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Abstract 
Background: SARS-CoV-2 is the causal agent of the current 
coronavirus disease 2019 (COVID-19) pandemic. They are enveloped, 
positive-sense, single-stranded RNA viruses of the Coronaviridae 
family. Proteases of SARS-CoV-2 are necessary for viral replication, 
structural assembly, and pathogenicity. The approximately 33.8 kDa M
pro protease of SARS-CoV-2 is a non-human homologue and is highly 
conserved among several coronaviruses, indicating that Mpro could be 
a potential drug target for Coronaviruses. 
Methods: Herein, we performed computational ligand screening of 
four pharmacophores (OEW, remdesivir, hydroxychloroquine and N3) 
that are presumed to have positive effects against SARS-CoV-2 Mpro 

protease (6LU7), and also screened 50,000 natural compounds from 
the ZINC Database dataset against this protease target. 
Results: We found 40 pharmacophore-like structures of natural 
compounds from diverse chemical classes that exhibited better 
affinity of docking as compared to the known ligands. The 11 best 
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selected ligands, namely ZINC1845382, ZINC1875405, ZINC2092396, 
ZINC2104424, ZINC44018332, ZINC2101723, ZINC2094526, 
ZINC2094304, ZINC2104482, ZINC3984030, and ZINC1531664, are 
mainly classified as beta-carboline, alkaloids, and polyflavonoids, and 
all displayed interactions with dyad CYS145 and HIS41 from the 
protease pocket in a similar way as other known ligands. 
Conclusions: Our results suggest that these 11 molecules could be 
effective against SARS-CoV-2 protease and may be subsequently 
tested in vitro and in vivo to develop novel drugs against this virus.

Keywords 
SARS-CoV-2, protease, virtual screening, pharmacophore, inhibitors, 
natural compounds
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Introduction
Coronaviruses (CoVs) are enveloped, positive-sense, single-
stranded RNA viruses of the Coronaviridae family1. Based 
on their antigenic properties, they were classified into three 
main groups2: i) alpha-CoVs, responsible for gastrointestinal  
disorders; ii) beta-CoVs, which include: (a) Bat coronavirus  
(BCoV), (b) human severe acute respiratory syndrome (SARS) 
virus, (c) Middle Eastern respiratory syndrome (MERS) 
virus; and iii) gamma-CoVs, which mainly infect avian spe-
cies. The most well-known of these coronaviruses is the  
SARS-CoV, responsible for causing an outbreak in 2002–20033 
and MERS-CoV, causing severe respiratory symptoms, which  
was identified in 20124.

In December 2019, a series of unusual pneumonia cases caused 
by a novel coronavirus, recently renamed as SARS-CoV-2, was 
identified in Wuhan, China5–7. The disease caused by SARS- 
CoV-2 is now called COVID-19, and displays vast pathophysi-
ological aspects, which include symptoms, such as fever and 
coughing, and severe acute respiratory failure8. Since the infec-
tion crossed geographical barriers, the World Health Organization  
(WHO) declared a pandemic situation in March 2020, reaching  
a worldwide mortality rate of approximately 3%6.

The SARS-CoV-2 ORF1ab code for polyprotein 1ab (pp1ab), 
where the main protease Mpro is found, which is similar to a 
key enzyme in the processing of the picornavirus family poly-
protein. The protease Mpro, digests more than 11 conserved 
sites starting from its autolytic cleavage in pp1ab, and is a pro-
tein with extreme functional importance in the viral cycle9.  
Due to its great importance in the coronavirus cycle, the Mpro 
sequence of SARS-CoV-2 shows more than 90% similarity 
with the enzymes of other coronaviruses10 and shares 96% iden-
tity with SARS-CoV. Although Mpro is conserved among SARS-
CoVs, it has a loop that can make it difficult for an inhibitor 
to access the catalytic pocket, and mutations in this loop can  
generate drug resistance11. Thus, even though Mpro is one of the most 
conserved SARS-CoV group proteins, point mutational aspects 

can lead to a possible drug resistance, so that a wide range of  
inhibitor options is necessary for the treatment of COVID-19.

ORF1ab is characteristic of members of the Coronaviridae  
family12 and is equivalent to two-thirds of the SARS-CoV-2 
virus genome13. Each of these ORFs encodes a polyprotein (pp), 
which, when cleaved by proteases contained in the sequence, 
will generate 11 proteins (pp1a) and 5 proteins (pp1ab),  
respectively. The functions associated with these proteins 
are related to the virus replication processes and the modula-
tion of the immune response in the host, among other essential 
functions for the development of the pathogen within the host  
cell6.

Virus resistance to drugs can lead to the emergence of new epi-
demics, such as influenza A virus (IAV). In this case, two 
drug classes have been related: M2 channel inhibitors (aman-
tadine and rimantadine) and neuraminidase inhibitors (NAIs;  
oseltamivir, zanamivir, peramivir, and Laninamivir). Both drug 
classes act by inhibiting proteins that are located in the viral  
envelope, and this region is in greater contact with the external  
environment and is prone to suffer from greater evolutionary  
pressure and, consequently, mutations14. Drug resistance  
can occur when rapid viral replication is not repressed  
completely15. In contrast, virus proteases play a crucial role  
during virus replication and, therefore, they are a good target  
for drug discovery16.

During viral replication, proteases are necessary for the assem-
bly of the viral structure, and there have already been sug-
gested to have relationships with the mechanism of infection 
and pathogenicity of SARS-CoV-25,17. Proteases are enzymes 
found in all cellular organisms and viruses and are classified 
according to their catalytic nature. Proteases are divided into 
four groups: serine, cysteine, aspartyl and metalloproteases.  
Different types of proteases can perform the same activity through 
different catalytic mechanisms16, and a protease commonly 
has a binding site and a catalytic site that are very close in the  
protein structure16. Furthermore, proteases are present in several 
types of viruses and are widely found in human viruses18.

In coronaviruses, pp1 is essential for the replication of the 
virus, as it encodes the protease Mpro, which is also called 
the “main protease”19,20. Mpro is classified as a chymotrypsin-
like cysteine protease (3CLpro), EC: 3.4.19.12,10,19, and the  
Mpro protease of SARS-CoV-2, which has a mass of approxi-
mately 33.8 kDa20, is characterized by a self-cleavage  
protein21,22. It consists of a homodimer subdivided into two 
protomers (A and B) that have three distinct domains23. The 
first and second domains have antiparallel β-sheets while 
the third domain contains five α-helices forming a globular  
group, which is connected in parallel with the domain-II 
through a loop region20. The Mpro of SARS-CoV-2 has a cata-
lytic cleft, consisting of a Cys-His dyad in the place of the 
protease substrate interaction, which is situated between  
domains -I and -II20. It also has non-canonic specificity to 
the substrate in the C-terminal portion. Furthermore, there 
is no homologue of Mpro in the human genome20,24, and it is 
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highly conserved amongst coronaviruses25. Therefore, Mpro is a  
potential target for studying inhibitors.

Antiviral therapy considers three main approaches for the  
control and avoidance of viral infections: (a) vaccination, (b) 
stimulation of host resistance mechanisms, and (c) antiviral 
chemotherapy. Antivirals are drugs that inhibit certain virus- 
specific events, such as binding to host cells, which is how  
SARS-Cov-2 binds to ACE2 and TMPRSS226, and MERS binds 
to the DPP415 receptor27. Antiviral chemotherapy can involve 
interfering with any or all of these viral replication steps. Most 
antiviral drugs are primarily targeted to the synthesis of nucleic  
acids in viruses. As viral replication and host cell processes 
are closely linked, one of the main problems of viral therapy  
would be to find a drug capable of being selectively toxic  
only for the virus. Antivirals are frequently more effective in 
prevention than in the treatment itself, and are ineffective in  
eliminating latent or non-replicating viruses28. In addition, when 
selecting an antiviral drug, viral resistance must also be consid-
ered since it is one of the main causes of therapeutic failure.

The main classes of antiviral drugs used in clinical ther-
apy to treat systemic viral infections include: a) synthetic  
nucleosides (e.g. acyclovir, famciclovir, ganciclovir, valacyclo-
vir, and valganciclovir; b) pyrophosphate analogs (e.g. foscarnet);  
c) drugs for syncytial virus and influenza A (e.g. amantadine  
and rimantadine hydrochloride and ribavirin); d) nucleoside 
reverse transcriptase inhibitors (NRTI; e.g. abacavir, didanosine,  
emtricitabine, stavudine, lamivudine, zidovudine, tenofovir in 
combination with NRTI); e) non-nucleoside reverse transcriptase 
inhibitors (NNRTI; e.g. delavirdine, efavirenz, nevirapine);  
and f) protease inhibitors (e.g. amprenavir, atazanavir, daru-
navir, fosamprenavir, lopinavir and ritonavir, nelfinavir 
mesylate, saquinavir mesylate, ritonavir, indinavir sulfate and  
tipranavir)7,29–31

Computational studies of inhibitors that may reduce viral  
replication is a fast way for proposing drug candidates that 
can contribute to a reduction in severity and spread of the  
disease. Moreover, the use of antiviral compounds can assist 
in the prophylaxis of SARS-CoV-2 and reduce its spread32. 
Therefore, screening for potential viral protease inhibitors may 
assist in the selection of new drugs with antiviral potential for  
SARS-CoV-2.

Methods
Ligand screening
For this study, we employed both ligand-based virtual screen-
ing (LBVS) and receptor-based virtual screening (RBVS) 
approaches, considering 50,000 structures of natural compounds 
from the ZINC Database, which has more than 900 million  
structures deposited, and includes millions of drug-like com-
pounds that can be obtained for in vitro and in vivo tests33. The 
ZINC molecules that were downloaded were those restricted 
to absorption, distribution, metabolism, excretion and toxic-
ity characteristics (ADMET) for drug likeness: no more than 

5 hydrogen bond donors, no more than 10 hydrogen bond  
acceptors, molecular weight between 160 and 500 Daltons and 
logP between -0.4 and 5.634,35. For LBVS, we defined four known 
drugs divided in the following groups: 1) peptide-like crystal-
lographic ligands (N3 and OEW); and 2) repurposed drugs 
(remdesivir (nucleoside) and hydroxychloroquine) for chemical  
comparison with our database.

Crystallographic ligand structures were obtained from their 
corresponding PDB files 6LU7 (N3) and 6Y7M (OEW).  
Additionally, these structures were used for re-docking valida-
tions. In the LBVS process, we used a simple run with vROCS  
(OpenEye)36 for generating queries with the pharmacophoric 
map with the stereochemical characteristics for each known  
ligand. Another option for pharmacophore generation and search-
ing is the free software PharmaGist37. Afterwards, we submit-
ted each ligand query for searching similar pharmacophore-like  
molecules using the Tanimoto Combo algorithm38,39 with a cut-
off of 1.0, which returned the best 1,000 hits for each round. This  
procedure was repeated three times for each query, and,  
subsequently, redundant structures were discarded, generating, 
in the end, a total of 4,000 similar molecules for the docking  
experiment.

Docking studies
Considering PDB validation indices as crystallographic  
resolution, Ramachandran outliers, clash score, and release 
date, we selected the structure 6LU7 for RBVS, which is com-
plexed with the peptide-like inhibitor N320. Furthermore, 6LU7  
and 6Y7M40 were used for re-docking validations with its  
corresponding crystallographic inhibitors.

The best LBVS hits were submitted to molecular docking  
calculations with 6LU7 structure using Autodock 4.2 virtual  
screening protocol41. Ligand structures were prepared for  
virtual screening using Raccoon plugin42 for Autodock Tools42 
according to the standard protocol39, as well as the 6LU7 
structure. The gridbox was defined on the active site region,  
considering the amino acids THR 190, GLU 166, GLN 189,  
GLY 143, HIS 163, HIS 164, CYS 145, PHE 140, and with 
accordance with previous studies with the crystallographic  
structure of the SARS-CoV-2 main protease20,40,43. Each docking  
run was performed three times using the following specifica-
tions: flexible docking and Lamarckian Genetic Algorithm with 
2,500,000 generations. Afterwards, the 10 best docking hits were 
selected using the Autodock Tools script summarize_results4.py, 
which can classify the best hits according to their lowest energy 
clustering conformations and root mean square deviation  
(RMSD) values. The results were organized according to the 
ligand pharmacophore relationship with the known structures  
in Table 2. Docking and re-docking results were evaluated 
at each docking position inside the 6LU7 active site using 
Pymol 2.144 and UCSF Chimera 1.1445 in order to confirm  
molecule interactions with the amino acids within the protease  
active site. Furthermore, 2D interaction maps were generated by  
Discovery Studio 201946. Another option for 2D map generation  
is the LigPlot+ software47.
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Figure 1. Pharmacophore representation for each known drug used for virtual screening.  (A) OEW, (B) N3, (C) remdesivir and 
(D) hydroxychloroquine. In red spheres: hydrogen acceptors; blue spheres: hydrogen donors; yellow spheres: hydrophobic; and green 
spheres: aromatic.

Table 1. Pharmacophoric characteristics for each known inhibitor used for 
screening natural ligands from the ZINC Database.

Inhibitor Hb.A. Hb.D. Aromatic Hydrophobic M.W. LogP

OEW 7 5 3 1 663.8 -0.71

N3 6 4 3 2 680.8 2.32

Remdesivir 9 1 4 2 602.6 1.9

Hydroxychloroquine 2 2 2 0 335.9 3.6
Hb.A. = hydrogen acceptor; Hb.D. = hydrogen donor; M.W. = molecular weight.

Results
LBVS
Different pharmacophoric characteristics were generated for each 
known ligand (Figure 1), which allowed us to find molecules 
included in different chemical classifications and amplify the 
number of possible drug candidates. Table 1 shows the pharma-
cophoric characteristics for each known 6LU7 inhibitor, which 
permitted us to find natural ligands with pharmacophore-like  

regions. Additionally, we used the ADMET characteristics  
for molecular weight and LogP that are important for molecular 
druggability.

Ligand based virtual screening and docking calculations of 
ZINC database compounds revealed the 40 best pharmacophore- 
like ligands that belong to different chemical classes, namely  
beta-carboline alkaloids, indole alkaloids, lupin alkaloids, harmala 
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Table 2. The 40 best molecule hits of COVID-19 main protease inhibitor candidates from a dataset of 50,000 
natural compounds from the ZINC Database.

Known Drug Ligand
Energ. 

Binding 
(Kcal/Mol)

Classification RMSD 
Å

Pred. 
IC50 
(uM)

Exp. IC50 
(uM)

Tanimoto 
combo

OEW

OEW* -8.86 Peptide-like 1.97 0.320 0.670 -

ZINC1845382 -10.2 β-carboline Alkaloid 1.12

ZINC1875405** -10.1 β-carboline Alkaloid 1.00

ZINC2092396 -9.8 β-carboline Alkaloid 1.20

ZINC1900463 -9.8 β-carboline Alkaloid 1.00

ZINC2149492 -9.8 β-carboline Alkaloid 1.12

ZINC2112405 -9.7 β-carboline Alkaloid 1.10

ZINC2095426 -9.7 β-carboline Alkaloid 1.00

ZINC2094306 -9.6 β-carboline Alkaloid 1.00

ZINC2144677 -9.6 Anthracene 1.10

ZINC1095868 -9.5 Harmala Alkaloids 1.13

N3* -9,77 Peptide-like 1.94 0.07 4.67 -

N3

ZINC2104482 -10.1 β-carboline Alkaloid 1.10

ZINC3984030 -9.9 Polyflavonoid 1.20 

ZINC1531664 -9.8 Polyflavonoid 1.10

ZINC2152199 -9.8 β-carboline Alkaloid 1.00

ZINC4096847 -9.6 Flavonoid-3-O-
glycoside 1.20

ZINC3947428 -9.6 Flavonoid-3-O-
glycoside 1.20

ZINC2092587 -9.6 β-carboline Alkaloid 1.14

ZINC2115924 -9.5 β-carboline Alkaloid 1.00

ZINC2110081 -9.5 Lupin Alkaloid 1.00

ZINC1898165 -9.5 Benzofuran 1.00

HCQ -7.90 4-aminoquinoline -

Hydroxychloroquine 
(HCQ)

ZINC2101723 -10.2 β-carboline Alkaloid 1.10

ZINC2094526 -9.8 β-carboline Alkaloid 1.14

ZINC2094304 -9.6 β-carboline Alkaloid 1.16

ZINC2091604 -9.4 β-carboline Alkaloid 1.00

ZINC2113496 -9.4 β-carboline Alkaloid 1.10

ZINC1460216 -9.3 Angular 
Pyranocoumarin 1.12

ZINC2123008 -9.2 β-carboline Alkaloid 1.10

ZINC682759 -9.2 Harmala Alkaloids 1.00

ZINC2105243 -9.2 β-carboline Alkaloid 1.00

ZINC2111696 -9.1 β-carboline Alkaloid 1.20
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Known Drug Ligand
Energ. 

Binding 
(Kcal/Mol)

Classification RMSD 
Å

Pred. 
IC50 
(uM)

Exp. IC50 
(uM)

Tanimoto 
combo

REMD -8.28 Nucleoside -

Remdesivir (REMD)

ZINC2104424 -10.6 β-carboline Alkaloid 1.15

ZINC1875405** -10.1 β-carboline Alkaloid 1.22

ZINC44018332 -10.0 Polyflavonoid 1.20

ZINC2148932 -9.9 β-carboline Alkaloid 1.00

ZINC2156531 -9.9 Indoles Alkaloid 1.00

ZINC3197535 -9.9 Polyflavonoid 1.00

ZINC2102620 -9.9 Indoles Alkaloid 1.00

ZINC2123402 -9.9 β-carboline Alkaloid 1.00

ZINC2149488 -9.9 β-carboline Alkaloid 1.10

ZINC1531664 -9.9 Polyflavonoid 1.00
*Re-docked crystallographic structures.

**Repeated ligand between OEW and Remdesivir pharmacophores.

alkaloids, polyflavonoids, anthracenes, angular pyranocoumarins,  
and flavonoid-3-O-glycosides. Table 2 shows the detailed results  
on the average affinity energies, ZINC identification, and 
chemical classification of each selected  ligand.

For selecting the best pharmacophore-like drug-candidates, we 
considered evaluating lower affinity energy values, as well as 
interactions with residues of the active site within the target. 
As can be seen in Figure 2A, all pharmacophore-like OEW  
ligand molecules formed a complex with the active pocket 
of 6LU7. The three best OEW ligands (ZINC1845382, 
ZINC1875405, ZINC2092396) are shown in complex with 
COVID-19 protease in Figure 2B–D with the detailed 2D inter-
action map. In this case, these top three hits are included in 
the beta-carboline alkaloid class.

RBVS
The intermolecular interactions carried out by ligand  
ZINC1845382 exhibited a hydrogen bond with the residue of  
the active PHE140 protease site. The catalytic residues CYS145 
and HIS41 represented interactions of the type π, π-π stacked  
and π-alkyl with the entire beta-carboline group, which was  
composed of three hydrophobic rings. The remaining residues  
were of the π-sigma type, hydrogen-carbon acceptors,  
and halogen acceptors from residues THR25, THR26, as well 
as other residues from the active site GLU166, GLN189,  
GLY143, HYS164, respectively.

Ligand ZINC1875405 represented two hydrogen bonding 
interactions with residues THR25 and PHE140. Additionally, 
four more polar interactions of the type π-π stacked, π-aquil, 

aquil and π-sulfur with residues HIS41, MET49, CYS145 and  
MET165, respectively, were formed. The other interactions  
were of hydrophobic van der Waals type.

Ligand ZINC2092396 interacted by hydrogen interaction 
with the residue PHE140, π and π-alkyl with CYS140, π-π  
stacked and π-alkyl HIS41, and van der Waals with GLN189, 
GLY143, HIS164, GLU166. Other interactions occurred with 
hydrogen bonds by the ligand nitrobenzene group with the 
ASN142 residue and a π-sulfur interaction of the beta-carboline  
group with MET165 residue.

The remdesivir pharmacophore-like search returned two  
beta-carboline alkaloids (ZINC2104424 and ZINC1875405), 
as well as one polyflavonoid (ZINC44018332), which inter-
acted with the COVID-19 main protease active pocket showing  
affinity energies below -10.0 kcal/Mol. Figure 3A–D shows 
the details of all ligand interactions, as well as the top three  
molecules interaction maps.

Ligand ZINC2104424 also occupied the region of the active 
site (Figure 3B), showing polar interactions π, π-alkyl, π-π 
stacked and π-sulfur types from beta-carboline with HIS41, 
MET49, CYS145, and MET165 amino acids. Moreover, an  
interaction of THR26 halogen with the ligand fluorobenzene 
group also occurred. Other hydrophobic interactions were van 
der Waals, mostly with residues of the active site: PHE140, 
GLY143, HIS163, HIS164, GLU166 and GLN189.

Ligand ZINC1875405 (Figure 3C) displayed three hydrogen 
interactions with the indole group, and two oxygen interactions 
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Figure 2. (A) SARS-CoV-2 main protease complexed with the 10 best hits for OEW pharmacophore molecules. Protomer A is represented 
in marine blue surface and protomer B in dark pink surface. ZINC1845382 in cyan (B), ZINC1875405 in dark pink (C) and ZINC2092396 in 
purple (D) inside 6LU7 binding site and their 2D interaction maps with pocket amino acids.

from a nitrobenzene of THR25, PHE140 AND GLN166,  
respectively. Several van der Waals-type hydrophobic interac-
tions were found with GLY143, HIS164 and GLN189 amino 
acids. Furthermore, four polar interactions (π, π-alkyl, π-π 
stacked and π-sulfur) with residues HIS41, MET49, CYS 145 and  
MET165, respectively, were also retrieved.

Ligand ZINC2092396 (Figure 3D) exhibited two hydrogen 
interactions with HIS163 and THR26 by its hydroxyl 
from the flavonoid nucleus, as well as four more π-donor  
hydrogen bonding interactions with residues TYR54, PHE140, 
GLY143 and GLU166. Besides, three π-alkyl and π-sulfur 
interactions made with MET49, CYS145 and MET165 were 
also retrieved. Other hydrophobic interactions were of van der  
Waals type.

Figure 4 shows the interactions between 6LU7 active sites and  
the three best hits from derived molecules of  hydroxychloroquine 
pharmacophore (ZINC2101723, ZINC2094526, ZINC2094304). 
These complexes displayed affinity energies varying from 
-10.2 kcal/Mol to -9.6 kcal/Mol, and all the ligands were 
classified as beta-carboline alkaloid derivatives.

The beta-carboline group of the ligand ZINC2101723  
(Figure 4B) formed four π-alkyl, alkyl and π-sulfur type inter-
actions with HIS41, MET49, CYS145 and MET165 residues,  
as well as other hydrophobic interactions from its naphthalene 
and beta-carboline groups with the active site amino acids 
PHE140, GLY143, HIS163 E164, GLU166 and GLN189. 
Ligand ZINC2094526 (Figure 4C) displayed a hydrogen 
bond interaction with PHE140 by its nitrobenzene group.  
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Figure 3. (A) SARS-CoV-2 main protease complexed with 10 best hits for remdesivir pharmacophore molecules. Protomer A is represented 
in green surface, and protomer B in orange surface. ZINC2104424 in cyan (B), ZINC1875405 in wheat (C) and ZINC44018332 in violet  
(D) inside 6LU7 binding site and their 2D interaction maps with pocket amino acids.

Five polar interactions (π-sigma, π-aquil, π-π stacked and  
π-sulfur) were observed with residues THR25, HIS41, MET49, 
CYS145 and MET165. For ligand ZINC2094304 (Figure 4D), 
two hydrogen bonds with residues PHE140 and GLU166 by 
its nitrobenzene group were formed. In addition, this ligand  
formed four polar interactions (π-π stacked, π-alkyl, alkyl and 
π-sulfur) with residues HIS41, MET49, CYS145 and MET165, 
respectively. Other van der Waals type interactions could also  
be identified.

The N3 pharmacophore revealed one beta-carboline alka-
loid (ZINC2101723) and two polyflavonoids (ZINC2094526 
and ZINC2094304). This group displayed affinity ener-
gies ranging from -9.8 kcal/Mol to -10.1 kcal/Mol. In  

Figure 5, the best complex interactions with the protease, as well  
as their positions inside the binding pocket are depicted.

Ligand ZINC2104482 (Figure 5B) formed a large number 
of hydrophobic interactions (14 van der Waals interactions), 
surrounding the active site amino acid, such as GLY143, 
HIS164, GLU166 and GLN189. Furthermore, this ligand  
formed three π-alkyl and alkyl bonds with HIS41,  
MET49, CYS145 residues. Ligand ZINC3984030 (Figure 5C) 
exhibited three hydrogen bonds with THR26, TYR54 and 
GLU166 residues by OH groups of flavonoid nuclei. A π-donor 
hydrogen bond interaction of the GLY143 residue was also 
observed. Moreover, three polar interactions (π-π stacked, π-alkyl  
and π-sulfur) were identified with HIS41, CYS145 and 
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Figure 4. (A) Best hits for hydroxychloroquine pharmacophore. Protomer A is represented using a violet surface, and protomer B in marine 
blue surface. ZINC2101723 in yellow (B), ZINC2094526 in red (C), and ZINC2094304 in dark blue (D) inside 6LU7 binding site and their 2D 
interaction maps with pocket amino acids.

MET165. The rest of the interactions were van der Waals 
type. Ligand ZINC1531664 (Figure 5D) showed a hydro-
gen bond by its OH group TYR54. Additionally, four π-donor  
hydrogen bond and hydrogen carbon bond interactions with 
residues PHE140, GLY143, GLU166 also occurred. Two polar 
interactions of the type π-alkyl and π-sulfur were observed 
with MET49, CY145, and MET165, and the other hydrophobic  
interactions were of van der Waals type.

Re-docking validation experiments
Crystallographic ligands N3 and OWE were re-docked with 
their respective Mpro structures 6LU7 and 6Y7M. As can be 
seen in Figure 6A, both N3 and OEW molecules bound into 
similar positions in comparison to their original crystallo-
graphic forms. The Figure 6B depicts the best clustering con-
formations graph for N3 with a free energy of binding ranging  
from -1.83 kcal/Mol to -9.7 kcal/Mol. Figure 6C shows the 

superposition between the crystalized and re-docked N3 
structure. Even though N3 is peptide-like with 13 routable 
bonds, it presented an RMSD of 1.94 Angstroms for its best  
conformation (Table 2). OEW re-docking is shown in Figure 6D 
in the same way as for N3 where both the crystallized and 
docked structures bound into the same pocket. Conformational 
population of OEW clustering results returned a free energy of  
binding ranging from -7.0 kcal/Mol to -11.5 kcal/Mol but, on the 
other hand, the structure with binding energy of -8.86 kcal/Mol 
exhibited the smallest RMSD value (Figure 6E). Additionally, 
OEW presented an RMSD of 1.97 Å in comparison to its  
crystallized form (Figure 6F).

Discussion
Docking results revealed 39 pharmacophore-like natural lig-
ands, which can be used as drug candidates for inhibiting 
SARS-CoV-2 main protease activity. Furthermore, we ranked 
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Figure 5. Virtual screening results for the N3 pharmacophore. (A) COVID-19 main protease is represented in cyan (protomer A) and 
dark salmon (protomer B). The best complexes are formed by the alkaloid ZINC2101723 in pink (B) and two polyflavonoids ZINC2094526 
in marine blue (C) and ZINC2094304 in lemon green (D), and their 2D interaction maps with pocket amino acids are shown below each 
complex.

the three best candidates for each known ligand pharmacophore 
as the best potential drug molecules (and totaling 12 molecules) 
for in vitro and in vivo assays purposes, but not excluding the  
other 28 molecules. For these cases, ligands are included in 
two most expressive chemical classes: β-carboline alkaloids 
and polyflavonoids. Additionally, all ligands exhibiting better 
affinity energies than the known drugs was used as references  
for construction of pharmacophoric characteristics: OEW6,  
remdesivir48, hydroxychloroquine49, and N320. Furthermore, all 
of these molecules used as start points for pharmacophore gen-
eration were previously reported in docking studies as probable 
Mpro inhibitors50–53, as well as in in vitro and in vivo studies.

The groups of OEW and hydroxychloroquine pharmacoph-
ores presented their three most promising ligands classified 

as β-carboline alkaloids. This class of molecules is reported 
by different authors with antiviral activities. According to 
Gonzalez et al.45, β-carboline Alkaloids are widely distributed in  
nature, and its derivatives exhibited activity against Herpes  
Simplex Viruses by blocking virus replication. Additionally, 
Gonzalez et al.45 demonstrated the action of these alkaloids 
in dengue virus RNA replication. Furthermore, several other 
studies suggest alkaloid activity against viral proteases54–56.  
Similarly, remdesivir pharmacophore revealed two β-carboline  
alkaloids (ZINC2104424 and ZINC1875405). In addition, we 
detected a polyflavonoid (ZINC44018332) as one probable  
active molecule from a different class against SARS-CoV-2 
main protease, and several authors have already described  
flavonoid activity as viral protease inhibitors57–59, as well as 
antiviral molecules acting in different target classes58,60–62. 
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Figure  6.  Re-docking  validations  for  N3  and  OEW.  (A) crystallographic (hot pink) and re-docked (green) N3 inhibitor of the 6LU7  
SARS-CoV-2 Mpro inside its binding pocket; (B) N3 docking best clustering conformations; (C) aligned N3 crystallized (yellow) and re-docked 
(cyan). (D) crystallographic (pink) and re-docked (purple) OEW inhibitor of the 6LU7 SARS-CoV-2 Mpro inside its binding pocket; (E) OEW 
docking best clustering conformations; (F) aligned OEW crystallized (green) and re-docked (red).
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N3 pharmacophore displayed two flavonoids as the best  
molecules and just one β-carboline alkaloid. These results 
indicate that both classes of molecules could be explored for 
in vitro and in vivo tests to evaluate their potential antiviral  
activities for not only SARS-CoV-2 but also for other viruses of  
medical interest.

Other classes of molecules were found in our screening for 
protease activity that were previously described in antiviral  
studies: anthracenes63, angular pyranocoumarin64,65, and  
flavonoid-3-O-glycoside66. Interaction maps of these complexes  
are available as Extended data67.

All the known ligands (OEW, remdesivir, hydroxychloroquine  
and N3), which were used for validating our computational  
screening, exhibited worse affinity energies in docking  
calculations (ranging from -7.8 kcal/Mol to -5.2 kcal/Mol) than 
the screened natural compounds (ranging from -10.6 kcal/Mol 
to -9.1 kcal/Mol). Moreover, all the 40 selected ligands docked 
inside Mpro active site, as previously described in several  
antiviral studies, and interacted in the region of connection  
between domains I and II with amino acids HIS41 and  
CYS14519,20,23,40,43,68.

Novel Mpro ketoamide inhibitors were recently proposed, 
including the OEW ligand (ligand 13b) that was used in 
our study, and the authors detected a reduction in RNA  
replication in human cells infected with SARS-CoV-2, and 
also described binding interactions with its main protease. 
Besides, the same study indicated a ketoamide as a probable  
drug candidate against this virus40.

In a recent study, authors have proposed the peptidomi-
metic molecule N3 as a drug candidate against COVID-19, 
and described its binding interactions with the crystallo-
graphic structures of SARS-CoV-2 and other viral proteases.  
Their study reported that N3 can bind in all the active pock-
ets from the main proteases of HCoV-NL63, SARS-CoV, and  
MERS-CoV69.

Other molecules have also been tested as antivirals for effec-
tiveness in inhibiting SARS-CoV-2 replication in cell culture. 
Two drugs exhibited a promising inhibitory effect: remdesi-
vir, an experimental drug developed for the treatment of Ebola 
virus infection43,70, and hydroxychloroquine, a drug known  
for its effectiveness in the treatment of malaria and autoim-
mune diseases43. Remdesivir is an adenosine triphosphate ana-
logue initially described in the literature in 2016 as a potential 
treatment for Ebola71, and this drug has been indeed consid-
ered as a potential treatment for SARS-CoV2,70. Notably,  
remdesivir has demonstrated antiviral activity in the treat-
ment of MERS and SARS72 in animal models, both of which are 
caused by coronaviruses73. Pharmacophore models are widely 
used in medicinal chemistry with the aim of amplifying the  
number of drug candidates, and according to this definition, 
they are represented by a 3D arrangement of abstract features 
instead of chemical groups74. Remdesivir is a nucleotide ana-
logue with capacity to inhibit RNA polymerase (Table 1): this 
molecule displayed almost the same pharmacophoric features 

(Figure 1) as for N3 and OEW, and, besides, both of them have 
already tested experimentally. Additionally, as can be seen 
in Table 2, the best hit is ZINC1875405, which was found in  
both OEW and remdesivir pharmacophore searching, and this 
could be explained by their similar characteristics. Hydroxy-
chloroquine is an aminoquinoline-like chloroquine75. It is a drug  
commonly prescribed for the treatment of uncomplicated malaria, 
rheumatoid arthritis, chronic discoid lupus erythematosus,  
and systemic lupus erythematosus76. Chloroquine and hydrox-
ychloroquine have been investigated for the treatment of  
SARS-CoV-277, and they have been reported to have direct  
antiviral effects, such as inhibition of flaviviruses, retroviruses 
(like HIV), and many coronaviruses. Additionally, hydroxychlo-
roquine is capable of inhibiting the zika virus NS2B-NS3 pro-
tease, and exhibited good viral replication blocking in infected 
JEG3 cells in concentration of 80 µM of hydroxychloroquine78.  
Furthermore, the use of chloroquine and its analogues can 
be corroborated by a recent study showing that, with EC

50
 

of 1.13 µmol/L and selectivity index (SI) greater than 88,  
chloroquine can effectively inhibit SARS-CoV-2 at the cellular  
level79. Its effectiveness in the human body for SARS-CoV-2 
infection; however, has not yet been clinically proven. Another 
in silico study with chloroquine detected its interactions  
with viral NSP-3B type protease80.

The co-crystallized molecules N3 and OEW are both pep-
tide analogs, which presented RMSD values of 1.94 Å and 
1.97 Å in re-docking experiments, respectively. Generally, 
docking validations protocols use co-crystallized ligands, to 
test the accuracy of the program to predict the correct ligand  
docking poses in comparison to known conformations, and its 
RMSD varies 1.5 or 2 Å depending on ligand size for being 
considering acceptable81. The number of studies using pro-
tein-peptide docking has been increasing rapidly, followed 
by the number of applied drug design programs and models.  
On the other hand, the use of RMSD validations with experi-
mental structures is not always the best criterion of docking suc-
cess, once it can be influenced by resolution quality, as well  
as the number of peptide residues82. Thus, we can con-
sider that N3 and OEW docking validations are in acceptable  
RMSD ranges.

Conclusions
In our study, we compared the pharmacophores of four well-
tested human coronavirus (including SARS-Cov-2) main pro-
tease drug candidates to 50,000 structures of natural compounds 
from the ZINC Database. The three best molecules selected for 
each pharmacophore class are mainly classified as β-carboline  
alkaloids, and polyflavonoids. The best ligand-SARS-CoV-2 
complexes exhibited better affinity energies in comparison to 
drug molecules used in this study. Furthermore, all the screened 
molecules bonded between domains -I and -II and formed  
interactions with the catalytic residues HIS41 and CYS145 in  
similar positions as previously described from other authors in 
viral protease inhibitor studies. Altogether, we propose these 
compounds as possible SARS-CoV-2 protease inhibitors, which 
can be used for subsequent in vitro and in vivo tests for finding  
novel drug candidates.
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Data availability
Source data
Structures of natural compounds were downloaded from the  
ZINC Database.

Crystal structures of COVID-19 main protease were down-
loaded from the Protein Data Bank, accession numbers 6LU7  
(in complex with N3) and 6Y7M (with OEW).

Extended data
Harvard Dataverse: Replication Data for: Computational screen-
ing for potential drug candidates against SARS-CoV-2 main  
protease. https://doi.org/10.7910/DVN/GYFXA067.

This project contains the following extended data: 

•     2D interaction maps of all OEW pharmacophore-like 
ligands (PNG).

•     2D interaction maps of all Remdesivir pharmacophore-like 
ligands (PNG).

•     2D interaction maps of all Hydroxychloroquine pharma-
cophore-like ligands (PNG).

•     2D interaction maps of all N3 pharmacophore-like ligands 
(PNG).

Extended data are available under the terms of the Creative 
Commons Zero “No rights reserved” data waiver (CC0 1.0  
Public domain dedication).
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Please list the software used for generating the docking work. 
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Could you please improve the figure axis of 6 bars for clarity (B and E)? 
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Could you please add a short paragraph on the novelty of this approach of molecular 
docking? 
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Could you please indicate if any of the reported drugs have been used in clinical trials 
originated from the docking approach? 
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Would it be possible to show the pharmacophore score for both acceptors and donners for 
ZINC? 
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COVID-19 pandemic: an overview of epidemiology, pathogenesis, diagnostics and potential 
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Some minor comments: 
Please list the software used for generating the docking work. 
 
The docking protocol is described in the Methods section (Docking Studies subsection)  
  
Could you please improve the figure axis of 6 bars for clarity (B and E)? 
 
Figure 6 (B and E) is part of Autodock 4 results, visualized at Autodock Tools program. This 
program doesn’t give us a good resolution docking energy graph. We improved the figure 
quality using an image editor program in this new version. Thank you for your suggestion.  
  
Could you please add a short paragraph on the novelty of this approach of molecular 
docking? 
 
Our focus in this work was using pharmacophore modeling in order to find new possible 
ligand Mpro inhibitors, as well as repurpose approved drugs for SARS-CoV-2. In this case, 
we used a common docking approach for confirming our pharmacophore predictions. All 
docking protocol is described in the Methods section. Thank you very much for your 
suggestion. 
 
Could you please indicate if any of the reported drugs have been used in clinical trials 
originated from the docking approach? 
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Would it be possible to show the pharmacophore score for both acceptors and donners for 
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table 2, showing the TC score for each best-selected ligand. Thank you very much for 
this suggestion.  
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"Computational screening for potential drug candidates against the SARS-CoV-2 main protease" is 
overall a timely interesting review focused on COVID pandemic. 
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Probing 3CL protease: Rationally designed chemical moieties for COVID-194.○
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COVID-19 pandemic: an overview of epidemiology, pathogenesis, diagnostics and potential 
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I am confident that this review will attract a good level of readership from both the public can the 
research community. 
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