the	
bias,	standard	deviation	(SD),	and	root‐mean‐squared	error	(RMSE)	for	
the	estimate	of	the	difference,	Δ�2

X,Y
.	Note	that	the	difference,	Δ�2

X,Y
,	is	

a measure of causal direction. The three sensitivity measures can be 
computed through the bootstrap resampling procedure described in 
the previous section. The results of the sensitivity analysis are summa‐
rized	in	Table	1.	We	can	find	that	the	bias	was	relatively	smaller	than	
the SD and RMSE. The RMSE tended to increase as the value of β in‐
creased.	Note	that	as	the	value	of	β	increases,	the	correlation	between	
the	two	variables	 increases	(see,	e.g.,	Figure	2)	but	the	asymmetry	of	
the sampling distribution decreases because the difference between β 
and α	=	1	‐	β decreases.

Figure 3 shows the RMSE values for all β and T values. We can 
clearly find that the RMSE values tended to decrease as T increased.

1.8 | An example of a VAR process with reversed 
cause–effect relationships

In	 this	 section,	we	present	 an	example	which	 indicates	 that	 if	 the	
data	points	are	measured	with	a	low	sampling	rate,	then	inferences	
for effective connectivity using dynamical system models can lead 
to a reversed direction of connectivity.

Model 1 independent 
noise

Model 2 dependent 
noise

Model 3 
asymmetric noise

cor(ε1,	ε2) 0.00 0.56 0.56

cor
(
y1,y2

)
−0.01 0.42 0.42

�2
y1→y2

0.000 0.160 0.153

�2
y2→y1

0.000 0.160 0.161

Δ�2
y1 , y2

0.0001 0.0001 −0.0087

LB
(
Δ�2

)
0.0001 −0.0008 −0.0093

UB
(
Δ�2

)
0.0002 0.0009 −0.0074

p‐value 0.0002** 0.9420 0.0000**

Bias 0.0000 −0.0002 0.0004

SD 0.0003 0.0044 0.0050

RMSE 0.0003 0.0044 0.0050

Relative RMSE 2.38 29.55 0.57

Note.	The	bold	values	emphasize	the	negative	value	and	the	smallest	relative	RMSE	value	for	the	
difference of the estimated CDD values.
Signif. code: *** 0.005 ** 0.01 * 0.05 ·  0.1. 

TA B L E  2   Performances of the 
proposed	CDD	method	for	three‐
dimensional	VAR	models	with	three	types	
of noise processes

F I G U R E  4  Boxplots	of	the	differences,	Δ�2
y1,y2
,	obtained	by	the	

bootstrap resampling procedure for the three types of noise for 
the	three‐dimensional	VAR	models	in	the	simulated	experiments.	
The negative sign Δ𝜌2

y1,y2
<0 implies that the determined direction is 

y2	→	y1
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Assume	that	a	neural	system	of	three	brain	regions	follows	a	VAR	
model of order 1 expressed by

where yt=
(
yt1,yt2,yt3

)⊤ and ϵt = (ϵt1,	 ϵt2,	 ϵt3) ⊤ are vectors of brain 
signals	and	white	noises.	Let	the	coefficient	matrix	A be given by

The	 cause–effect	 relationships	 between	 the	 three	 brain	 regions,	
denoted	by	“[1],”	“[2],”	and	“[3],”	are	determined	by	the	nonzero	coeffi‐
cients in A,	which	can	be	summarized	as

Note	that	there	are	no	bidirectional	relationships,	that	is,	[i]→ [j] 
and [j]→ [i] for some i and j.

Suppose that the data are measured with a low sampling rate as in 
fMRI	experiments,	say	L	≥	2	times	lower	sampling	rate.	In	this	case,	from	
the	 original	model	 equation	 in	 Equation	5,	 the	measured	 time	 series	
data,	yLt

(
t=1,2,…

)
,	can	be	expressed	by	a	VAR	model	of	order	1	as

where �Lt=
∑L

i=1
A
L−i

�L(t−1)+i is a white noise that is independent of 
yL(t−1). When L=2, 5, 8, …,	the	coefficient	matrix	AL can be expressed 
by

and the corresponding cause–effect relationships between the 
three brain regions can be expressed by

Note	that	all	three	of	the	cause–effect	relationships	are	reversed	
compared to the original ones derived from A.

For	an	evaluation	of	the	performance	of	the	proposed	method,	tri‐
variate time series data of length n = 10000 were generated from the 
VAR	model	in	Equation	5.	The	white	noise	process	was	ϵt = (ϵt1,	ϵt2,	ϵt3) ⊤ 
generated from three different types of distributions as follows:

1.	 Model	 1.	 Normally	 distributed	 independent	 noise:	 The	 three	
noise components were independently and normally distributed 
as ϵt1,	 ϵt2,	 ϵt3	 ˜i.i.d.	 N(0,	 1).

2. Model 2. Symmetrically dependent noise: The first two compo‐
nents were generated from a bivariate normal distribution as (ϵt1,	
ϵt2)	˜i.i.d.	N2(0, R),	R = (rij)with the variances r11 = r22 = 1 and the 
correlations r12 = r21	=	0.56.	And	ϵt3	˜i.i.d.	N(0,1).

3.	 Model	3.	Asymmetrically	dependent	noise:	The	first	two	compo‐
nents were generated from the copula distribution described in 
Equation	4,	that	is,	(ϵt1,	ϵt2) ˜i.i.d. Cα,β (u, v) with �=0.7, �=0.3.

Next,	the	generated	time	series	data	were	subsampled	at	the	rate	
of 1 in L	=	5,	so	that	the	subsampled	data	follow	the	lagged	VAR	model	
in	Equation	6.

The performances of the proposed method were evaluated 
based	on	 the	CDDs	estimated	 for	 the	 first	 two	variables,	

(
yt1,yt2

)
,	

and the cause–effect directions determined by the difference of the 
CDDs,	Δ�2

y1,y2
.	The	experimental	results	are	summarized	in	Table	2.	In	

the	table,	the	p‐value	considers	the	test	of	the	null	hypothesis	that	
Δ�2

y1,y2
=0,	and	the	relative	RMSE	is	defined	by	the	RMSE	divided	by	

the absolute value of Δ�2
y1,y2

.	In	the	table,	we	can	see	that	the	value	
of Δ�2

y1,y2
	was	negative	only	for	the	case	of	Model	3,	which	implies	

that the asymmetric distribution of the noise process affected the 
determination	of	 the	directionality	 rather	 than	the	nonzero	values	
of	 the	VAR	 coefficients.	 For	Model	 1,	 the	 correlation	 between	 y1 
and y2	was	 close	 to	 zero,	which	 resulted	 in	 small	 values	of	CDDs,	
their	 difference,	 and	p‐value.	 In	 addition,	 the	 relative	RMSE	value	
was	smaller	than	1	only	for	Model	3,	which	implies	that	the	accuracy	
was	higher	than	in	the	other	models.	Figure	4	shows	boxplots	of	the	
differences,	Δ�2

y1,y2
,	obtained	by	the	bootstrap	resampling	procedure	

for the three types of noise. We can clearly see that the independent 
noise and dependent noise models could not determine the correct 
direction between y1 and y2,	but	the	asymmetric	noise	model	could	
determine the direction y2	→	y1 based on Δ𝜌2

y1,y2
<0.

1.9 | fMRI data and methods

We obtained fMRI data from the OpenfMRI database (Poldrack 
et	al.,	 2013)	 (http://www.openfmri.org).	 The	 accession	 number	 of	
the	data	is	ds000228,	and	the	data	are	available	at	https://openfmri.
org/dataset/ds000228/. They consist of anatomical and functional 
MRI	data	of	3‐	to	12‐year‐old	children	and	adults	during	the	viewing	
of a short animated film.

(5)yt=Ayt−1+�t, t=1,2,…

A=

⎛
⎜⎜⎜⎝

0 0.5 0

0 0 0.5

0.5 0 0

⎞
⎟⎟⎟⎠
.

[
2
]
→

[
1
]
,
[
3
]
→

[
2
]
,
[
1
]
→

[
3
]
.

(6)yLt=AyLt−1+�Lt=A(AyLt−2+�Lt−1)+�Lt=⋯=A
L
yL(t−1)+�Lt,

A
L
=

⎛
⎜⎜⎜⎝

0 0 0.5
L

0.5
L

0 0

0 0.5
L

0

⎞
⎟⎟⎟⎠
,

[
1
]
→

[
2
]
,
[
2
]
→

[
3
]
,
[
3
]
→

[
1
]
.

TA B L E  3   The 3 ×2 classification of the participants by age and 
gender

Gender

TotalF M

3–5	year‐old 34 27 61

Age 7–12	year‐old 18 20 38

Adult 19 11 30

Total 71 58 129

https://openfmri.org/dataset/ds000228/
https://openfmri.org/dataset/ds000228/
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1.10 | Participants

The	original	data	set	consists	of	155	participants,	 including	chil‐
dren	who	are	3‐12	years	old	and	adults	who	are	18–39	years	old.	
This type of data is precious because it includes participants 
of	 a	wide	 range	 of	 ages.	 Among	 all	 of	 the	 participants,	we	 had	
to remove 26 participants during the preprocessing step (see 
Section Preprocessing of fMRI Data),	 so	we	 used	 the	 data	 of	 the	
remaining	 129	 participants.	 In	 this	 study,	we	 classified	 the	 par‐
ticipants	by	three	age	groups	(3–5	year‐old,	7–12	year‐old,	adult)	
and	two	gender	groups	(F,	M).	Table	3	shows	the	number	of	par‐
ticipants in each subgroup by a 3 × 2 classification table.

1.11 | Experimental paradigm

The participants of the study watched a silent version of Disney 
Pixar's	“Partly	Cloudy,”	a	5.6‐min	animated	movie.	The	movie	was	
preceded	 by	 10	 s	 of	 rest,	 and	 the	 participants	 were	 instructed	
to remain still while watching the movie. The MRI data were ac‐
quired	by	using	a	3‐Tesla	Siemens	TIM	Trio	scanner.	For	each	par‐
ticipant,	a	total	of	168	scans	of	whole‐brain	images	were	acquired	
(repetition	time	(TR)	=	2,000	ms,	echo	time	(TE)	=	30	msec,	num‐
ber	of	slices	=	32,	slice	thickness	=	3.3	mm,	matrix	size	=	64	×	64,	
voxel dimension = 3 mm × 3 mm ×  3.3 mm).

1.12 | Preprocessing of fMRI data

The functional MRI data were preprocessed by using the R pack‐
age	 spm12r	 (Muschelli,	 2018),	 which	 provides	 wrapper	 func‐
tions for Statistical Parametric Mapping (SPM) version 12 from 
the	Wellcome	 Trust	 Centre	 for	Neuroimaging	 (Ashburner	 et	al.,	
2017).	First,	all	volumes	of	fMRI	data	were	spatially	realigned	to	
the	average	volume.	Slice‐timing	correction	was	performed	after	
the	realignment	step.	The	fMRI	was	then	spatially	normalized	to	
the	MNI	 template,	which	was	carried	out	by	 indirect	 steps	con‐
sisting of (a) realignment of the anatomical MR images (aMRI) 
along	 the	 anterior	 commissure	 (AC)	 posterior	 commissure	 (PC)	
line,	 (b)	 co‐registration	 of	 aMRI	 to	 the	 mean	 fMRI	 image,	 and	
(c)	segmentation	of	co‐registered	aMRI	into	six	different	regions,	
which	produced	a	transformation	for	the	spatial	normalization	of	
fMRI images.

1.13 | Selection of brain regions

We selected seven voxel locations on the cortex in the left hemi‐
sphere and another seven voxel locations symmetrically in the right 
hemisphere	and	named	them	based	on	Brodmann	areas	(Brodmann,	
1909,	2006).	The	fourteen	selected	 locations	are	denoted	by	seven	
capital	letters	(A,	B,	C,	D,	E,	F,	and	G)	and	the	prefixes	“L”	or	“R”	(which	
denotes	 the	 left	or	 right)	as	described	 in	Table	4.	The	exact	coordi‐
nates	of	the	selected	brain	locations	are	also	listed	in	Table	4,	which	
have	been	defined	according	to	the	Brodmann	areas	in	the	MNI	tem‐
plate	by	Lacadie,	Fulbright,	Constable,	and	Papademetris	(2008).

For	the	selection	of	the	brain	regions,	we	considered	the	stimulus	
type,	previous	studies,	and	spatial	distances	between	the	regions.	Since	
movie	watching	gives	visual	stimulus,	we	selected	the	frontal	eye	fields	
(FEF)	and	the	visual	association	area	(V2).	In	regard	to	the	visual	stimu‐
lus,	identifying	the	connectivity	of	the	primary	motor	cortex	(M1)	with	
other	areas	can	be	of	potential	importance	in	clinical	neurophysiology,	

Node BA No. Name Description MNI‐(x,y,z)

A BA	04 M1 Primary Motor Cortex
(
−36,−17,44

)
,
(
38,−18,45

)

B BA	08 FEF Frontal Eye Fields
(
−23,24,44

)
,
(
22,26,45

)

C BA	10 aPFC Anterior	Prefrontal	Cortex
(
−23,55,4

)
,
(
23,55,7

)

D BA	18 V2 Visual	Association	Area
(
−19,−92,2

)
,
(
29,−92,2

)

E BA	20 ITG Inferior	Temporal	Gyrus
(
−47,−14,−34

)
,
(
48,−17,−31

)

F BA	23 vPCC Ventral	Posterior	Cingulate	
Cortex

(
−10,−45,24

)
,
(
9,−45,24

)

G BA	38 TP Temporopolar	Area
(
−43,13,−30

)
,
(
40,11,−30

)

TA B L E  4  The	node	symbols,	Brodmann	
area	(BA)	numbers,	abbreviated	names,	
descriptions	of	the	selected	seven	regions,	
and (x,y,z)‐coordinates	under	the	MNI	
template in the brain cortex. The node 
symbols of each region correspond to the 
order of the nodes in connectivity 
networks in this paper. The two (x,y,z)
‐coordinates	represent	the	locations	in	
the	left	and	right	hemispheres,	
respectively

F I G U R E  5   Each location of the selected seven voxels on the 
cortex is indicated by a circle with a label and color and illustrated 
in the lateral view. The selected voxels belong to a certain area 
among the Brodmann areas of the brain. The color of each circle 
in the figure indicates that it belongs to either the frontal lobe 
(yellow),	temporal	lobe	(orange),	occipital	lobe	(cyan),	or	limbic	lobe	
(green)
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for	 example,	 visuomotor	 network	 (Archer	 et	al.,	 2018).	 Richardson,	
Lisandrelli,	Riobueno‐Naylor,	and	Saxe	(2018)	 identified	brain	regions	
related to thinking about pain and the minds of others by using the same 
fMRI	 data	 sets,	which	 included	 the	 posterior	 cingulate	 cortex	 (PCC)	
and prefrontal cortex (PFC). Other selected areas were included in the 

analysis by considering their spatial distribution. The selected areas are 
not	spatially	adjacent,	and	they	are	distributed	over	the	brain	cortex	as	
depicted in Figure 5.

Note	 that	during	 the	preprocessing	steps	based	on	 the	SPM,	we	
tried	to	avoid	spatial	smoothing	of	the	fMRI.	Instead,	for	each	selected	
voxel	location,	we	took	a	spatial	average	of	the	fMRI	data	values	in	the	
5 × 5 × 5 cubic region centered at the selected voxel location. We have 
checked that the fourteen cubic regions in both hemispheres do not 
overlap.

In	addition,	we	removed	the	fMRI	data	of	26	participants	because	
some of the fourteen brain locations were not available in their original 
raw fMRI images. We suspect that an automatic process of removing 
face and neck areas by the OpenfMRI project has removed larger areas 
in the images than expected.

Moreover,	we	removed	the	first	ten	seconds	(i.e.,	five	scans)	from	
the	fMRI	data	of	each	participant,	in	order	to	stabilize	signals	and	re‐
move	the	resting	period	before	the	movie‐watching	session	started.

1.14 | Statistical analysis

1.14.1 | Connectivity indices and the multiple 
hypothesis test

For	the	analysis	of	group	differences,	we	estimated	three	connectiv‐
ity statistics based on the CDDs between each pair of selected brain 
regions.	That	 is,	 for	an	ordered	pair	

(
U,V

)
	of	brain	 regions,	we	can	

estimate the CDDs from U to V (�2
U→V
),	from	V to U (�2

V→U
),	and	their	

difference (Δ�2
U,V

=�2
U→V

−�2
V→U

).
In	addition,	we	constructed	a	network	of	the	selected	brain	regions	

based on the estimated CDD measures for each participant. The net‐
work structure was determined as a directed network allowing for 

F I G U R E  6  An	empirical	distribution	of	estimated	CDDs	for	
a	participant	selected	from	the	group	of	Adult	and	F	(black).	The	
CDDs have been transformed to normal distributions via Fisher's  
z‐transformation.	The	null	and	alternative	distributions	estimated	
by the FDR procedure of Strimmer (2008) are shown by the red 
dotted	curve	and	blue	straight	line,	respectively.	On	the	top	of	the	
figure,	the	standard	deviation	(σ = 0.19) and proportion (η = 0.707) 
of the null distribution are displayed

σ = 0.19, η0 = 0.707

z = atanh( ρ2)
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F I G U R E  7  A	preprocessed	sample	fMRI	time	series	for	a	participant	selected	from	the	group	of	Adult	and	F	(left	panel),	and	a	normal	
Q‐Q	plot	for	a	sample	fMRI	time	series	from	the	BA18	V2	in	the	left	hemisphere	(right	panel)
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bidirectional	connections.	A	directed	connection,	from	a	brain	region	U 
to another region V,	was	pruned	if	the	absolute	value	of	the	CDD	mea‐
sure was less than a threshold determined adaptively by the false dis‐
covery rate (FDR) procedure of Strimmer (2008) in order to remove 
spurious connections. The FDR procedure conducts a multiple hypoth‐
esis	test,	where	we	consider	a	set	of	null	hypotheses	that	the	true	CDD	
values	are	zero,	that	is,	�2

U→V
=0 for all pairs U	≠	V of the fourteen brain 

regions.	First,	the	estimated	CDDs	are	transformed	to	an	approximate	

normal distribution via Fisher's z‐transformation	 as	 z=atanh
�√

�2
�
. 

Second,	 the	distribution	of	 the	 (transformed)	CDDs	 is	 approximately	
represented as a mixture distribution

where f0 is the density function of a null distribution and fA is an al‐
ternative	distribution.	The	null	distribution,	f0 (⋅;�),	 is	the	normal	den‐
sity	function	with	a	mean	of	zero	and	standard	deviation	of	σ,	which	
represents the distribution of the estimated CDDs when the true CDD 
value	is	zero.	The	shape	parameter	σ > 0 and the portion parameter η 
are automatically estimated based on the given (transformed) CDDs. 
Finally,	the	local	FDR	score	is	computed	by

Typically,	 a	 directed	 connection	 from	 U to V is removed if 
fdr

(
�U→V

)
≥0.2.

Figure 6 illustrates an example of the mixture distribution ob‐
tained	 for	 a	participant	belonging	 to	 the	Adult‐Female	group.	The	
null and alternative distributions are depicted by the red dotted line 
and	the	blue	straight	line,	respectively.

1.14.2 | Nonparametric tests of group differences

We applied nonparametric tests for group differences based on a meas‐
ure	of	network	structure	and	a	connectivity	measure.	As	a	measure	of	
network	structure,	we	used	the	total‐degree,	in‐degree,	and	out‐degree	
of	each	node,	which	are	a	kind	of	centrality	measure	in	graph	theory.	
As	a	measure	of	connectivity,	we	used	three	estimates	based	on	the	
CDDs between each pair of brain regions 

(
U,V

)
,	that	is,	�2

U→V
,	�2

V→U
,	and	

�2
U→V

−�2
V→U

. Since the distributions of the degrees and the CDDs are 
skewed	and	not	normally	distributed,	we	applied	nonparametric	analy‐
sis	of	variance	(ANOVA)	methods	for	group	analysis.	Specifically,

1.	 Kruskal–Wallis	 (KW)	 rank‐sum	 test	was	applied	 for	each	 factor.	
The software is available in the R package stats as the function 
kruskal.test().

2.	 Quantile	ANOVA,	which	refers	to	one‐way	ANOVA	based	on	
quantiles,	 was	 applied	 for	 each	 factor	 (Wilcox,	 2012).	 It	 is	
known	to	work	well	when	there	are	tie	values	in	the	data,	and	
it is implemented in the R package WRS2 as the function 
Qanova()	(Mair	&	Wilcox,	2017).

3.	 Robust	two‐way	ANOVA	based	on	medians	was	applied	for	the	fac‐
tors	with	interaction	effects	(Wilcox,	2012).	It	is	implemented	in	the	
R	package	WRS2	as	the	function	med2way()	(Mair	&	Wilcox,	2017).

f (z)=�f0 (z;�)+
(
1−�

)
fA (z) , 0≤�≤1,

fdr(𝜌)=Pr
(
true CDD is zero |z)= �̂�f0 (z;�̂�)

f (z)
.

F I G U R E  8  Sample	scatter	plots	for	the	fMRI	time	series	from	the	regions	BA18	V2	in	both	hemispheres	for	a	participant	selected	from	
the	group	of	Adult	and	F	(female).	The	red	line	in	each	plot	represents	the	regression	line	by	beta	regression
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There can be other methods for a nonparametric test of group 
differences;	 see,	 for	 example,	 Feys	 (2016)	 for	 nonparametric	
ANOVA	using	R	software.	We	remark	that	there	are	many	tie	val‐
ues	 in	 our	 data,	 for	 example,	 the	 node	 degrees,	 which	 prohibit	
some nonparametric test methods from being adopted.

2  | RESULTS

2.1 | Subject‐level analysis

We	 selected	 a	 sample	 participant	 from	 the	 group	 of	 Adult	 and	 F	
(female). The time series data from the seven predefined regions in 
the left hemisphere of the selected participant are shown in the left 

panel	of	Figure	7.	The	time	series	are	not	weakly	stationary,	that	is,	
the mean and the variance are not constant over time. The normal 
Q‐Q	plot	for	the	fourth	time	series	which	corresponds	to	the	BA18	
L.V2	region	(“L”	or	“R”	means	the	left	or	right	hemisphere)	is	shown	
in the right panel of Figure 7. The time series is not normally distrib‐
uted	 as	 there	 are	 points	with	 relatively	 small	 quantile	 values.	 The	
Shapiro–Wilks test of normality for this time series reported a test 
statistic of W = 0.9680 and a p‐value	of	0.0010,	which	implies	that	
the	data	are	not	normally	distributed.	Note	 that	weak	stationarity	
and normality are typical assumptions of a wide range of dynamical 
system models.

Scatter plots for the time series of a pair of two selected regions 
BA18	L.V2	and	BA18	R.V2	are	shown	in	Figure	8.	The	red	line	in	each	
panel	represents	a	regression	line	determined	by	beta	regression.	Note	

TA B L E  5  Estimates	of	the	copula	directional	dependences	for	a	participant	selected	from	the	group	of	Adult	and	F	(female).	Δρ2 denotes 
the difference Δρ2=ρ2

U→V
−ρ2

V→U
. LB

(
Δρ2

)
 and UB

(
Δρ2

)
 represent the lower bound and the upper bound of the 95% confidence interval for 

the	difference,	Δρ2,	respectively.	The	table	contains	a	list	of	selected	pairs	of	the	brain	regions	having	local	FDR	scores	<0.2.	The	lower	
bounds,	LB

(
Δρ2

)
,	larger	than	zero	are	written	in	bold	font

Pair No. Brain region U Brain region V �2
U→V

�2
V→U

Δ�2
U,V

LB
(
Δ�2

)
UB

(
Δ�2

)

13 R.A	M1 L.A	M1 0.214 0.202 0.012 0.007 0.013

14 R.C aPFC R.B FEF 0.166 0.158 0.008 0.005 0.011

15 R.B FEF R.D	V2 0.186 0.153 0.033 0.031 0.037

17 R.F vPCC R.B FEF 0.226 0.217 0.009 0.007 0.013

18 R.G	TP R.B FEF 0.194 0.181 0.014 0.012 0.017

24 L.B	FEF R.B FEF 0.359 0.296 0.063 0.056 0.062

25 R.B FEF L.A	M1 0.152 0.141 0.011 0.008 0.012

27 R.C aPFC R.E	ITG 0.149 0.141 0.009 0.004 0.010

28 R.F vPCC R.C aPFC 0.255 0.245 0.010 0.004 0.014

29 R.G	TP R.C aPFC 0.351 0.337 0.014 0.007 0.015

31 L.F	vPCC R.C aPFC 0.227 0.207 0.020 0.012 0.020

34 L.C	aPFC R.C aPFC 0.245 0.220 0.024 0.021 0.026

35 R.C aPFC L.B	FEF 0.222 0.188 0.034 0.030 0.036

36 R.C aPFC L.A	M1 0.285 0.245 0.040 0.032 0.040

38 R.D	V2 R.F vPCC 0.235 0.234 0.001 −0.001 0.006

39 R.G	TP R.D	V2 0.240 0.200 0.040 0.038 0.046

41 L.F	vPCC R.D	V2 0.170 0.144 0.026 0.021 0.028

43 L.D	V2 R.D	V2 0.237 0.206 0.032 0.027 0.034

45 L.B	FEF R.D	V2 0.166 0.145 0.021 0.017 0.023

46 R.D	V2 L.A	M1 0.195 0.188 0.007 0.006 0.013

48 R.G	TP R.E	ITG 0.251 0.211 0.040 0.035 0.041

49 R.E	ITG L.G	TP 0.161 0.149 0.012 0.007 0.013

56 R.G	TP R.F vPCC 0.217 0.194 0.022 0.020 0.027

58 R.F vPCC L.F	vPCC 0.522 0.520 0.002 −0.002 0.008

62 R.F vPCC L.B	FEF 0.180 0.166 0.014 0.010 0.016

63 R.F vPCC L.A	M1 0.216 0.203 0.013 0.007 0.014

65 R.G	TP L.F	vPCC 0.163 0.146 0.017 0.014 0.021

69 L.B	FEF R.G	TP 0.157 0.157 0.000 −0.001 0.006

70 L.A	M1 R.G	TP 0.198 0.188 0.009 0.008 0.014
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that	 the	beta	 regression	 lines	are	nonlinear	curves	parameterized	by	
Equation	3.

Table 5 shows the estimated CDDs for selected pairs of the four‐
teen	brain	regions	having	local	FDR	scores	<0.2.	Supporting	Information	
Table S1 contains the estimated CDDs for all 

(
13×14

)
∕2=91 pairs. For 

each pair 
(
U,V

)
,	we	computed	CDDs	�2

U→V
,	�2

V→U
,	and	their	difference	

Δ�2=�2
U→V

−�2
V→U

. The sign of the difference determines which of the 
copula regressions U	→	V and V	→	U have higher prediction power. In 
the	table,	we	have	switched	the	order	of	U and V so that the regression 
U	→	V has a higher prediction power.

In	addition,	 in	order	to	provide	statistical	significance	of	the	de‐
termined	 regression	 direction,	 that	 is,	U	→	V,	 bootstrap	 resampling	
was applied to yield a 95% confidence interval (CI) for the difference 
Δ�2

U→V
.	In	the	table,	since	the	order	of	U and V has changed to have 

Δρ2	>	0,	we	only	need	to	check	whether	the	lower	bound	of	the	95%	
CI	is	positive	or	not.	In	Table	5,	which	shows	a	list	of	the	selected	pairs	
with fdr (𝜌)<0.2,	there	are	only	three	regression	directions	which	are	
not	statistically	significant,	that	is,	the	directions	#38	R.D	V2	→	R.F	
vPCC,	#58	R.F	vPCC	→	L.F	vPCC,	and	#69	L.B	FEF	→	R.G	TP.

A	 directed	 network	 of	 the	 fourteen	 brain	 regions	 inferred	
based on the estimated CDDs in Table 5 is illustrated in Figure 9. 
The edges in the directed network were pruned based on the 
local	FDR	score,	that	is,	an	arrow	from	a	node	U to V indicates that 
the local FDR score fdr

(
�U→V

)
	 is	 <0.2.	As	 a	 result,	 the	obtained	

directed	network	is	bidirectional,	which	allows	us	to	compare	the	
relative	strengths	of	the	directional	dependences.	For	simplicity,	
between the two opposite directions U	→	V and V	→	U,	 the	 fig‐
ure shows only the direction U	→	V	having	the	larger	CDD	value,	
that	 is,	𝜌2

U→V
>𝜌2

V→U
.	 An	 arrow	 is	 colored	 in	 red	 if	 the	 difference	

of the CDD values Δ�2
U,V
	 is	 significantly	 larger	 than	zero,	 that	 is,	

LB
(
Δ𝜌2

)
>0.

Figure 10 illustrates the CDD connectivity networks obtained 
for	six	participants	selected	from	each	of	the	Age	and	Gender	sub‐
groups. The connectivity networks for every participant are avail‐
able at https://github.com/namgillee/CDDforFMRI.

2.2 | Group‐level analysis

In order to verify the validity of the suggested approach in the 
inference	of	brain	connectivity,	we	considered	all	of	the	129	par‐
ticipants whose fourteen selected brain regions had no missing 
data in fMRI images. The participants were grouped into three 
age	groups	(3–5	year‐old,	7–12	year‐old,	Adult)	and	two	gender	
groups	(F,	M);	see	Table	3.	The	chi‐square	test	of	independence	
of the two factors yielded χ2	statistics	of	1.7496	with	df = 2 and 
a p‐value	of	0.417,	which	implies	that	the	two	factors	are	statis‐
tically independent.

2.3 | Group analysis using node degree

Based on the connectivity network structures inferred by local FDR 
scores	of	CDD	measures,	 the	node	degree	 corresponding	 to	 each	

brain	region	was	analyzed	by	nonparametric	ANOVA	tests	of	group	
differences.	Among	 the	 graph	 theoretic	measures,	 node	degree	 is	
the simplest and most basic centrality measure.

Table	6	 shows	 the	 results	 of	 nonparametric	 ANOVA	 tests	
using	 total‐degrees.	The	nonparametric	 tests	 are	one‐way	 tests	
such	as	Kruskal–Wallis	and	Quantile	ANOVA.	Instead	of	applying	
a multiple comparisons correction (MCC) to select significantly 
small p‐values,	all	p‐values	are	shown	in	Table	6.	We	can	see	that	
the	total‐degree	of	FEF,	 ITG,	and	TP	 in	both	hemispheres	 is	sig‐
nificantly	 affected	 by	 age.	 The	 boxplots	 of	 the	 total‐degree	 of	
the six brain regions over different factor groups are shown in 
Figure	11.	In	the	figure,	we	can	clearly	see	the	effect	of	age.

2.4 | Group analysis using connection strengths

The CDD from one brain region to another measures the con‐
nection strength in the brain network. We applied nonparametric 
ANOVA	 tests	 using	 the	 CDD	measures	�2

U→V
,	�2

V→U
,	 and	 the	 dif‐

ference Δ�2
U,V

=�2
U→V

−�2
V→U
,	where	

(
U,V

)
 represents a pair of brain 

regions. We suppose that the brain regions are ordered by the 
node	numbers	in	Table	4.

Table	7	 summarizes	 the	 results	 of	 the	 nonparametric	 ANOVA	
tests using the CDD measures from a brain region U to another 

F I G U R E  9  A	sample	connectivity	network	of	brain	regions	
for	a	participant	selected	from	the	group	of	Adult	and	F	(female).	
Each of the edges in the directed network was pruned if the local 
FDR	score	was	greater	than	or	equal	to	0.2,	that	is,	fdr

(
�U→V

)
≥0.2

.	The	“R”	and	“L”	in	the	node	labels	represent	the	right	and	left	
hemispheres,	and	the	letters	from	“A”	to	“G”	represent	the	brain	
regions	described	in	Table	4.	An	arrow	from	brain	regions	U to 
V	represents	the	difference	of	the	estimated	CDDs,	Δ�2

U,V
,	for	

𝜌2
U→V

>𝜌2
V→U
,	and	it	is	colored	in	red	if	Δ�2

U,V
 was significantly larger 

than	zero,	that	is,	LB
(
Δ𝜌2

)
>0
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region V with U	<	V.	In	this	section,	we	only	present	the	results	for	
the CDD measures having p‐values	 smaller	 than	 0.05	 due	 to	 the	
space	limit.	All	the	results	for	the	CDDs	from	U to V with U	<	V are 
available at https://github.com/namgillee/CDDforFMRI.

In	Table	7,	the	nine	CDD	connection	strengths	are	highly	signifi‐
cantly	affected	by	the	group	differences.	First,	the	CDD	from	R.M1	
to	L.FEF	and	the	CDD	from	R.FEF	to	L.FEF	are	significantly	decreas‐
ing	as	the	age	of	the	participant	group	 increases;	see	Figure	12b,d	
for boxplots to clearly compare the distributions between differ‐
ent	 age	groups	and	gender	groups.	The	CDD	 from	R.FEF	 to	L.M1	

and the CDD from R.FEF to R.TP are significantly high for the age 
group	 of	 7–12	 year‐old;	 see	 Figure	12e,f.	 The	CDD	 from	R.ITG	 to	
R.TP is significantly increasing as the age of the participant group 
increases;	see	Figure	12g.	Second,	the	CDDs	from	R.FEF	to	R.vPCC,	
from	R.vPCC	 to	 L.FEF,	 and	 from	L.vPCC	 to	 L.FEF	 are	 significantly	
affected by the interaction effect of age and gender factors; see 
Figure	12c,h,i	for	boxplots	of	the	CDD	values	between	the	different	
groups.	Next,	the	CDD	from	R.M1	to	L.aPFC	shows	significantly	dis‐
tinctive distributions between the gender groups; see Figure 8a for 
the boxplot to see the distribution change.

F I G U R E  1 0   Connectivity networks 
of brain regions for participants selected 
from each of the six groups classified by 
three age levels and two gender levels. 
The connectivity networks for every 
participant are available at http://github.
com/namgillee/CDDforFMRI.	The	“R”	
and	“L”	in	the	node	labels	represent	
the	right	and	left	hemispheres,	and	the	
letters	from	“A”	to	“G”	represent	the	brain	
regions	described	in	Table	4.	An	arrow	
from brain regions U to V represents the 
difference	of	the	estimated	CDDs,	Δ�2

U,V
,	for	

𝜌2
U→V

>𝜌2
V→U
,	and	it	is	colored	in	red	if	Δ�2

U,V
 

was	significantly	larger	than	zero,	that	is,	
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(
Δ𝜌2
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In Supporting Information Tables S2 and S3 and Figures 
S1	 and	 S2,	 we	 also	 provide	 the	 results	 of	 the	 nonparametric	
ANOVA	tests	using	�2

V→U
 and Δ�2

U,V
 for U	<	V,	where	we	present	

the results for p‐values	smaller	than	0.05	due	to	the	space	limit.	

All	 the	 results	 are	 available	 at	 https://github.com/namgillee/
CDDforFMRI. The results using �2

V→U
 with U	<	V in Supporting 

Information Table S2 are consistent with the results presented 
in this section.

Name

Kruskal–Wallis Quantile–ANOVA Median

Age Gender Age Gender Age Gender

R.A	M1 0.986 0.407 0.765 0.613 1.000 1.000

R.B FEF 0.036* 0.301 0.705 0.568 1.000 1.000

R.C aPFC 0.489 0.053· 0.612 0.462 1.000 1.000

R.D	V2 0.201 0.578 0.713 0.667 1.000 1.000

R.E	ITG 0.019* 0.482 0.523 0.627 1.000 1.000

R.F vPCC 0.552 0.136 0.870 0.493 1.000 1.000

R.G	TP 0.022* 0.463 0.470 0.550 1.000 1.000

L.A	M1 0.542 0.204 0.685 0.498 1.000 1.000

L.B	FEF 0.044* 0.192 0.638 0.520 1.000 1.000

L.C	aPFC 0.524 0.137 0.627 0.485 1.000 1.000

L.D	V2 0.275 0.577 0.732 0.788 1.000 1.000

L.E	ITG 0.048* 0.017* 0.655 0.420 1.000 0.021*

L.F	vPCC 0.590 0.116 0.790 0.487 1.000 1.000

L.G	TP 0.031* 0.090· 0.647 0.452 1.000 1.000

Note.	Bold	values	emphasize	the	statistically	significant	p‐values	(<0.05).
Signif. code: ***0.005 **0.01 *0.05 ·  0.1. 

TA B L E  6   p‐values	by	nonparametric	
ANOVA	tests	using	total‐degree

F I G U R E  11  Boxplots	for	comparing	distributions	of	total‐degree	between	groups
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TA B L E  7   p‐values	for	ρ2
U→V

	with	U	<	V

Connection

Kruskal–Wallis Quantile–ANOVA Median

Age Gender Age Gender Age Gender Age:Gender

R.M1	→	L.aPFC 0.421 0.078 · 0.525 0.008** 0.903 0.073 0.247

R.M1	→	L.FEF 0.027* 0.405 0.068 · 0.643 0.009** 0.902 0.072 · 

R.FEF→	R.vPCC 0.985 0.580 0.988 0.780 0.828 0.900 0.000***

R.FEF→	L.FEF 0.005*** 0.176 0.005** 0.425 0.017* 0.755 0.425

R.FEF→	L.M1 0.005*** 0.551 0.020* 0.507 0.052 · 0.258 0.189

R.aPFC→	R.TP 0.006** 0.925 0.008** 0.943 0.064	·	 0.653 0.016*

R.ITG→	R.TP 0.000*** 0.906 0.000*** 0.582 0.007** 0.874 0.250

R.vPCC→	L.FEF 0.297 0.366 0.378 0.662 0.089 · 0.028* 0.000***

L.vPCC→	L.FEF 0.381 0.106 0.098 · 0.233 0.066 · 0.081 · 0.005**

Note.	Bold	values	emphasize	the	statistically	significant	p‐values	(<0.01).
Signif. code: ***0.005 **0.01 *0.05 · 0.1.

F I G U R E  1 2   Boxplots for comparing distributions of �2
U→V

 with U	<	V between groups
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3  | DISCUSSION AND CONCLUSIONS

In	 this	 paper,	we	 proposed	 a	 new	method	 for	 discovering	 directed	
connectivity	between	whole‐brain	regions	using	fMRI	data,	which	is	
called copula directional dependence (CDD). The proposed method 
is	based	on	the	copula	regression	model	using	beta	regression,	which	
can effectively and flexibly detect nonlinear relationships between 
brain regions without strict assumptions on specific distributions.

Compared to dynamical system modeling approaches for dis‐
covering	effective	connectivity,	the	CDD	considers	realistic	cases	
where	 neuroimaging	 techniques	 such	 as	 fMRI	 have	much	 lower	
sampling	 frequencies	 compared	 to	 the	 speed	 of	 the	 underlying	
neurophysiological	 signal	 transfer,	 so	 that	 it	may	 be	 difficult	 to	
identify	 the	 true	 causal	 relationships	 in	 an	 fMRI	 study.	 Instead,	
the	CDD	 infers	 networks	with	bidirectional	 connectivity,	 so	we	
can compare the relative strengths of the directional depen‐
dences and provide statistical significance of the directions be‐
tween	 each	 pair	 of	 brain	 regions.	 In	 this	 paper,	we	 explained	 a	
practical process of using the ordinary nonparametric bootstrap 
for determining the significance of the directional dependences. 
The CDD can be interpreted as a directional dependence relation‐
ship	or	a	predictive	power,	which	can	be	further	interpreted	as	a	
causal relationship determined based on regression models using 
observational data.

The proposed method can be used for exploratory data analysis 
where	specific	task‐related	brain	regions	and	functions	are	previously	
unknown,	but	the	goal	can	be	a	search	for	“biomarkers”	related	to	spe‐
cific tasks or experimental conditions. We applied the CDD method to 
fMRI	data	of	129	participants	watching	a	Pixar	silent	animated	movie.	A	
noticeable characteristic of this data is that it includes participants of a 
wide	range	of	ages,	from	3	years	old	to	39	years	old.	We	computed	the	
CDD measures between every ordered pair of brain regions using pre‐
processed fMRI data and yielded bidirectional connectivity networks. 
Based	on	the	computed	CDD	measures	and	the	connectivity	networks,	
we	could	conduct	a	set	of	nonparametric	ANOVA	tests	for	group	dif‐
ferences and identify specific brain regions and connection strengths 
which are highly significantly affected by physiological conditions such 
as	age,	gender,	and	their	interaction	effect.

Specifically,	based	on	the	results	of	the	fMRI	data	analyses	for	
group differences presented in Section Group‐Level Analysis,	 we	
could	 identify	 three	 subnetworks	 of	 brain	 regions,	 each	 of	which	
consists of the brain regions (nodes) and directed connections 
(edges)	 which	 are	 highly	 significantly	 affected	 by	 age,	 gender,	 or	
their interaction effect as follows:

1. The age‐sensitive network has the directed connections whose 
strength changes over different age groups: 
a	 The	CDDs	of	the	connections	R.M1	→	L.FEF	and	R.FEF	→	L.

FEF are decreased for older age groups.
b	 The	 CDD	 of	 the	 connection	 R.ITG	→	R.TP	 is	 increased	 for	

older age groups.
2.	 In	addition,	the	node	degrees	of	FEF,	ITG,	and	TP	in	the	left	and	

right hemispheres are highly significantly affected by age.

3. The gender‐sensitive network	 has	 two	 brain	 regions,	 R.M1	 and	
L.aPFC,	with	the	directed	connection	R.M1	→	L.aPFC.	Its	connec‐
tion strength is higher for the male subgroups than for the female 
subgroups.

4.	 The	 interaction effect‐sensitive network	 has	 four	 brain	 regions,	
R.FEF,	L.FEF,	R.vPCC,	and	L.vPCC,	with	the	directed	connections	
R.FEF→R.vPCC, R.vPCC→L.FEF,	and	L.vPCC	→	L.FEF.

Since the suggested CDD measure can be computed and applied 
to	any	other	experimental	paradigms,	task	conditions,	and	numbers	of	
brain	regions,	it	can	be	widely	used	in	future	works	and	in	clinical	trials.
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