

The Diagnostic Role of ¹⁸F-Choline, ¹⁸F-Fluciclovine and ¹⁸F-PSMA PET/ CT in the Detection of Prostate Cancer With Biochemical Recurrence: A Meta-Analysis

Rang Wang[†], Guohua Shen[†], Mingxing Huang and Rong Tian^{*}

OPEN ACCESS

Edited by:

Harun Ilhan, Hospital of the University of Munich, Germany

Reviewed by:

Matthias Miederer, Johannes Gutenberg University Mainz, Germany Murat Tuncel, Hacettepe University, Turkey

*Correspondence:

Rong Tian rongtiannuclear@126.com

⁺These authors have contributed equally to this work

Specialty section:

This article was submitted to Cancer Imaging and Image-directed Interventions, a section of the journal Frontiers in Oncology

Received: 23 March 2021 Accepted: 31 May 2021 Published: 17 June 2021

Citation:

Wang R, Shen G, Huang M and Tian R (2021) The Diagnostic Role of ¹⁸F-Choline, ¹⁸F-Fluciclovine and ¹⁸F-PSMA PET/CT in the Detection of Prostate Cancer With Biochemical Recurrence: A Meta-Analysis. Front. Oncol. 11:684629. doi: 10.3389/fonc.2021.684629 Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China

Background: Diagnosing the biochemical recurrence (BCR) of prostate cancer (PCa) is a clinical challenge, and early detection of BCR can help patients receive optimal treatment. We conducted a meta-analysis to define the diagnostic accuracy of PET/CT using ¹⁸F-labeled choline, fluciclovine, and prostate-specific membrane antigen (PSMA) in patients with BCR.

Methods: Multiple databases were searched until March 30, 2021. We included studies investigating the diagnostic accuracy of ¹⁸F-choline, ¹⁸F-fluciclovine, and ¹⁸F-PSMA PET/CT in patients with BCR. The pooled sensitivity, specificity, and detection rate of ¹⁸F-labeled tracers were calculated with a random-effects model.

Results: A total of 46 studies met the included criteria; 17, 16, and 13 studies focused on ¹⁸F-choline, fluciclovine, and PSMA, respectively. The pooled sensitivities of ¹⁸F-choline and ¹⁸F-fluciclovine were 0.93 (95% CI, 0.85–0.98) and 0.80 (95% CI, 0.65–0.897), and the specificities were 0.91 (95% CI, 0.73–0.97) and 0.66 (95% CI, 0.50–0.79), respectively. The pooled detection rates of ¹⁸F-labeled choline, fluciclovine and PSMA were 66, 74, and 83%, respectively. Moreover, the detection rates of ¹⁸F-labeled choline, fluciclovine, and PSMA were 35, 23, and 58% for a PSA level less than 0.5 ng/ml; 41, 46, and 75% for a PSA level of 0.5–0.99 ng/ml; 62, 57, and 86% for a PSA level of 1.0–1.99 ng/ml; 80, 92, and 94% for a PSA level more than 2.0 ng/ml.

Conclusion: These three ¹⁸F-labeled tracers are promising for detecting BCR in prostate cancer patients, with ¹⁸F-choline showing superior diagnostic accuracy. In addition, the much higher detection rates of ¹⁸F-PSMA showed its superiority over other tracers, particularly in low PSA levels.

Systematic Review Registration: PROSPERO, identifier CRD42020212531.

Keywords: PET/CT, ¹⁸F, choline, fluciclovine, prostate-specific membrane antigen, prostate cancer

INTRODUCTION

Prostate cancer (PCa) is one of the most common malignancy in men worldwide and is also the fifth major cause of cancer-related death in men. It is estimated that over 300,000 PCa-related deaths occur in 2018 (1). In addition to its high morbidity and mortality, the recurrence and metastasis of prostate cancer are also troublesome in clinical practice (2, 3).

It is challenging to detect initial recurrence and metastasis after prior treatment because of few obvious characteristics on early recurrent or metastatic lesions. PCa recurrence is usually considered when observing a rise in the serum prostate-specific antigen (PSA) level. This is regarded as biochemical recurrence (BCR) of PCa, and the definition of BCR is a serum PSA level over a threshold of 0.2 ng/ml twice after radical prostatectomy (RP) or an absolute increase in PSA level of 2 ng/ml over the lowest posttreatment PSA level after radiation therapy (RT) (4, 5).

The key issue for patients with BCR is the early and correct identification of recurrent or metastatic disease, which is essential for further devising treatment strategies since treatment varies based on the presence of local recurrence, regional lymph node and distant viscera or bone metastasis (6). Conventional imaging modalities consisting of CT, bone scan, and MRI have been used for patients with advanced PCa, but their roles in detecting minimal or occult lesions are limited (7, 8). These conventional imaging modalities also have low sensitivity and specificity in detecting patients with BCR, especially those with a low PSA level. According to the 2020 American Society of Clinical Oncology (ASCO) guidelines, nextgeneration imaging (NGI) such as PET/CT, PET/MRI, and whole-body MRI is recommended for use in patients with rising PSA after prior treatment when conventional imaging findings are negative (9). Radioactive tracers such as choline and fluciclovine have been used for prostate cancer staging, restaging, and treatment response evaluation. Meanwhile, prostate-specific membrane antigen (PSMA), a new radiopharmaceutical that binds to prostate cancer-specific target, has demonstrated outstanding detection rate for recurrent or metastatic lesions among patients with BCR.

Choline is an essential element of phospholipids in the cellular wall, and the increased uptake of choline means increased metabolism of the cell membrane components of malignant tumors (10). ¹¹C-choline was approved by the Food and Drug Administration (FDA) in 2012, but its short half-life limits its widespread use in PET/CT centers without onsite cyclotrons. Later, ¹⁸F-labeled choline was developed, and its longer half-life has solidified ¹⁸F-choline PET/CT as a significant imaging modality in patients with suspected PCa recurrence (11, 12). ¹⁸F-Fluciclovine (anti-1-amino-3-¹⁸Ffluorocyclobutane-1-carboxylic acid, ¹⁸F-FACBC), as a synthetic amino acid that is upregulated in PCa, is an option for molecular imaging in patients with BCR, which was approved by the FDA in 2016 (13, 14). The main advantage of ¹⁸Ffluciclovine is its low urinary excretion, which allows for better detection and localization of PCa recurrence in patients with

rising PSA level (15). PSMA is a type 2 transmembrane protein that is more highly expressed in the prostate cancer cell membrane than in normal tissues (16–18). Therefore, PSMA has become a promising target for imaging prostate cancer (19). ⁶⁸Ga-PSMA PET/CT has been proven to improve the detection of metastatic disease and the monitoring of treatment effects in patients with PCa (20). Most recently, ⁶⁸Ga-PSMA-11, as the first PSMA PET agent, has been approved by the FDA. ¹⁸F-labeled PSMA has also begun to be used in clinical practice, and its long half-life and high resolution in PET/CT images have further increased the detection rate of PSMA-targeted imaging in subtle or occult metastases (21, 22). Moreover, ¹⁸F-PSMA-1007 PET/ CT can differentiate local recurrence from physical uptake in the urinary bladder or ureter due to non-urinary clearance (23, 24).

Some previous studies have compared the diagnostic roles of ¹¹C-choline, ¹⁸F-fluciclovine, and ⁶⁸Ga-PSMA PET/CT in patients with BCR, showing that ⁶⁸Ga-PSMA PET/CT has a superior detection rate (25). Even so, there have been some clinical challenges existing in ⁶⁸Ga-PSMA PET/CT due to certain shortcomings including its short half-life, non-ideal energies and the limited availability of ⁶⁸Ga. Compared with ⁶⁸Ga and ¹¹C, ¹⁸F, as a longer half-life nuclide, has many advantages such centralized production in a cyclotron facility and more favorable positron energies for imaging, thereby motivating the development of ¹⁸F-labeled analogs. Currently, growing clinical experience has revealed the high diagnostic accuracy of some ¹⁸F-labeled tracers in PCa patients with BCR. However, the effectiveness of ¹⁸F-labeled choline, fluciclovine, and PSMA remains unclear because of limited number of studies. Herein, we aimed to perform a meta-analysis to review and compare the diagnostic value of ¹⁸F-labeled choline, fluciclovine, and PSMA PET/CT imaging for detecting BCR in patients with PCa, in order to provide better creditability for clinical practice.

METHODS

The Preferred Reporting Items for Systematic Reviews and Metaanalyses (PRISMA) guidelines was used for our study (26). Our review has registered on the international prospective register of systematic reviews (PROSPERO) (CRD 42020198861).

Search Strategy

A literature research was conducted with scientific databases, including PubMed, EMBASE, and Web of Science, until March 30, 2021. A search algorithm was developed based on a combination of keywords ("choline" OR "fluciclovine" OR "FACBC" OR "PSMA" OR "DCFPyL" OR "DCFBC" OR "1007") AND ("prostate cancer" OR "prostate neoplasm") AND ("biochemical recurrence" OR "biochemical failure") AND ("PET/CT" OR "positron emission tomography/ computed tomography") AND ("¹⁸F" OR "fluorine").

Two authors independently screened and evaluated these studies. The reference lists of all relevant studies were further checked to find more suitable studies. A third author was responsible for disagreement and solved the controversy between two authors through discussion.

Selection of Studies

Studies using ¹⁸F-labeled tracers such as ¹⁸F-choline, ¹⁸F-fluciclovine, and ¹⁸F-PSMA were evaluated. Studies were included according to the following criteria: (a) sample size >10; (b) patients who had evidence of BCR underwent PET/CT; (c) studies evaluating the diagnostic accuracy of ¹⁸F-labeled tracers in prostate cancer patients with BCR; (d) histological results, imaging, or clinical follow-up as a reference standard. Studies on other tracers were not included. Abstracts, reviews, and case reports were also not included. If the studies included duplicate patients, we reviewed and included the study with the largest sample or the most recent study performed. The included studies were limited to those published in English.

Quality Assessment

The quality of included studies was critically assessed by two independent authors according to the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. This tool comprises four domains (patient selection, index test, reference standard, and flow and timing), and each domain was used to assess the risk of bias. Next, applicability was also considered according to patient selection, the index test, and the reference standard.

Data Extraction

Two authors collected various parameters and outcomes from each eligible study as follows: author, country, publication year, study design, number of patients, age, pre-PET PSA level, reference criteria, scanner model, ligands, and injection dose and the detection rate as well as true positive (TP), false positive (FP), false negative (FN), and true negative (TN) PET/CT with different tracers in patients with BCR. All discrepancies were resolved by consensus and ultimately based on the decision of the third author.

Statistical Analysis

For studies reporting the diagnostic performance of 18 F-PSMA, 18 F-choline, and 18 F-fluciclovine PET/CT in patients with BCR, 2 × 2 table was used to calculate TP, FP, TN, and FN. The pooled sensitivity and specificity were calculated by a random-effects model. We developed a hierarchical summary receiver operating curve and calculated the area under the curve. We presented forest plots with 95% confidence intervals (CIs) for the sensitivity and specificity of each study. In addition, the detection rates of PET tracers were extracted and pooled using a random-effects model. If possible, subgroup analysis was considered based on different PSA serum values.

Heterogeneity within studies was evaluated using Cochran's Q test and the I² statistic (27). An I² value greater than 50% was indicative of substantial heterogeneity. The funnel plot test and Egger's test were used to assess the publication bias. All statistical

analyses were performed using Stata 15.0 and RevMan 5.3. P-value <0.05 was considered to be statistically significant (28).

RESULTS

The flow chart demonstrates an overview of the search and selection process (Figure 1). The initial search yielded 480 studies, of which 95 were duplicates. Subsequently, after reviewing the titles and abstracts, we excluded 238 studies for the following reasons: 170 studies were case reports, reviews, and academic meeting abstracts, 11 were basic studies, five applications in other diseases, and 52 studies used different radiotracers and imaging modalities. Of the remaining studies, 75 studies were not relevant to our aims, and most of them investigated the impact of novel PET/CT tracers in treatment management for patients with PCa or focused on evaluating metastatic disease. In addition, 26 studies did not provide sufficient information and were excluded. Thus, only 46 studies were finally included. Of these, 17 studies focused on the role of ¹⁸F-choline PET/CT in prostate cancer patients with BCR (29-45). The numbers of included studies regarding ¹⁸F-fluciclovine and ¹⁸F-PSMA PET/CT were 16 and 13, respectively (46-74). Tables 1-3 outline the characteristics of each eligible study.

Quality Assessment

Figures 2A–C show the results of the quality assessment of each eligible study for ¹⁸F-choline, ¹⁸F-fluciclovine, and ¹⁸F-PSMA, respectively. Patient selection was not considered the source of bias because all studies had qualified patient selection criteria. For the index test and reference standard, some studies did not adopt the blinding method when interpreting the positive scan of the PET/CT findings, and we rated these studies as high or unclear levels regarding the risk of bias and applicability concern. Similarly, unclear or high levels were displayed on the applicability concern of flow and timing because of the different follow-up times and multiple reference standards.

Diagnostic Performance of ¹⁸F-Choline and ¹⁸F-Fluciclovine PET/CT

Seventeen studies reported the diagnostic performance of ¹⁸Fcholine, and the summary sensitivity and specificity of ¹⁸Fcholine PET/CT in patients with BCR were 0.93 (95% CI, 0.85–0.96) and 0.91 (95% CI, 0.73–0.97), respectively (**Figure 3**). The summary sensitivity and specificity drawn from studies on ¹⁸F-fluciclovine were 0.80 (95% CI, 0.65–0.89) and 0.66 (95% CI, 0.50–0.79), respectively (**Figure 4**). However, the summary sensitivity and specificity were not constructed for ¹⁸F-PSMA PET/CT imaging because these studies mostly focused on the detection rate in patients with BCR. Summary receiver operating characteristic (SROC) curves of ¹⁸F-choline and ¹⁸F-fluciclovine were demonstrated in **Figures 5A, B**.

Detection Rate of ¹⁸F-Choline, ¹⁸F-Fluciclovine, and ¹⁸F-PSMA PET/CT

The pooled detection rate of $^{18}{\rm F}$ -choline PET/CT was 66%, lower than 74% of $^{18}{\rm F}$ -fluciclovine PET/CT. In addition, the pooled detection

rate of ¹⁸F-PSMA PET/CT was 83% (**Figure 6**). Meanwhile, the detection rates of ¹⁸F-labeled choline, fluciclovine, and PSMA were 35, 23, and 58% for a PSA level less than 0.5 ng/ml (**Figure 7**); 41, 46, and 75% for a PSA level of 0.5–0.99 ng/ml (**Figure 8**); 62,

TABLE 1 | Study characteristics of ¹⁸F-choline PET/CT.

Frontiers
∃.
Oncology
_
www.frontiersin.org

Author	Publication Year	Country	Design	Patients	Mean age/Range	PSA (ng/mL)	Scancer Modality	Ligand	Mean dose	Reference standard
Pelosi	2008	Italy	R	56	67.9 ± 7	4.59 ± 7.87	Discovery ST unit, GE	¹⁸ F-choline	185–259 MBq	Multiple
Kwee	2012	US	Р	50	69.0 ± 8.9	3.2 (0.2–18.2)	Philips Gemini TF-64	¹⁸ F-fluorocholine	2.6 MBq/kg	Multiple
Panebianco	2012	Italy	Р	84	56-72	1.63	Discovery ST, GE	¹⁸ F-choline	185-259 MBq	Multiple
Schillaci	2012	Italy	Ρ	49	70.9±7	4.13 ± 4.56	Discovery ST, GE	¹⁸ F-choline	370 MBq	Biopsy
Detti	2013	Italy	R	170		3.5 ± 8.8	PET/CT Philips TOF	¹⁸ F-fluorocholine	3.7 MBq/kg	Follow-up
Marzola	2013	Italy	R	233	69.4 ± 6.5	7.4 ± 13.6	Discovery STE	¹⁸ F-fluorocholine	3 MBq/kg	
Piccardo	2014	Italy	Р	21	77.2 ± 5.1	5.8 ± 3.4	Discovery ST, GE	¹⁸ F-choline	3MBq/kg	Multiple
Morigi	2015	Australia	Ρ	38	68(54-81)	1.72 ± 2.54	Philips Ingenuity TF 64	¹⁸ F-fluorocholine	3.5 MBq/kg	Biopsy
Rodado-Marina	2015	Spain	R	233	68 ± 7.1	5.3 ± 8.7	GE and Siemens equipments	¹⁸ F-fluorocholine	4 MBq/kg	Multiple
Cimitan	2015	Italy	R	1,000	69.68 ± 7.67	3.30	GE Discovery LS; Siemens Biograph 16 HT or Biograph mCT; GE Discovery ST8,	¹⁸ F-choline	3.0–3.5 MBq/kg	Multiple
Simone	2015	Italy	Р	146	68	0.6 (0.43-0.76)	Siemens Biograph Hi-Rez 16;	¹⁸ F-choline	4 MBq/kg	Multiple
Emmett	2018	Australia	Р	91	64 (59-69)	0.42 (0.29-0.93)		¹⁸ F-choline	3.6 MBq/kg	Multiple
Giovacchini	2019	Italy	R	192	73.2 ± 6.6	9.53 ± 16.70	GE Discovery 710	¹⁸ F-fluorocholine	3.7 MBq/kg	Multiple
Witkowska-Patena	2019	Poland	Р	40	68.6 ± 6.5	0.75 ± 0.6	GE Discovery 710	¹⁸ F-fluorocholine	248 ± 35 MBq	Multiple
Sánchez	2020	Spain	Ρ	108	69 ± 6.7	4.9 ± 5.2	Siemens Biograph mCT	¹⁸ F-choline	370 MBq	Multiple
Zattoni	2020	Italy	R	2,798	72 (66.29–77.0)	2.0 (0.1–3.0)		¹⁸ F-choline	2.5-3.7 MBq/kg	
de Leiris	2020	France	R	115	73.2 (56–89)	9.4 (7.1–18.4)	GE Discovery 690	¹⁸ F-choline	3.7 MBq/kg	Multiple

A multiple reference standards including biopsy, other imaging modalities and follow-up.

Author	Publication Year	Country	Design	Patients	Mean age/Range	PSA (ng/mL)	Scancer Modality	Ligand	Mean dose	Reference standard
Schuster	2011	US	Р	50	68.3 ± 8.1	6.62 ± 7.63	Discovery DLS, GE	¹⁸ F-fluciclovine	199.8–484.7 MBq	Multiple
Kairemo	2014	Finland	R	26	68.1 ± 5.8	7.9 ± 14.6	Siemens Biograph	¹⁸ F-fluciclovine	328 ± 56.8 MBq	Multiple
Nanni	2016	Italy	Р	89	69	6.99	Discovery STE, GE	¹⁸ F-fluciclovine	370 MBq	Follow-up
Odewole	2016	USA	R	53	67.57± 8.03	7.2 ± 8.3	GE Discovery DLS or 690	¹⁸ F-fluciclovine	358 ± 52.9MBq	Follow-up
Bach-Gansmo	2017	Norway, Italy, UK	R	143	67	5.43		¹⁸ F-fluciclovine	310 MBq	Follow-up
Miller	2017	USA	R	110	67.4 ± 7.37	5.87 ± 7.65	GE Discovery DLS or 690	¹⁸ F-fluciclovine	370 MBq	Multiple
Akin-Akintayo	2018	USA	Р	24	70.8 ± 5.7	8.5 ± 6.1	GE Discovery 690	¹⁸ F-fluciclovine	370 ± 13 MBq	Biopsy
Jambor	2018	Finland	Р	32	65 (49–76)	12 (4.1–35)	GE Discovery 690	¹⁸ F-fluciclovine	369 ± 10 MBq	Biopsy
Andriole	2019	US	Р	213	66.4 ± 7.75	4.24 ± 10.22		¹⁸ F-fluciclovine	370 ± 20% MBq	Multiple
Calais	2019	US	Ρ	50	68 (64–74)	0.48 (0.38–0.83)	Siemens Biograph64 and GE Discovery	¹⁸ F-fluciclovine	381 MBq	Multiple
England	2019	US	R	28	67.1 (53–77)	0.44(0.1-1)	Siemens Biograph	¹⁸ F-fluciclovine	370 MBq	Follow-up
Savir-Baruch	2019	US	R	152	68.73 ± 7.92	2.06 (0.006-120)	Philips Ingenuity TF PET/CT	¹⁸ F-fluciclovine	9.97 ± 1.18mci	
Teyateeti	2020	US	R	94	65.7 (42.5–80.3)		GE Discovery 710, MI and Siemens Biograph 64	¹⁸ F-fluciclovine	370 MBq	Multiple
Garza	2021	US	R	78	68.7 (48-87)	0.72(<0.05-1.99)		¹⁸ F-fluciclovine		Imaging
Michael	2021	US	R	103	69.79 ± 7.88	5.77 ± 9.98	Siemens Biograph	¹⁸ F-fluciclovine	10 mci	Imaging
Nakamoto	2021	US	R	165	71.1 ± 8.8	3.1 (1.0–9.6)	GE Discovery 600, 690, or MI	¹⁸ F-fluciclovine	$389 \pm 59 \text{ MBq}$	Multiple

A multiple reference standards including biopsy, other imaging modalities and follow-up.

Author	Publication Year	Country	Design	Patients	Mean age/year	PSA (ng/ml)	Scancer Modality	Tracer	Mean dose	Reference standard
			,							
Rahbar	2018	Germany	ſ	100	68.75 ± 7.6	$3.3.6 \pm 6.11$	Siemens Healthcare	¹⁸ F-PSMA-1007	4 MBq/kg	
Elber	2018	Germany	ш	261	72 (49–88)	0.961 (0.01-400.0)	Siemens Biograph mCT	¹⁸ F-rhPSMA-7	333 ± 44 MBq	-
Giesel	2018	Germany	щ	251	70 (48–86)	1.2 (0.2–228)	Siemens Biograph mCT	¹⁸ F-PSMA-1007	301 ± 46 MBq	
Rousseau	2018	Canada	۵.	130	69.1 ± 6.5	5.20 ± 6.50	GE Discovery PET/CT 600 or 690	¹⁸ F-DCFPyL	369.2 ± 47.2 MBq	
Wondergem	2019	Netherlands	ш	248	71 (67–75)		Philips Ingenuity TF,	¹⁸ F-DCFPyL	311 MBq	
							Siemens Biograph 16			
Mena	2019	NSA	٩.	06	66 (50-81)	2.5 ± 5.9	GE Discovery MI	¹⁸ F-DCFPyL	299.9 ± 15.5 MBq	
Song	2019	NSA	٩.	72	71.5 ± 7.2	3.0 (0.23-698.4)	GE Discovery MI	¹⁸ F-DCFPyL	338.8 ± 25.3 MBq	
Witkowska-Patena	2019	Poland	٩.	40	68.6 ± 6.5	0.75 ± 0.6	GE Discovery 710,	¹⁸ F-PSMA-1007	295.5 ± 14.1 MBq	
Rowe	2020	NSA	۵.	31	63 (45–74)	0.4 (0.2–28.3)	GE Discovery RX 64 or	¹⁸ F-DCFPyL	<333 MBq	
							Biograph mCT 128			
Chaussé	2020	Canada	Щ	93	70.4(51-87)	2.27 (0.07–51.09)	GE Discovery ST	¹⁸ F-DCFPyL	333 ± 37 MBq	Multiple
Dietlein	2021	Germany	£	20	70.1 ± 5.5			¹⁸ F-JK-PSMA-7	348 ± 55 MBq	
Koschel	2021	Australia	٩.	98	68.0 (66.0-71.0)	0.32 (0.28–0.36)	GE Discovery 710	¹⁸ F-DCFPyL	250 ± 50 MBq	Imaging
Perry	2021	New Zealand	ſĽ	222	71 (49–89)	0.51 (0.08–58.9)	GE Discovery 690, 710	¹⁸ F-DCFPyL	250 ± 50 MBq	
A multiple reference	standards including bio	opsv. other imaain	a modalitie	s and follow.	.an-					

57, and 86% for a PSA level of 1.0–1.99 ng/ml (**Figure 9**); 80, 92, and 94% for a PSA level more than 2.0 ng/ml (**Figure 10**).

DISCUSSION

Our meta-analysis included studies investigating the diagnostic roles of three novel ¹⁸F-labeled tracers applied in prostate cancer patients with BCR. From our study, the summary sensitivity and specificity of ¹⁸F-choline and ¹⁸F-fluciclovine PET/CT were 0.93 and 0.91, and 0.80 and 0.66, respectively. For the detection rate, the pooled detection rates of ¹⁸F-labeled choline, fluciclovine, and PSMA were 66, 74, and 83%, respectively. Meanwhile, we observed a higher detection rate of biochemically recurrent PCa with ¹⁸F-PSMA compared with choline and fluciclovine PET/CT for the different PSA level subgroups.

Multiple PET/CT radiotracers have been developed and experimented in recent years, motivating the wide use of PET/CT or PET/MRI in patients with PCa for staging, restaging, and response evaluation (75, 76). ¹⁸F-fluciclovine PET/CT showed a superior advantage over ¹¹C-choline PET/CT in patients with BCR and further aid guiding decision-making in regard to patients' treatment strategy (48, 77). In addition, PSMA PET/CT has shown superior diagnostic accuracy for recurrence and metastases of prostate cancer than fluciclovine and choline. A meta-analysis defined the diagnostic accuracy of PET/CT imaging using ¹¹C-choline, ¹⁸F-fluciclovine, or ⁶⁸Ga-PSMA, showing that ⁶⁸Ga-PSMA PET/CT has a nearly equal sensitivity but the highest specificity among these tracers for PET/CT imaging in detecting biochemically recurrent PCa (25).

In contrast, our meta-analysis focused on only long-half radionuclides as ¹⁸F-labeled tracers and summarized the diagnostic accuracy of ¹⁸F-labeled choline, fluciclovine, and PSMA in detecting patients with BCR. Our study revealed that ¹⁸F-PSMA had the highest detection rate at different PSA levels, and the detection rate was related to the PSA level. These results were consistent with another meta-analysis that compared the detection rate of biochemically recurrent PCa between PSMAtargeted radiotracers and ¹⁸F-fluciclovine, finding that PSMAtargeted radiotracers demonstrate a greater detection rate than ¹⁸F-fluciclovine (78). A study compared prospectively paired ¹⁸Ffluciclovine and PSMA PET/CT scans for localizing recurrence of PCa after prostatectomy in patients with a PSA level <2.0 ng/ ml (55). They found that PSMA PET/CT showed higher detection rates and should be the tracer choice when PET/CT imaging is considered for patients with biochemical recurrence after radical prostatectomy with low PSA concentrations (≤2.0 ng/ml). The same conclusion was drawn from another prospective study paired that compared ¹⁸F-PSMA and ¹⁸Ffluorocholine PET/CT in patients with BCR (42). The advantage of PSMA-targeted PET/CT imaging could be attributed to the high expression of PSMA in PCa and its metastases.

In late 2020, ⁶⁸Ga-PSMA-11 became the first PSMA PET tracer to be approved by the FDA, which may facilitate widespread adaptation. Despite this, there also have been some limitations related to ⁶⁸Ga-PSMA PET/CT because of the short half-life, non-

TABLE 3 Study characteristics of ¹⁸F-PSMA PET/CT

FIGURE 2 | (A) Quality Assessment of Diagnostic Accuracy Studies-2 analysis of study bias in ¹⁸F-choline cohort. (B) Quality Assessment of Diagnostic Accuracy Studies-2 analysis of study bias in ¹⁸F-fluciclovine cohort. (C) Quality Assessment of Diagnostic Accuracy Studies-2 analysis of study bias in ¹⁸F prostate-specific membrane antigen (PSMA) cohort.

FIGURE 3 | Forest plot of the proportion of ¹⁸F-choline positron emission tomography/computed tomography (PET/CT) sensitivity and specificity in prostate cancer patients with biochemical recurrence.

FIGURE 6 | Forest plot of the proportion of ¹⁸F-labeled choline (A), fluciclovine (B) and PSMA (C) PET/CT positivity of prostate cancer patients with biochemical recurrence.

18F-Choline		
Kwee (2012)		0.24) 2.62
Marzola (2013)	→ 0.28 (0.17, 0.	.39) 5.29
Morigi et al (2015)	— 0.13 (-0.04, 0).29) 2.44
Zattoni (2020)	• 0.42 (0.37, 0.	.47) 21.53
Subtotal (I-squared = 88.7%, p = 0.000)	O.35 (0.30, 0 .	.39) 31.89
18F-Fluciclovine		
Bach-Gansmo (2017)	— 0.43 (0.33, 0.	.53) 6.34
Andriole(2019)	— 0.31 (0.21, 0.	.41) 6.34
Calais(2019)	0.27 (0.10, 0 .	.44) 2.21
Teyateeti(2020)	→ 0.11 (0.04, 0.	17) 16.52
Garza(2021)	0.50 (0.31, 0 .	.69) 1.74
Nakamoto(2021)	— 0.15 (0.02, 0.	.29) 3.34
Subtotal (I-squared = 88.0%, p = 0.000)	◊ 0.23 (0.19, 0.	.27) 36.49
18F-PSMA		
Rahbar (2018)	— 0.86 (0.71, 1.	.01) 2.87
Eiber (2018)	→ 0.60 (0.50, 0.	.71) 5.66
Giesel (2018)	— 0.62 (0.50, 0.	73) 4.59
Rousseau (2018)	• 0.60 (0.17, 1.	.03) 0.35
Wondergem (2019)	0.59 (0.41, 0.	.77) 2.00
Mena (2020)	0.48 (0.26, 0.	.69) 1.41
Song (2020)	——— 0.50 (0.15, 0.	.85) 0.53
Witkowska-Patena (2020)	0.39 (0.16, 0.	.61) 1.27
Chaussé(2020)	0.63 (0.29. 0.	.96) 0.57
Koschel (2021)	→ 0.43 (0.32, 0.	.54) 5.25
Perrv(2021)	→ 0.59 (0.50, 0.	.69) 7.13
Subtotal (I-squared = 59.9%, $p = 0.005$)	▲ 0.58 (0.54, 0.54)	63) 31.62
Subtotal (1-3qualeu – 03.3% , p – 0.003)	✓ 0.56 (0.54, 0.	.03/ 31.02

FIGURE 7 | Forest plot of the proportion of ¹⁸F-labeled choline, fluciclovine and PSMA positivity of prostate cancer patients with BCR for PSA less than 0.5 ng/ml.

Study							LS (95%CI)	% weight
18F-Choline								
Pelosi (2008)	_	-	_				0.20 (0.02, 0.38)	2.01
Schillaci (2012)		_ -					0.20 (-0.05, 0.45)	1.00
Detti (2013)		•	_	-			0.49 (0.35, 0.63)	3 28
Marzola (2013)		_	_ `	_			0 40 (0 24 0 56)	2.34
Rodado-Marina (2015)		_	- i				0.38 (0.25, 0.51)	3.74
Cimitan (2015)		-	–				0.31 (0.25, 0.38)	15 76
Giovacchini (2019)		_	<u> </u>				0.31 (0.19, 0.42)	4 47
Sánchez (2020)				<u> </u>			0.50 (0.01 0.99)	0.26
Zattoni (2020)				·			0.55 (0.49, 0.61)	17.63
Subtotal (I-squared = 81.4%, p = 0.000)			٥	·			0.41 (0.37, 0.44)	50.48
18F-Fluciclovine								
Nanni (2016)	-	-	_				0.21 (0.06, 0.37)	2.67
Odewole (2016)	_		-		-		0.38 (0.04, 0.71)	0.55
Bach-Gansmo (2017)				_			0.45 (0.33, 0.57)	4.22
Akin-Akintayo (2017)					•		0.72 (0.54, 0.90)	1.99
Andriole(2019)							0.50 (0.31, 0.69)	1.67
Calais(2019)	-						0.28 (0.07, 0.48)	1.44
England(2019)		-					0.46 (0.28, 0.65)	1.81
Savir-Baruch(2019)			-	-	-		0.58 (0.45, 0.71)	3.63
Garza(2021)			_	+	_		0.56 (0.39, 0.73)	2.21
Michael(2021)			•	-			0.35 (0.19, 0.52)	2.17
Nakamoto(2021)		_			_		0.50 (0.24, 0.76)	0.90
Subtotal (I-squared = 64.5%, p = 0.002)			0	•			0.46 (0.41, 0.51)	23.26
18F-PSMA								
Rahbar (2018)					-		0.89 (0.74, 1.03)	2.93
Eiber (2018)						_	0.86 (0.77, 0.96)	6.91
Giesel (2018)				_	—		0.74 (0.62, 0.87)	3.97
Rousseau (2018)				_	-	_	0.78 (0.61, 0.95)	2.17
Wondergem (2019)				_			0.69 (0.52, 0.86)	2.18
Mena (2020)		_		┣	_		0.50 (0.19, 0.81)	0.64
Rowe (2020)				-	_		0.59 (0.39, 0.80)	1.46
Song (2020)			-			_	0.69 (0.44, 0.94)	0.98
Witkowska-Patena (2020)		-		+			0.55 (0.25, 0.84)	0.71
Chaussé(2020)			-		+		0.75 (0.45, 1.05)	0.68
Koschel (2021)			-		•		0.40 (0.10, 0.70)	0.67
Perry(2021)			•	-	_		0.63 (0.48, 0.77)	2.95
Subtotal (I-squared = 54.8%, p = 0.011)					\diamond		0.75 (0.70, 0.80)	26.26
	I							
	0	.2	.4	.6	.8	1		

ideal energies, and limited availability of ⁶⁸Ga, limiting its clinical application in detecting occult or metastatic lesions in the prostate bed (62, 79). However, ¹⁸F-PSMA analogs seemed to be more favorable due to their longer half-life and a higher physical spatial resolution (23), and ¹⁸F-PSMA-1007, as a second-generation ¹⁸F-labeled PSMA tracer, demonstrated high labeling yields, better tumor uptake, and hepatobiliary excretion, making it an ideal PSMA-target tracer for diagnostic imaging in patients with BCR (21, 23). Our meta-analysis found the pooled detection rate with ¹⁸F-PSMA of 58% for a PSA level of less than 0.5 ng/ml, 75% for a PSA level of 0.5 to 0.99 ng/ml, and 86% for a PSA level of 1.0 to 1.99 ng/ml. These detection rates are equal or higher than those in recent studies involving ⁶⁸Ga PSMA PET/CT (80, 81).

Compared with FDA approval of ⁶⁸Ga-PSMA-11 in late 2020, ¹¹C-choline and ¹⁸F-fluciclovine PET/CT have one temporary advantage as they have been granted FDA approval early. They were more accessible and used in the US and Europe. Many studies compared the diagnostic utility of ¹⁸F-fluciclovine with ¹¹C-choline PET/CT imaging, showing a better performance in terms of lesion detection rate (48, 82). A recent meta-analysis demonstrated that ¹⁸F-fluciclovine had the similar sensitivity and detection rate compared with ¹¹C-choline, but lower specificity than ¹¹C-choline (83). Unlike the short physical half-life of ¹¹Ccholine, the radiofluorine of ¹⁸F-choline provides a long physical half-life (109.8 min), allowing for centralized manufacture and distribution. These intrinsic advantages of ¹⁸F labeling has made ¹⁸F-choline PET/CT valuable in staging patients with PCa and detecting recurrently PCa metastases after initial treatment (33, 84). There were limited studies in comparing directly to determine which imaging modality has a better diagnostic efficiency between ¹⁸F-choline and ¹⁸F-fluciclovine. In our meta-analysis, ¹⁸F-choline had a higher sensitivity and

Swee (2012) Schillaci (2012) Jetti (2013) Aarzola (2013) Aorigi et al (2015) Sodado-Marina (2015)		0.29 (-0.05, 0.62) 0.56 (0.23, 0.88) 0.87 (0.81, 0.93)	0.41 0.43
Schillaci (2012) Detti (2013) Marzola (2013) Morigi et al (2015) Rodado-Marina (2015)		0.56 (0.23, 0.88) 0.87 (0.81, 0.93)	0.43
Detti (2013) Marzola (2013) Morigi et al (2015) Rodado-Marina (2015)	+	 0.87 (0.81, 0.93) 	
/arzola (2013) /lorigi et al (2015) Rodado-Marina (2015) /imiten (2015)			12.87
Norigi et al (2015) Rodado-Marina (2015) Simiten (2015)	_	0.51 (0.37, 0.66)	2.15
Rodado-Marina (2015)		0.36 (0.11, 0.61)	0.73
Vimiton (201E)		0.24 (0.09, 0.38)	2.25
Annuan (2015)		0.43 (0.35, 0.51)	7.43
Vitkowska-Patena (2019)		0.20 (0.08, 0.32)	2.98
Sánchez (2020)	+	0.67 (0.43, 0.91)	0.80
(attoni (2020)	+	0.64 (0.60, 0.69)	25.90
Subtotal (I-squared = 94.9%, p = 0.000)	٥	0.62 (0.59, 0.65)	55.95
8F-Fluciclovine			
Janni (2016)	_	0.82 (0.68, 0.96)	2.27
Ddewole (2016)	\$	0.78 (0.51, 1.05)	0.62
ach-Gansmo (2017)		0.60 (0.50, 0.70)	4.96
kin-Akintayo (2017)	+	→ 0.83 (0.54, 1.13)	0.51
ndriole(2019)		0.66 (0.48, 0.83)	1.53
Calais(2019)		0.06 (-0.06, 0.18)	3.25
Savir-Baruch(2019)	+	0.87 (0.69, 1.04)	1.55
Garza(2021)	+	0.67 (0.45, 0.88)	0.97
/lichael(2021)		• 0.64 (0.35, 0.92)	0.57
lakamoto(2021)		0.56 (0.33, 0.79)	0.87
Subtotal (I-squared = 91.1%, p = 0.000)	\diamond	0.57 (0.52, 0.62)	17.10
8F-PSMA			
iber (2018)	-+	- 0.86 (0.76, 0.96)	4.77
Giesel (2018)	-	► 0.91 (0.83, 0.99)	7.93
Rousseau (2018)		0.72 (0.54, 0.90)	1.48
Vondergem (2019)	-+	0.85 (0.75, 0.96)	3.91
1ena (2020)	•	0.89 (0.68, 1.09)	1.09
Rowe (2020)	•	0.89 (0.68, 1.09)	1.09
Chaussé(2020)		0.89 (0.76, 1.03)	2.40
Dietlein(2021)		0.67 (0.47, 0.87)	1.13
Coschel (2021)		0.82 (0.59, 1.05)	0.88
Perry(2021)		0.82 (0.68, 0.96)	2.27
Rahbar (2018)		(Excluded)	0.00
Song (2020)		(Excluded)	0.00
Vitkowska-Patena (2020)	-	(Excluded)	0.00
Subtotal (I-squared = 0.0%, p = 0.496)	♦	0.86 (0.82, 0.90)	26.94

FIGURE 9 | Forest plot of the proportion of ¹⁸F-labeled choline, fluciclovine, and PSMA positivity of prostate cancer patients with BCR for PSA 1.0–1.99 ng/ml.

specificity than ¹⁸F-fluciclovine through assessing the summary sensitivity and specificity. ¹⁸F-choline also has better detection rates than ¹⁸F-fluciclovine at PSA levels under 0.5 ng/ml and 1.0– 1.99 ng/ml, but the pooled detection rate of ¹⁸F-fluciclovine was higher than that of ¹⁸F-choline in biochemically recurrent PCa. This difference could be interpreted by different biological processes between amino acid transport and choline expression.

LIMITATIONS

There were several limitations to this study that should be mentioned. First, we only evaluated the diagnostic accuracy of both ¹⁸F-choline and ¹⁸F-fluciclovine PET/CT in patients with BCR, and the pooled sensitivity and specificity for ¹⁸F-PSMA PET/CT were not feasible because of insufficient published data. Second, there were significant heterogeneities among institutions, PET/CT scanners, radiotracers, and prior treatment of patients, which increased the risk of bias and led to significant heterogeneity among ¹⁸F-choline, ¹⁸Ffluciclovine and ¹⁸F-PSMA PET/CT. Third, most of the included studies were retrospective analyses, had small sample sizes, had limited reference standards, and lacked prospective, large sample, and interagent comparison studies. Fourth, there was publication bias according to Egger's test regarding the included studies of ¹⁸F-choline,

Study]	ES (95%CI)	%Weight
18F-Choline								
Pelosi (2008)			_	-	-		0.56 (0.39, 0.72)	0.42
Kwee (2012)						←	0.90 (0.80, 1.01)	1.02
Schillaci (2012)							0.83 (0.70, 0.97)	0.62
Marzola (2013)					-		0.78 (0.70, 0.87)	1.53
Morigi et al (2015)					-	_	0.63 (0.29, 0.96)	0.10
Rodado-Marina (2015)				-			0.57 (0.49, 0.66)	1.66
Cimitan (2015)					+		0.81 (0.78, 0.84)	11.76
Giovacchini (2019)							0.74 (0.67, 0.82)	2.02
Sánchez (2020)							0.82 (0.73, 0.90)	1.67
Zattoni (2020)					•		0.81 (0.79, 0.83)	32.34
Subtotal (I-squared = 81.0%, p = 0.000)					٥		0.80 (0.78, 0.81)	53.15
18F-Fluciclovine								
Nanni (2016)				•	-		0.55 (0.38, 0.72)	0.38
Odewole (2016)						_	0.86 (0.75, 0.97)	0.87
Andriole(2019)					-	-	0.84 (0.76, 0.93)	1.69
Savir-Baruch(2019)						+	0.96 (0.92, 1.00)	5.93
Michael(2021)						-	0.97 (0.92, 1.01)	5.55
Nakamoto(2021)					-	•	0.83 (0.76, 0.90)	2.21
Akin-Akintayo (2017)							(Excluded)	0.00
Subtotal (I-squared = 86.4%, p = 0.000)					1	0	0.92 (0.89, 0.95)	16.63
18F-PSMA								
Eiber (2018)						+	0.95 (0.90, 1.00)	4.86
Giesel (2018)						-	0.94 (0.89, 0.99)	4.33
Rousseau (2018)					-	+	0.92 (0.86, 0.98)	3.09
Wondergem (2019)						+	0.95 (0.92, 0.99)	9.60
Mena (2020)					•	-	0.94 (0.87, 1.01)	2.56
Song (2020)					-	-	0.93 (0.86, 1.01)	2.18
Chaussé(2020)					-	←	0.91 (0.83, 0.98)	1.79
Perry(2021)					_	←	0.92 (0.84, 0.99)	1.81
Rahbar (2018)							(Excluded)	0.00
Dietlein(2021)							(Excluded)	0.00
Subtotal (I-squared = 0.0%, p = 0.950)						٥	0.94 (0.92, 0.96)	30.22
	0	.2	.4	.6	.8	1		

¹⁸F-flocilovine, and ¹⁸F-PSMA PET/CT, limiting the interpretation of the data to some degree.

CONCLUSION

PET/CT imaging with ¹⁸F-choline, ¹⁸F-fluciclovine, and ¹⁸F-PSMA is promising in detecting prostate cancer patients with BCR. ¹⁸F-PSMA PET/CT demonstrated a significantly higher detection rate over ¹⁸F-choline and ¹⁸F-fluciclovine for different PSA levels, particularly in PSA level less than 2.0 ng/ml.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/supplementary material. Further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

Conceived and designed the experiments: RW, GS, and RT. Performed the experiments: GS, RW, and MH. Analyzed the

data: RW, GS, and RT. Analyzed tools: GS and MH. Wrote the paper: RW and RT. Provided critical input into the design and drafting of the manuscript: RW, GS, and RT. All authors contributed to the article and approved the submitted version.

REFERENCES

- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. *CA Cancer J Clin* (2018) 68:394– 424. doi: 10.3322/caac.21492
- Hull GW, Rabbani F, Abbas F, Wheeler TM, Kattan MW, Scardino PT. Cancer Control With Radical Prostatectomy Alone in 1,000 Consecutive Patients. J Urol (2002) 167:528–34. doi: 10.1097/00005392-200202000-00018
- Freedland SJ, Humphreys EB, Mangold LA, Eisenberger M, Dorey FJ, Walsh PC, et al. Risk of Prostate Cancer-Specific Mortality Following Biochemical Recurrence After Radical Prostatectomy. *JAMA* (2005) 294:433–9. doi: 10.1001/jama.294.4.433
- Kuban DA, Levy LB, Potters L, Beyer DC, Blasko JC, Moran BJ, et al. Comparison of Biochemical Failure Definitions for Permanent Prostate Brachytherapy. *Int J Radiat Oncol Biol Phys* (2006) 65:1487–93. doi: 10.1016/j.ijrobp.2006.03.027
- Stephenson AJ, Scardino PT, Kattan MW, Pisansky TM, Slawin KM, Klein EA, et al. Predicting the Outcome of Salvage Radiation Therapy for Recurrent Prostate Cancer After Radical Prostatectomy. *J Clin Oncol* (2007) 25:2035–41. doi: 10.1200/JCO.2006.08.9607
- Fanti S, Minozzi S, Antoch G, Banks I, Briganti A, Carrio I, et al. Consensus on Molecular Imaging and Theranostics in Prostate Cancer. *Lancet Oncol* (2018) 19:e696–708. doi: 10.1016/S1470-2045(18)30604-1
- Hovels AM, Heesakkers RAM, Adang EM, Jager GJ, Strum S, Hoogeveen YL, et al. The Diagnostic Accuracy of CT and MRI in the Staging of Pelvic Lymph Nodes in Patients With Prostate Cancer: A Meta-Analysis. *Clin Radiol* (2008) 63:387–95. doi: 10.1016/j.crad.2007.05.022
- Filson CP, Natarajan S, Margolis DJ, Huang J, Lieu P, Dorey FJ, et al. Prostate Cancer Detection With Magnetic Resonance-Ultrasound Fusion Biopsy: The Role of Systematic and Targeted Biopsies. *Cancer* (2016) 122:884–92. doi: 10.1002/cncr.29874
- Trabulsi EJ, Rumble RB, Jadvar H, Hope T, Pomper M, Turkbey B, et al. Optimum Imaging Strategies for Advanced Prostate Cancer: ASCO Guideline. J Clin Oncol (2020) 38:1963–96. doi: 10.1200/JCO.19.02757
- Zeisel SH. Dietary Choline: Biochemistry, Physiology, and Pharmacology. *Annu Rev Nutr* (1981) 1:95–121. doi: 10.1146/annurev.nu.01.070181.000523
- Evangelista L, Zattoni F, Guttilla A, Saladini G, Zattoni F, Colletti PM, et al. Choline PET or PET/CT and Biochemical Relapse of Prostate Cancer: A Systematic Review and Meta-Analysis. *Clin Nucl Med* (2013) 38:305–14. doi: 10.1097/RLU.0b013e3182867f3c
- Krause BJ, Souvatzoglou M, Treiber U. Imaging of Prostate Cancer With PET/ CT and Radioactively Labeled Choline Derivates. Urol Oncol-Seminars Orig Investigations (2013) 31:427–35. doi: 10.1016/j.urolonc.2010.08.008
- Oka S, Okudaira H, Yoshida Y, Schuster DM, Goodman MM, Shirakami Y. Transport Mechanisms of Trans-1-Amino-3-Fluoro[1-(14)C] Cyclobutanecarboxylic Acid in Prostate Cancer Cells. Nucl Med Biol (2012) 39:109–19. doi: 10.1016/j.nucmedbio.2011.06.008
- Parent EE, Schuster DM. Update on (18)F-Fluciclovine PET for Prostate Cancer Imaging. J Nucl Med (2018) 59:733-9. doi: 10.2967/ jnumed.117.204032
- Bach-Gansmo T, Nanni C, Nieh PT, Zanoni L, Bogsrud TV, Sletten H, et al. Multisite Experience of the Safety, Detection Rate and Diagnostic Performance of Fluciclovine (F-18) Positron Emission Tomography/ Computerized Tomography Imaging in the Staging of Biochemically Recurrent Prostate Cancer. J Urol (2017) 197:676–82. doi: 10.1016/ j.juro.2016.09.117
- Wright GL Jr, Haley C, Beckett ML, Schellhammer PF. Expression of Prostate-Specific Membrane Antigen in Normal, Benign, and Malignant Prostate Tissues. Urol Oncol (1995) 1:18–28. doi: 10.1016/1078-1439(95)00002-y

FUNDING

This study was supported by the National Natural Science Foundation of China (81971653).

- Wright GL Jr., Grob BM, Haley C, Grossman K, Newhall K, Petrylak D, et al. Upregulation of Prostate-Specific Membrane Antigen After Androgen-Deprivation Therapy. Urology (1996) 48:326–34. doi: 10.1016/s0090-4295 (96)00184-7
- Perner S, Hofer MD, Kim R, Shah RB, Li H, Möller P, et al. Prostate-Specific Membrane Antigen Expression as a Predictor of Prostate Cancer Progression. *Hum Pathol* (2007) 38:696–701. doi: 10.1016/j.humpath.2006.11.012
- Eder M, Schafer M, Bauder-Wust U, Hull WE, Wangler C, Mier W, et al. 68Ga-Complex Lipophilicity and the Targeting Property of a Urea-Based PSMA Inhibitor for PET Imaging. *Bioconjug Chem* (2012) 23:688–97. doi: 10.1021/bc200279b
- Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M, et al. The Diagnostic Value of PET/CT Imaging With the (68)Ga-Labelled PSMA Ligand HBED-CC in the Diagnosis of Recurrent Prostate Cancer. *Eur J Nucl Med Mol Imaging* (2015) 42:197–209. doi: 10.1007/s00259-014-2949-6
- Rahbar KA-O, Weckesser M, Ahmadzadehfar H, Schäfers M, Stegger L, Bögemann M. Advantage of (18)F-PSMA-1007 Over (68)Ga-PSMA-11 PET Imaging for Differentiation of Local Recurrence vs. Urinary Tracer Excretion. *Eur J Nucl Med Mol Imaging* (2018) 45:1076–7. doi: 10.1007/s00259-018-3952-0
- Treglia G, Annunziata S, Pizzuto DA, Giovanella L, Prior JO, Ceriani L. Detection Rate of (18)F-Labeled PSMA PET/CT in Biochemical Recurrent Prostate Cancer: A Systematic Review and a Meta-Analysis. *Cancers (Basel)* (2019) 11:710. doi: 10.3390/cancers11050710
- Giesel FL, Hadaschik B, Cardinale J, Radtke J, Vinsensia M, Lehnert W, et al. F-18 Labelled PSMA-1007: Biodistribution, Radiation Dosimetry and Histopathological Validation of Tumor Lesions in Prostate Cancer Patients. *Eur J Nucl Med Mol Imaging* (2017) 44:678–88. doi: 10.1007/s00259-016-3573-4
- Rahbar KA-O, Afshar-Oromieh A, Bögemann M, Wagner S, Schäfers M, Stegger L, et al. (18)F-PSMA-1007 PET/CT at 60 and 120 Minutes in Patients With Prostate Cancer: Biodistribution, Tumour Detection and Activity Kinetics. *Eur J Nucl Med Mol Imaging* (2018) 45:1329–34. doi: 10.1007/ s00259-018-3989-0
- Sathianathen NJ, Butaney M, Konety BR. The Utility of PET-Based Imaging for Prostate Cancer Biochemical Recurrence: A Systematic Review and Meta-Analysis. World J Urol (2019) 37:1239–49. doi: 10.1007/s00345-018-2403-7
- 26. Liberati A, Altman Dg Fau Tetzlaff J, Tetzlaff J Fau Mulrow C, Mulrow C Fau Gøtzsche PC, Gøtzsche Pc Fau Ioannidis JPA, Ioannidis JP Fau Clarke M, et al. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. J Clin Epidemiol (2009) 62:e1-34. doi: 10.1016/j.jclinepi.2009.06.006
- Higgins JP, Thompson SG. Quantifying Heterogeneity in a Meta-Analysis. Stat Med (2002) 21:1539–58. doi: 10.1002/sim.1186
- Moses LE, Shapiro D Fau Littenberg B, Littenberg B. Combining Independent Studies of a Diagnostic Test Into a Summary ROC Curve: Data-Analytic Approaches and Some Additional Considerations. *Stat Med* (1993) 12:1293–316. doi: 10.1002/sim.4780121403
- Pelosi E, Arena V, Skanjeti A, Pirro V, Douroukas A, Pupi A, et al. Role of Whole-Body 18F-Choline PET/CT in Disease Detection in Patients With Biochemical Relapse After Radical Treatment for Prostate Cancer. *Radiol Med* (2008) 113:895–904. doi: 10.1007/s11547-008-0263-8
- Kwee SA, Coel MN, Lim J. DR–Detection of Recurrent Prostate Cancer With 18F-Fluorocholine PET/CT in Relation to PSA Level at the Time of Imaging. *Ann Nucl Med* (2012) 26:501–7. doi: 10.1007/s12149-012-0601-8
- 31. Panebianco V, Sciarra A, Lisi D, Galati F, Buonocore V, Catalano C, et al. Prostate Cancer: 1HMRS-DCEMR at 3T Versus [(18)F]Choline PET/CT in the Detection of Local Prostate Cancer Recurrence in Men With Biochemical Progression After Radical Retropubic Prostatectomy (RRP). *Eur J Radiol* (2012) 81:700–8. doi: 10.1016/j.ejrad.2011.01.095

- 32. Schillaci O, Calabria F, Tavolozza M, Caracciolo CR, Finazzi Agro E, Miano R, et al. Influence of PSA, PSA Velocity and PSA Doubling Time on Contrast-Enhanced 18F-Choline PET/CT Detection Rate in Patients With Rising PSA After Radical Prostatectomy. *Eur J Nucl Med Mol Imaging* (2012) 39:589–96. doi: 10.1007/s00259-011-2030-7
- Detti B, Scoccianti S, Franceschini D, Cipressi S, Cassani S, Villari D, et al. Predictive Factors of 18F -Choline PET/CT in 170 Patients With Increasing PSA After Primary Radical Treatment. J Cancer Res Clin Oncol (2013) 139:521–8. doi: 10.1007/s00432-012-1354-4
- 34. Marzola MC, Chondrogiannis S, Ferretti A, Grassetto G, Rampin L, Massaro A, et al. DR–Role of 18F-Choline PET/CT in Biochemically Relapsed Prostate Cancer After Radical Prostatectomy: Correlation With PSA Doubling Time, and Metastatic Distribution. *Clin Nucl Med* (2013) 38:e26–32. doi: 10.1097/RLU.0b013e318266cc38
- 35. Piccardo A, Paparo F, Piccazzo R, Naseri M, Ricci P, Marziano A, et al. Value of Fused 18F-Choline-PET/MRI to Evaluate Prostate Cancer Relapse in Patients Showing Biochemical Recurrence After EBRT: Preliminary Results. *BioMed Res Int* (2014) 2014:103718. doi: 10.1155/2014/103718
- 36. Cimitan M, Evangelista L, Hodolič M, Mariani G, Baseric T, Bodanza V, et al. Gleason Score at Diagnosis Predicts the Rate of Detection of 18F-Choline PET/CT Performed When Biochemical Evidence Indicates Recurrence of Prostate Cancer: Experience With 1,000 Patients. J Nucl Med (2015) 56:209– 15. doi: 10.2967/jnumed.114.141887
- 37. Morigi JJ, Stricker PD, van Leeuwen PJ, Tang R, Ho B, Quoc N, et al. DR-Prospective Comparison of F-18-Fluoromethylcholine Versus Ga-68-PSMA PET/CT in Prostate Cancer Patients Who Have Rising PSA After Curative Treatment and are Being Considered for Targeted Therapy. J Nucl Med (2015) 56:1185–90. doi: 10.2967/jnumed.115.160382
- 38. Rodado-Marina S, Coronado-Poggio M, García-Vicente AM, García-Garzón JR, Alonso-Farto JC, de la Jara AC, et al. Clinical Utility of (18)F-Fluorocholine Positron-Emission Tomography/Computed Tomography (PET/CT) in Biochemical Relapse of Prostate Cancer After Radical Treatment: Results of a Multicentre Study. *BJU Int* (2015) 115:874–83. doi: 10.1111/bju.12953
- 39. Simone G, Di Pierro GB, Papalia R, Sciuto R, Rea S, Ferriero M, et al. Significant Increase in Detection of Prostate Cancer Recurrence Following Radical Prostatectomy With an Early Imaging Acquisition Protocol With 18F-Fluorocholine Positron Emission Tomography/Computed Tomography. World J Urol (2015) 33:1511–8. doi: 10.1007/s00345-015-1481-z
- 40. Emmett L, Metser U, Bauman G, Hicks RJ, Weickhardt A, Davis ID, et al. Prospective, Multisite, International Comparison of F-18-Fluoromethylcholine PET/CTand Ga-68-HBED-CC PSMA-11 PET/CT in Men With High-Risk Features and Biochemical Failure After Radical Prostatectomy: Clinical Performance and Patient Outcomes. J Nucl Med (2019) 60:794–800. doi: 10.2967/jnumed.118.220103
- Giovacchini G, Giovannini E, Borsò E, Lazzeri P, Riondato M, Leoncini R, et al. Sensitivity of Fluorine-18-Fluoromethylcholine PET/CT to Prostate-Specific Antigen Over Different Plasma Levels: A Retrospective Study in a Cohort of 192 Patients With Prostate Cancer. *Nucl Med Commun* (2019) 40:258–63. doi: 10.1097/mnm.00000000000959
- Witkowska-Patena E, Giżewska A, Dziuk M, Miśko J, Budzyńska A, Walęcka-Mazur A. Head-to-Head Comparison of 18F-Prostate-Specific Membrane Antigen-1007 and 18F-Fluorocholine PET/CT in Biochemically Relapsed Prostate Cancer. *Clin Nucl Med* (2019) 44:e629–e33. doi: 10.1097/ rlu.00000000002794
- 43. de Leiris N, Leenhardt J, Boussat B, Montemagno C, Seiller A, Phan Sy O, et al. Does Whole-Body Bone SPECT/CT Provide Additional Diagnostic Information Over [18F]-FCH PET/CT for the Detection of Bone Metastases in the Setting of Prostate Cancer Biochemical Recurrence? *Cancer Imaging* (2020) 20:58. doi: 10.1186/s40644-020-00333-y
- 44. Sánchez N, Valduvieco I, Ribal MJ, Campos F, Casas F, Nicolau C, et al. Diagnostic Utility and Therapeutic Impact of PET/CT 18F-Fluoromethylcholine -Choline in the Biochemical Recurrence of Prostate Cancer. *Rev Esp Med Nucl Imagen Mol* (2020) 39:284–91. doi: 10.1016/ j.remn.2020.03.010
- 45. Zattoni F, Ravelli I, Rensi M, Capobianco D, Borsatti E, Baresic T, et al. 10-Year Clinical Experience With 18F-Choline PET/CT: An Italian Multicenter

Retrospective Assessment of 3343 Patients. *Clin Nucl Med* (2020) 45:594–603. doi: 10.1097/rlu.00000000003125

- 46. Schuster DM, Savir-Baruch B, Nieh PT, Master VA, Halkar RK, Rossi PJ, et al. Detection of Recurrent Prostate Carcinoma With Anti-1-Amino-3-F-18-Fluorocyclobutane-1-Carboxylic Acid PET/CT and in-111-Capromab Pendetide SPECT/CT. *Radiology* (2011) 259:852–61. doi: 10.1148/ radiol.11102023
- Kairemo K, Rasulova N, Partanen K, Joensuu T. Preliminary Clinical Experience of Trans-1-Amino-3-(18)F-Fluorocyclobutanecarboxylic Acid (Anti-(18)F-FACBC) PET/CT Imaging in Prostate Cancer Patients. *BioMed Res Int* (2014) 2014:305182. doi: 10.1155/2014/305182
- Nanni C, Zanoni L, Pultrone C, Schiavina R, Brunocilla E, Lodi F, et al. (18)F-FACBC (Anti1-Amino-3-(18)F-Fluorocyclobutane-1-Carboxylic Acid) Versus (11)C-Choline PET/CT in Prostate Cancer Relapse: Results of a Prospective Trial. *Eur J Nucl Med Mol Imaging* (2016) 43:1601–10. doi: 10.1007/s00259-016-3329-1
- 49. Odewole OA, Tade FI, Nieh PT, Savir-Baruch B, Jani AB, Master VA, et al. Recurrent Prostate Cancer Detection With Anti-3-[18F]FACBC PET/CT: Comparison With CT. *Eur J Nucl Med Mol Imaging* (2016) 43:1773-83. doi: 10.1007/s00259-016-3383-8
- Akin-Akintayo OO, Jani AB, Odewole O, Tade FI, Nieh PT, Master VA, et al. Change in Salvage Radiotherapy Management Based on(Fluciclovine) PET/ CT in Postprostatectomy Recurrent Prostate Cancer. *Clin Nucl Med* (2017) 42: e22–e8. doi: 10.1097/RLU.00000000001379
- Bach-Gansmo T, Nanni C, Nieh PT, Zanoni L, Bogsrud TV, Sletten H, et al. Multisite Experience of the Safety, Detection Rate and Diagnostic Performance of Fluciclovine ((18)F) Positron Emission Tomography/ Computerized Tomography Imaging in the Staging of Biochemically Recurrent Prostate Cancer. J Urol (2017) 197:676–83. doi: 10.1016/ j.juro.2016.09.117
- Miller MP, Kostakoglu L, Pryma D, Yu JQ, Chau A, Perlman E, et al. Reader Training for the Restaging of Biochemically Recurrent Prostate Cancer Using (18)F-Fluciclovine PET/CT. J Nucl Med (2017) 58:1596–602. doi: 10.2967/ jnumed.116.188375
- 53. Jambor I, Kuisma A, Kahkonen E, Kemppainen J, Merisaari H, Eskola O, et al. Prospective Evaluation of (18)F-FACBC PET/CT and PET/MRI Versus Multiparametric MRI in Intermediate- to High-Risk Prostate Cancer Patients (FLUCIPRO Trial). Eur J Nucl Med Mol Imaging (2018) 45:355–64. doi: 10.1007/s00259-017-3875-1
- 54. Andriole GL, Kostakoglu L, Chau A, Duan F, Mahmood U, Mankoff DA, et al. The Impact of Positron Emission Tomography With 18F-Fluciclovine on the Treatment of Biochemical Recurrence of Prostate Cancer: Results From the LOCATE Trial. J Urol (2019) 201:322–31. doi: 10.1016/j.juro.2018.08.050
- 55. Calais J, Ceci F, Eiber M, Hope TA, Hofman MS, Rischpler C, et al. Head to Head-FACBC vs PSMA-Restaging-DR 18F-Fluciclovine PET-CT and 68Ga-PSMA-11 PET-CT in Patients With Early Biochemical Recurrence After Prostatectomy: A Prospective, Single-Centre, Single-Arm, Comparative Imaging Trial. *Lancet Oncol* (2019) 20:1286–94. doi: 10.1016/s1470-2045 (19)30415-2
- 56. England JR, Paluch J, Ballas LK, Jadvar H. 18F-Fluciclovine PET/CT Detection of Recurrent Prostate Carcinoma in Patients With Serum PSA </= 1 Ng/Ml After Definitive Primary Treatment. *Clin Nucl Med* (2019) 44: e128–e32. doi: 10.1097/RLU.00000000002432
- 57. Savir-Baruch B, Lovrec P, Solanki AA, Adams WH, Yonover PM, Gupta G, et al. Fluorine-18-Labeled Fluciclovine PET/CT in Clinical Practice: Factors Affecting the Rate of Detection of Recurrent Prostate Cancer. *AJR Am J Roentgenol* (2019) 213:851–8. doi: 10.2214/ajr.19.21153
- Teyateeti A, Khan B, Teyateeti A, Chen B, Bridhikitti J, Pan T, et al. Diagnostic Performance of F-18 Fluciclovine PET/CT in Post-Radical Prostatectomy Prostate Cancer Patients With Rising Prostate-Specific Antigen Level </=0.5 Ng/Ml. Nucl Med Commun (2020) 41:906-15. doi: 10.1097/ MNM.000000000001228
- Garza D, Kandathil A, Xi Y, Subramaniam RM. 18F-Fluciclovine PET/CT Detection of Biochemical Recurrent Prostate Cancer in Patients With PSA Levels <2.00 Ng/Ml. Nucl Med Commun (2021). doi: 10.1097/ MNM.000000000001412
- 60. Michael J, Khandani AH, Basak R, Tan HJ, Royce TJ, Wallen E, et al. Patterns of Recurrence, Detection Rates, and Impact of 18-F Fluciclovine PET/CT on

the Management of Men With Recurrent Prostate Cancer. Urology (2021) S0090-4295:00110-2. doi: 10.1016/j.urology.2021.01.038

- Nakamoto R, Harrison C, Song H, Guja KE, Hatami N, Nguyen J, et al. The Clinical Utility of (18)F-Fluciclovine PET/CT in Biochemically Recurrent Prostate Cancer: An Academic Center Experience Post FDA Approval. *Mol Imaging Biol* (2021). doi: 10.1007/s11307-021-01583-3
- Rahbar K, Afshar-Oromieh A, Seifert R, Wagner S, Schäfers M, Bögemann M, et al. Diagnostic Performance of (18)F-PSMA-1007 PET/CT in Patients With Biochemical Recurrent Prostate Cancer. *Eur J Nucl Med Mol Imaging* (2018) 45:2055–61. doi: 10.1007/s00259-018-4089-x
- 63. Eiber M, Kroenke M, Wurzer A, Ulbrich L, Jooß L, Maurer T, et al. 18F-Rhpsma-7 Positron Emission Tomography (PET) for the Detection of Biochemical Recurrence of Prostate Cancer Following Radical Prostatectomy. J Nucl Med (2019) 61:696–701. doi: 10.2967/jnumed. 119.234914
- Giesel FL, Knorr K, Spohn F, Will L, Maurer T, Flechsig P, et alDetection Efficacy of (18)F-PSMA-1007 PET/CT in 251 Patients With Biochemical Recurrence of Prostate Cancer After Radical Prostatectomy. *J Nucl Med* 2019) 6460:362–8. doi: 10.2967/jnumed.118.212233
- Rousseau E, Wilson D, Lacroix-Poisson F, Krauze A, Chi K, Gleave M, et al. A Prospective Study on F-18-Dcfpyl PSMA PET/CT Imaging in Biochemical Recurrence of Prostate Cancer. J Nucl Med (2019) 60:1587–93. doi: 10.2967/ jnumed.119.226381
- 66. Wondergem M, Jansen BHE, van der Zant FM, van der Sluis TM, Knol RJJ, van Kalmthout LWM, et al. Early Lesion Detection With (18)F-Dcfpyl PET/ CT in 248 Patients With Biochemically Recurrent Prostate Cancer. Eur J Nucl Med Mol Imaging (2019) 46:1911–8. doi: 10.1007/s00259-019-04385-6
- 67. Chausse G, Ben-Ezra N, Stoopler M, Levett JY, Niazi T, Anidjar M, et al. Diagnostic Performance of (18)F-Dcfpyl Positron Emission Tomography/ Computed Tomography for Biochemically Recurrent Prostate Cancer and Change-of-Management Analysis. *Can Urol Assoc J* (2020) 15. doi: 10.5489/ cuaj.6817
- Mena E, Lindenberg ML, Turkbey IB, Shih JH, Harmon SA, Lim I, et al. F-18-Dcfpyl PET/CT Imaging in Patients With Biochemically Recurrent Prostate Cancer After Primary Local Therapy. J Nucl Med (2020) 61:881–9. doi: 10.2967/jnumed.119.234799
- 69. Rowe SP, Campbell SP, Mana-Ay M, Szabo Z, Allaf ME, Pienta KJ, et al. Prospective Evaluation of PSMA-Targeted F-18-Dcfpyl PET/CT in Men With Biochemical Failure After Radical Prostatectomy for Prostate Cancer. J Nucl Med (2020) 61:58–61. doi: 10.2967/jnumed.119.226514
- Song H, Harrison C, Duan H, Guja K, Hatami N, Franc BL, et al. Prospective Evaluation of (18)F-Dcfpyl PET/CT in Biochemically Recurrent Prostate Cancer in an Academic Center: A Focus on Disease Localization and Changes in Management. J Nucl Med (2020) 61:546–51. doi: 10.2967/ jnumed.119.231654
- 71. Witkowska-Patena E, Giżewska A, Dziuk M, Miśko J, Budzyńska A, Walęcka-Mazur A. Diagnostic Performance of 18F-PSMA-1007 PET/CT in Biochemically Relapsed Patients With Prostate Cancer With PSA Levels ≤ 2.0 Ng/Ml. Prostate Cancer Prostatic Dis (2020) 23:343-8. doi: 10.1038/s41391-019-0194-6
- Dietlein F, Mueller P, Kobe C, Endepols H, Hohberg M, Zlatopolskiy BD, et al. [(18)F]-JK-PSMA-7 PET/CT Under Androgen Deprivation Therapy in Advanced Prostate Cancer. *Mol Imaging Biol* (2021) 23:277-86. doi: 10.1007/s11307-020-01546-0
- 73. Koschel S, Taubman K, Sutherland T, Yap K, Chao M, Guerrieri M, et al. Patterns of Disease Detection Using [(18)F]Dcfpyl PET/CT Imaging in Patients With Detectable PSA Post Prostatectomy Being Considered for

Salvage Radiotherapy: A Prospective Trial. Eur J Nucl Med Mol Imaging (2021). doi: 10.1007/s00259-021-05354-8

- 74. Perry E, Talwar A, Taubman K, Ng M, Wong LM, Booth R, et al. [(18)F] Dcfpyl PET/CT in Detection and Localization of Recurrent Prostate Cancer Following Prostatectomy Including Low PSA < 0.5 Ng/Ml. Eur J Nucl Med Mol Imaging (2021) 48:2038–46. doi: 10.1007/s00259-020-05143-9
- Ghafoor S, Burger IA, Vargas AH. Multimodality Imaging of Prostate Cancer. J Nucl Med (2019) 60:1350–8. doi: 10.2967/jnumed.119.228320
- 76. Wang R, Shen G, Yang R, Ma X, Tian R. (68)Ga-PSMA PET/MRI for the Diagnosis of Primary and Biochemically Recurrent Prostate Cancer: A Meta-Analysis. *Eur J Radiol* (2020) 130:109131. doi: 10.1016/j.ejrad. 2020.109131
- Glaser ZA, Rais-Bahrami S. Fluciclovine Positron Emission Tomography in the Setting of Biochemical Recurrence Following Local Therapy of Prostate Cancer. *Transl Androl Urol* (2018) 7:824–30. doi: 10.21037/tau.2018.07.17
- Tan N, Oyoyo U, Bavadian N, Ferguson N, Mukkamala A, Calais J, et al. PSMA-Targeted Radiotracers Versus F-18 Fluciclovine for the Detection of Prostate Cancer Biochemical Recurrence After Definitive Therapy: A Systematic Review and Meta-Analysis. *Radiology* (2020) 296:44–55. doi: 10.1148/radiol.2020191689
- Giesel FL, Kesch C, Yun M, Cardinale J, Haberkorn U, Kopka K, et al. 18F-PSMA-1007 PET/CT Detects Micrometastases in a Patient With Biochemically Recurrent Prostate Cancer. *Clin Genitourin Cancer* (2017) 15: e497–e9. doi: 10.1016/j.clgc.2016.12.029
- Fendler WP, Calais J, Eiber M, Flavell RR, Mishoe A, Feng FY, et al. Assessment of 68Ga-PSMA-11 PET Accuracy in Localizing Recurrent Prostate Cancer: A Prospective Single-Arm Clinical Trial. JAMA Oncol (2019) 5:856–63. doi: 10.1001/jamaoncol.2019.0096
- Lawhn-Heath C, Flavell RR, Behr SC, Yohannan T, Greene KL, Feng F, et al. Single-Center Prospective Evaluation of (68)Ga-PSMA-11 PET in Biochemical Recurrence of Prostate Cancer. AJR Am J Roentgenol (2019) 213:266–74. doi: 10.2214/AJR.18.20699
- Nanni C, Schiavina R, Brunocilla E, Boschi S, Borghesi M, Zanoni L, et al. 18F-Fluciclovine PET/CT for the Detection of Prostate Cancer Relapse: A Comparison to 11C-Choline PET/CT. *Clin Nucl Med* (2015) 40:e386–91. doi: 10.1097/rlu.00000000000849
- Abiodun-Ojo OA, Akintayo AA, Akin-Akintayo OO, Tade FI, Nieh PT, Master VA, et al. (18)F-Fluciclovine Parameters on Targeted Prostate Biopsy Associated With True Positivity in Recurrent Prostate Cancer. J Nucl Med (2019) 60:1531–6. doi: 10.2967/jnumed.119.227033
- 84. Gauvin S, Cerantola Y, Haberer E, Pelsser V, Probst S, Bladou F, et al. Initial Single-Centre Canadian Experience With 18F-Fluoromethylcholine Positron Emission Tomography-Computed Tomography (18F-FCH PET/CT) for Biochemical Recurrence in Prostate Cancer Patients Initially Treated With Curative Intent. *Can Urol Assoc J* (2017) 11:47–52. doi: 10.5489/cuaj.4068

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Wang, Shen, Huang and Tian. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.