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Background: Diagnosing the biochemical recurrence (BCR) of prostate cancer (PCa) is a
clinical challenge, and early detection of BCR can help patients receive optimal treatment.
We conducted a meta-analysis to define the diagnostic accuracy of PET/CT using 18F-
labeled choline, fluciclovine, and prostate-specific membrane antigen (PSMA) in patients
with BCR.

Methods: Multiple databases were searched until March 30, 2021. We included studies
investigating the diagnostic accuracy of 18F-choline, 18F-fluciclovine, and 18F-PSMA PET/
CT in patients with BCR. The pooled sensitivity, specificity, and detection rate of 18F-
labeled tracers were calculated with a random-effects model.

Results: A total of 46 studies met the included criteria; 17, 16, and 13 studies focused on
18F-choline, fluciclovine, and PSMA, respectively. The pooled sensitivities of 18F-choline
and 18F-fluciclovine were 0.93 (95% CI, 0.85–0.98) and 0.80 (95% CI, 0.65–0.897), and
the specificities were 0.91 (95% CI, 0.73–0.97) and 0.66 (95% CI, 0.50–0.79),
respectively. The pooled detection rates of 18F-labeled choline, fluciclovine and PSMA
were 66, 74, and 83%, respectively. Moreover, the detection rates of 18F-labeled choline,
fluciclovine, and PSMA were 35, 23, and 58% for a PSA level less than 0.5 ng/ml; 41, 46,
and 75% for a PSA level of 0.5–0.99 ng/ml; 62, 57, and 86% for a PSA level of 1.0–1.99
ng/ml; 80, 92, and 94% for a PSA level more than 2.0 ng/ml.

Conclusion: These three 18F-labeled tracers are promising for detecting BCR in prostate
cancer patients, with 18F-choline showing superior diagnostic accuracy. In addition, the
much higher detection rates of 18F-PSMA showed its superiority over other tracers,
particularly in low PSA levels.

Systematic Review Registration: PROSPERO, identifier CRD42020212531.
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INTRODUCTION

Prostate cancer (PCa) is one of the most common malignancy in
men worldwide and is also the fifth major cause of cancer-related
death in men. It is estimated that over 300,000 PCa-related
deaths occur in 2018 (1). In addition to its high morbidity and
mortality, the recurrence and metastasis of prostate cancer are
also troublesome in clinical practice (2, 3).

It is challenging to detect initial recurrence and metastasis
after prior treatment because of few obvious characteristics on
early recurrent or metastatic lesions. PCa recurrence is usually
considered when observing a rise in the serum prostate-specific
antigen (PSA) level. This is regarded as biochemical recurrence
(BCR) of PCa, and the definition of BCR is a serum PSA level
over a threshold of 0.2 ng/ml twice after radical prostatectomy
(RP) or an absolute increase in PSA level of 2 ng/ml over the
lowest posttreatment PSA level after radiation therapy (RT)
(4, 5).

The key issue for patients with BCR is the early and correct
identification of recurrent or metastatic disease, which is
essential for further devising treatment strategies since
treatment varies based on the presence of local recurrence,
regional lymph node and distant viscera or bone metastasis
(6). Conventional imaging modalities consisting of CT, bone
scan, and MRI have been used for patients with advanced PCa,
but their roles in detecting minimal or occult lesions are limited
(7, 8). These conventional imaging modalities also have low
sensitivity and specificity in detecting patients with BCR,
especially those with a low PSA level. According to the 2020
American Society of Clinical Oncology (ASCO) guidelines, next-
generation imaging (NGI) such as PET/CT, PET/MRI, and
whole-body MRI is recommended for use in patients with
rising PSA after prior treatment when conventional imaging
findings are negative (9). Radioactive tracers such as choline and
fluciclovine have been used for prostate cancer staging, restaging,
and treatment response evaluation. Meanwhile, prostate-specific
membrane antigen (PSMA), a new radiopharmaceutical that
binds to prostate cancer-specific target, has demonstrated
outstanding detection rate for recurrent or metastatic lesions
among patients with BCR.

Choline is an essential element of phospholipids in the
cellular wall, and the increased uptake of choline means
increased metabolism of the cell membrane components of
malignant tumors (10). 11C-choline was approved by the Food
and Drug Administration (FDA) in 2012, but its short half-life
limits its widespread use in PET/CT centers without onsite
cyclotrons. Later, 18F-labeled choline was developed, and its
longer half-life has solidified 18F-choline PET/CT as a
significant imaging modality in patients with suspected PCa
recurrence (11, 12). 18F-Fluciclovine (anti-1-amino-3-18F-
fluorocyclobutane-1-carboxylic acid, 18F-FACBC), as a
synthetic amino acid that is upregulated in PCa, is an option
for molecular imaging in patients with BCR, which was approved
by the FDA in 2016 (13, 14). The main advantage of 18F-
fluciclovine is its low urinary excretion, which allows for better
detection and localization of PCa recurrence in patients with
Frontiers in Oncology | www.frontiersin.org 2
rising PSA level (15). PSMA is a type 2 transmembrane protein
that is more highly expressed in the prostate cancer cell
membrane than in normal tissues (16–18). Therefore, PSMA
has become a promising target for imaging prostate cancer (19).
68Ga-PSMA PET/CT has been proven to improve the detection
of metastatic disease and the monitoring of treatment effects in
patients with PCa (20). Most recently, 68Ga-PSMA-11, as the first
PSMA PET agent, has been approved by the FDA. 18F-labeled
PSMA has also begun to be used in clinical practice, and its long
half-life and high resolution in PET/CT images have further
increased the detection rate of PSMA-targeted imaging in subtle
or occult metastases (21, 22). Moreover, 18F-PSMA-1007 PET/
CT can differentiate local recurrence from physical uptake in the
urinary bladder or ureter due to non-urinary clearance (23, 24).

Some previous studies have compared the diagnostic roles of
11C-choline, 18F-fluciclovine, and 68Ga-PSMA PET/CT in
patients with BCR, showing that 68Ga-PSMA PET/CT has a
superior detection rate (25). Even so, there have been some
clinical challenges existing in 68Ga-PSMA PET/CT due to certain
shortcomings including its short half-life, non-ideal energies and
the limited availability of 68Ga. Compared with 68Ga and 11C,
18F, as a longer half-life nuclide, has many advantages such
centralized production in a cyclotron facility and more favorable
positron energies for imaging, thereby motivating the
development of 18F-labeled analogs. Currently, growing clinical
experience has revealed the high diagnostic accuracy of some
18F-labeled tracers in PCa patients with BCR. However, the
effectiveness of 18F-labeled choline, fluciclovine, and PSMA
remains unclear because of limited number of studies. Herein,
we aimed to perform a meta-analysis to review and compare the
diagnostic value of 18F-labeled choline, fluciclovine, and PSMA
PET/CT imaging for detecting BCR in patients with PCa, in
order to provide better creditability for clinical practice.
METHODS

The Preferred Reporting Items for Systematic Reviews and Meta-
analyses (PRISMA) guidelines was used for our study (26). Our
review has registered on the international prospective register of
systematic reviews (PROSPERO) (CRD 42020198861).

Search Strategy
A literature research was conducted with scientific databases,
including PubMed, EMBASE, and Web of Science, until March
30, 2021. A search algorithm was developed based on a
combination of keywords (“choline” OR “fluciclovine” OR
“FACBC” OR “PSMA” OR “DCFPyL” OR “DCFBC” OR
“1007”) AND (“prostate cancer” OR “prostate neoplasm”)
AND (“biochemical recurrence” OR “biochemical failure”)
AND (“PET/CT” OR “positron emission tomography/
computed tomography”) AND (“18F” OR “fluorine”).

Two authors independently screened and evaluated these
studies. The reference lists of all relevant studies were further
checked to find more suitable studies. A third author was
June 2021 | Volume 11 | Article 684629
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responsible for disagreement and solved the controversy between
two authors through discussion.

Selection of Studies
Studies using 18F-labeled tracers such as 18F-choline, 18F-
fluciclovine, and 18F-PSMA were evaluated. Studies were
included according to the following criteria: (a) sample
size >10; (b) patients who had evidence of BCR underwent
PET/CT; (c) studies evaluating the diagnostic accuracy of 18F-
labeled tracers in prostate cancer patients with BCR; (d)
histological results, imaging, or clinical follow-up as a reference
standard. Studies on other tracers were not included. Abstracts,
reviews, and case reports were also not included. If the
studies included duplicate patients, we reviewed and included
the study with the largest sample or the most recent study
performed. The included studies were limited to those
published in English.

Quality Assessment
The quality of included studies was critically assessed by two
independent authors according to the Quality Assessment of
Diagnostic Accuracy Studies-2 (QUADAS-2) tool. This tool
comprises four domains (patient selection, index test, reference
standard, and flow and timing), and each domain was used to
assess the risk of bias. Next, applicability was also considered
according to patient selection, the index test, and the
reference standard.

Data Extraction
Two authors collected various parameters and outcomes from
each eligible study as follows: author, country, publication year,
study design, number of patients, age, pre-PET PSA level,
reference criteria, scanner model, ligands, and injection dose
and the detection rate as well as true positive (TP), false positive
(FP), false negative (FN), and true negative (TN) PET/CT with
different tracers in patients with BCR. All discrepancies were
resolved by consensus and ultimately based on the decision of the
third author.

Statistical Analysis
For studies reporting the diagnostic performance of 18F-PSMA,
18F-choline, and 18F-fluciclovine PET/CT in patients with BCR,
2 × 2 table was used to calculate TP, FP, TN, and FN. The pooled
sensitivity and specificity were calculated by a random-effects
model. We developed a hierarchical summary receiver operating
curve and calculated the area under the curve. We presented
forest plots with 95% confidence intervals (CIs) for the sensitivity
and specificity of each study. In addition, the detection rates of
PET tracers were extracted and pooled using a random-effects
model. If possible, subgroup analysis was considered based on
different PSA serum values.

Heterogeneity within studies was evaluated using Cochran’s
Q test and the I² statistic (27). An I² value greater than 50% was
indicative of substantial heterogeneity. The funnel plot test and
Egger’s test were used to assess the publication bias. All statistical
Frontiers in Oncology | www.frontiersin.org 3
analyses were performed using Stata 15.0 and RevMan 5.3. P-
value <0.05 was considered to be statistically significant (28).
RESULTS

The flow chart demonstrates an overview of the search and
selection process (Figure 1). The initial search yielded 480
studies, of which 95 were duplicates. Subsequently, after
reviewing the titles and abstracts, we excluded 238 studies for
the following reasons: 170 studies were case reports, reviews, and
academic meeting abstracts, 11 were basic studies, five
applications in other diseases, and 52 studies used different
radiotracers and imaging modalities. Of the remaining studies,
75 studies were not relevant to our aims, and most of them
investigated the impact of novel PET/CT tracers in treatment
management for patients with PCa or focused on evaluating
metastatic disease. In addition, 26 studies did not provide
sufficient information and were excluded. Thus, only 46 studies
were finally included. Of these, 17 studies focused on the role of
18F-choline PET/CT in prostate cancer patients with BCR (29–
45). The numbers of included studies regarding 18F-fluciclovine
and 18F-PSMA PET/CT were 16 and 13, respectively (46–74).
Tables 1–3 outline the characteristics of each eligible study.

Quality Assessment
Figures 2A–C show the results of the quality assessment of each
eligible study for 18F-choline, 18F-fluciclovine, and 18F-PSMA,
respectively. Patient selection was not considered the source of
bias because all studies had qualified patient selection criteria.
For the index test and reference standard, some studies did
not adopt the blinding method when interpreting the positive
scan of the PET/CT findings, and we rated these studies
as high or unclear levels regarding the risk of bias and
applicability concern. Similarly, unclear or high levels were
displayed on the applicability concern of flow and timing
because of the different follow-up times and multiple
reference standards.

Diagnostic Performance of 18F-Choline
and 18F-Fluciclovine PET/CT
Seventeen studies reported the diagnostic performance of 18F-
choline, and the summary sensitivity and specificity of 18F-
choline PET/CT in patients with BCR were 0.93 (95% CI,
0.85–0.96) and 0.91 (95% CI, 0.73–0.97), respectively
(Figure 3). The summary sensitivity and specificity drawn
from studies on 18F-fluciclovine were 0.80 (95% CI, 0.65–0.89)
and 0.66 (95% CI, 0.50–0.79), respectively (Figure 4). However,
the summary sensitivity and specificity were not constructed
for 18F-PSMA PET/CT imaging because these studies
mostly focused on the detection rate in patients with BCR.
Summary receiver operating characteristic (SROC) curves of
18F-choline and 18F-fluciclovine were demonstrated in
Figures 5A, B.
June 2021 | Volume 11 | Article 684629
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Detection Rate of 18F-Choline, 18F-
Fluciclovine, and 18F-PSMA PET/CT
Thepooleddetectionrateof 18F-cholinePET/CTwas66%, lower than
74% of 18F-fluciclovine PET/CT. In addition, the pooled detection
Frontiers in Oncology | www.frontiersin.org 4
rate of 18F-PSMA PET/CT was 83% (Figure 6). Meanwhile, the
detection rates of 18F-labeled choline, fluciclovine, and PSMAwere
35, 23, and 58% for a PSA level less than 0.5 ng/ml (Figure 7);
41, 46, and 75% for a PSA level of 0.5–0.99 ng/ml (Figure 8); 62,
June 2021 | Volume 11 | Article 68462
FIGURE 1 | Flow of study search.
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atien Ligand Mean dose Reference standard

50 18F-fluciclovine 199.8–484.7 MBq Multiple
26 18F-fluciclovine 328 ± 56.8 MBq Multiple
89 18F-fluciclovine 370 MBq Follow-up
53 18F-fluciclovine 358 ± 52.9MBq Follow-up
143 18F-fluciclovine 310 MBq Follow-up
110 18F-fluciclovine 370 MBq Multiple
24 18F-fluciclovine 370 ± 13 MBq Biopsy
32 18F-fluciclovine 369 ± 10 MBq Biopsy
213 18F-fluciclovine 370 ± 20% MBq Multiple
50 18F-fluciclovine 381 MBq Multiple

28 18F-fluciclovine 370 MBq Follow-up
152 18F-fluciclovine 9.97 ± 1.18mci ——

94 18F-fluciclovine 370 MBq Multiple

78 18F-fluciclovine —— Imaging
103 18F-fluciclovine 10 mci Imaging
165 18F-fluciclovine 389 ± 59 MBq Multiple

d follo

TABLE 1 | Study characteristics of 18F-choline PET/CT.

nts Ligand Mean dose Reference standard

18F-choline 185–259 MBq Multiple
18F-fluorocholine 2.6 MBq/kg Multiple
18F-choline 185-259 MBq Multiple
18F-choline 370 MBq Biopsy

0 18F-fluorocholine 3.7 MBq/kg Follow-up
3 18F-fluorocholine 3 MBq/kg

18F-choline 3MBq/kg Multiple
18F-fluorocholine 3.5 MBq/kg Biopsy

3 18F-fluorocholine 4 MBq/kg Multiple
00 18F-choline 3.0–3.5 MBq/kg Multiple

6 18F-choline 4 MBq/kg Multiple
18F-choline 3.6 MBq/kg Multiple

2 18F-fluorocholine 3.7 MBq/kg Multiple
18F-fluorocholine 248 ± 35 MBq Multiple

8 18F-choline 370 MBq Multiple
98 18F-choline 2.5-3.7 MBq/kg
5 18F-choline 3.7 MBq/kg Multiple

d follo
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Mean age/Range PSA (ng/mL) Scancer Modality

68.3 ± 8.1 6.62 ± 7.63 Discovery DLS, GE
68.1 ± 5.8 7.9 ± 14.6 Siemens Biograph

69 6.99 Discovery STE, GE
67.57± 8.03 7.2 ± 8.3 GE Discovery DLS or 690

67 5.43 ——

67.4 ± 7.37 5.87 ± 7.65 GE Discovery DLS or 690
70.8 ± 5.7 8.5 ± 6.1 GE Discovery 690
65 (49–76) 12 (4.1–35) GE Discovery 690
66.4 ± 7.75 4.24 ± 10.22 ——

68 (64–74) 0·48 (0·38–0·83) Siemens Biograph64 and
GE Discovery

67.1 (53–77) 0.44(0.1–1) Siemens Biograph
68.73 ± 7.92 2.06 (0.006–120) Philips Ingenuity TF PET/CT

65.7 (42.5–80.3) GE Discovery 710, MI and
Siemens Biograph 64

68.7 (48–87) 0.72(<0.05–1.99) ——

69.79 ± 7.88 5.77 ± 9.98 Siemens Biograph
71.1 ± 8.8 3.1 (1.0–9.6) GE Discovery 600, 690, or MI

p.

ean age/Range PSA (ng/mL) Scancer Modality

67.9 ± 7 4.59 ± 7.87 Discovery ST unit, GE
69.0 ± 8.9 3.2 (0.2–18.2) Philips Gemini TF-64
56–72 1.63 Discovery ST, GE

70. 9 ± 7 4.13 ± 4.56 Discovery ST, GE
—— 3.5 ± 8.8 PET/CT Philips TOF

69.4 ± 6.5 7.4 ± 13.6 Discovery STE
77.2 ± 5.1 5.8 ± 3.4 Discovery ST, GE
68(54–81) 1.72 ± 2.54 Philips Ingenuity TF 64

68 ± 7.1 5.3 ± 8.7 GE and Siemens equipments
69.68 ± 7.67 3.30 GE Discovery LS; Siemens Biograp

16 HT or Biograph mCT;
GE Discovery ST8,

68 0.6 (0.43–0.76) Siemens Biograph Hi-Rez 16;
64 (59–69) 0.42 (0.29–0.93) ——

73.2 ± 6.6 9.53 ± 16.70 GE Discovery 710
68.6 ± 6.5 0.75 ± 0.6 GE Discovery 710
69 ± 6.7 4.9 ± 5.2 Siemens Biograph mCT

2 (66.29–77.0) 2.0 (0.1–3.0) ——

73.2 (56–89) 9.4 (7.1–18.4) GE Discovery 690

p.
ts

w-u

M

7

w-u
h

TABLE 2 | Study characteristics of 18F-fluciclovine PET/CT.

Author Publication Year Country Design P

Schuster 2011 US P
Kairemo 2014 Finland R
Nanni 2016 Italy P
Odewole 2016 USA R
Bach-Gansmo 2017 Norway, Italy, UK R
Miller 2017 USA R
Akin-Akintayo 2018 USA P
Jambor 2018 Finland P
Andriole 2019 US P
Calais 2019 US P

England 2019 US R
Savir-Baruch 2019 US R
Teyateeti 2020 US R

Garza 2021 US R
Michael 2021 US R
Nakamoto 2021 US R

A multiple reference standards including biopsy, other imaging modalities a

Author Publication Year Country Design Pati

Pelosi 2008 Italy R 5
Kwee 2012 US P 5
Panebianco 2012 Italy P 8
Schillaci 2012 Italy P 4
Detti 2013 Italy R 17
Marzola 2013 Italy R 23
Piccardo 2014 Italy P 2
Morigi 2015 Australia P 3
Rodado-Marina 2015 Spain R 23
Cimitan 2015 Italy R 1,0

Simone 2015 Italy P 14
Emmett 2018 Australia P 9
Giovacchini 2019 Italy R 19
Witkowska-Patena 2019 Poland P 4
Sánchez 2020 Spain P 10
Zattoni 2020 Italy R 2,7
de Leiris 2020 France R 11

A multiple reference standards including biopsy, other imaging modalities a
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57, and 86% for a PSA level of 1.0–1.99 ng/ml (Figure 9); 80, 92,
and 94% for a PSA level more than 2.0 ng/ml (Figure 10).
DISCUSSION

Our meta-analysis included studies investigating the diagnostic
roles of three novel 18F-labeled tracers applied in prostate cancer
patients with BCR. From our study, the summary sensitivity and
specificity of 18F-choline and 18F-fluciclovine PET/CT were 0.93
and 0.91, and 0.80 and 0.66, respectively. For the detection rate,
the pooled detection rates of 18F-labeled choline, fluciclovine,
and PSMA were 66, 74, and 83%, respectively. Meanwhile, we
observed a higher detection rate of biochemically recurrent PCa
with 18F-PSMA compared with choline and fluciclovine PET/CT
for the different PSA level subgroups.

Multiple PET/CT radiotracers have been developed and
experimented in recent years, motivating the wide use of PET/
CT or PET/MRI in patients with PCa for staging, restaging, and
response evaluation (75, 76). 18F-fluciclovine PET/CT showed a
superior advantage over 11C-choline PET/CT in patients with
BCR and further aid guiding decision-making in regard to
patients’ treatment strategy (48, 77). In addition, PSMA PET/
CT has shown superior diagnostic accuracy for recurrence and
metastases of prostate cancer than fluciclovine and choline. A
meta-analysis defined the diagnostic accuracy of PET/CT
imaging using 11C-choline, 18F-fluciclovine, or 68Ga-PSMA,
showing that 68Ga-PSMA PET/CT has a nearly equal
sensitivity but the highest specificity among these tracers for
PET/CT imaging in detecting biochemically recurrent PCa (25).

In contrast, our meta-analysis focused on only long-half
radionuclides as 18F-labeled tracers and summarized the
diagnostic accuracy of 18F-labeled choline, fluciclovine, and
PSMA in detecting patients with BCR. Our study revealed that
18F-PSMA had the highest detection rate at different PSA levels,
and the detection rate was related to the PSA level. These results
were consistent with another meta-analysis that compared the
detection rate of biochemically recurrent PCa between PSMA-
targeted radiotracers and 18F-fluciclovine, finding that PSMA-
targeted radiotracers demonstrate a greater detection rate than
18F-fluciclovine (78). A study compared prospectively paired 18F-
fluciclovine and PSMA PET/CT scans for localizing recurrence
of PCa after prostatectomy in patients with a PSA level <2.0 ng/
ml (55). They found that PSMA PET/CT showed higher
detection rates and should be the tracer choice when PET/CT
imaging is considered for patients with biochemical recurrence
after radical prostatectomy with low PSA concentrations (≤2.0
ng/ml). The same conclusion was drawn from another
prospective study paired that compared 18F-PSMA and 18F-
fluorocholine PET/CT in patients with BCR (42). The
advantage of PSMA-targeted PET/CT imaging could be
attributed to the high expression of PSMA in PCa and
its metastases.

In late 2020, 68Ga-PSMA-11 became the first PSMA PET tracer
to be approved by the FDA, which may facilitate widespread
adaptation. Despite this, there also have been some limitations
related to 68Ga-PSMA PET/CT because of the short half-life, non-
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sé

20
20

C
an

ad
a

R
93

70
.4
(5
1-
87

)
2.
27

(0
.0
7–

51
.0
9)

G
E
D
is
co

ve
ry

S
T

1
8
F-
D
C
FP

yL
33

3
±
37

M
B
q

M
ul
tip

le
D
ie
tle
in

20
21

G
er
m
an

y
R

70
70

.1
±
5.
5

1
8
F-
JK

-P
S
M
A
-7

34
8
±
55

M
B
q

—
—

K
os

ch
el

20
21

A
us

tr
al
ia

P
98

68
.0

(6
6.
0–

71
.0
)

0.
32

(0
.2
8–

0.
36

)
G
E
D
is
co

ve
ry

71
0

1
8
F-
D
C
FP

yL
25

0
±
50

M
B
q

Im
ag

in
g

P
er
ry

20
21

N
ew

Ze
al
an

d
R

22
2

71
(4
9–

89
)

0.
51

(0
.0
8–

58
.9
)

G
E
D
is
co

ve
ry

69
0,

71
0

1
8
F-
D
C
FP

yL
25

0
±
50

M
B
q

—
—

A
m
ul
tip

le
re
fe
re
nc

e
st
an

da
rd
s
in
cl
ud

in
g
bi
op

sy
,o

th
er

im
ag

in
g
m
od

al
iti
es

an
d
fo
llo
w
-u
p.
June 2021 | Volume 11 | Article 684629

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Diagnostic Role in Detecting Prostate Cancer
A B C

FIGURE 2 | (A) Quality Assessment of Diagnostic Accuracy Studies-2 analysis of study bias in 18F-choline cohort. (B) Quality Assessment of Diagnostic Accuracy
Studies-2 analysis of study bias in 18F-fluciclovine cohort. (C) Quality Assessment of Diagnostic Accuracy Studies-2 analysis of study bias in 18F prostate-specific
membrane antigen (PSMA) cohort.
FIGURE 3 | Forest plot of the proportion of 18F-choline positron emission tomography/computed tomography (PET/CT) sensitivity and specificity in prostate cancer
patients with biochemical recurrence.
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FIGURE 4 | Forest plot of the proportion of 18F-fluciclovine PETCT sensitivity and specificity in prostate cancer patients with biochemical recurrence.
A B

FIGURE 5 | (A) SROC curve for the diagnostic accuracy of 18F-choline PET/CT in prostate cancer patients with biochemical recurrence. (B) SROC curve for the
diagnostic accuracy of 18F-fluciclovine PET/CT in prostate cancer patients with biochemical recurrence. SROC, summary receiver operating characteristic.
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A B C

FIGURE 6 | Forest plot of the proportion of 18F-labeled choline (A), fluciclovine (B) and PSMA (C) PET/CT positivity of prostate cancer patients with biochemical
recurrence.
FIGURE 7 | Forest plot of the proportion of 18F-labeled choline, fluciclovine and PSMA positivity of prostate cancer patients with BCR for PSA less than 0.5 ng/ml.
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ideal energies, and limited availability of 68Ga, limiting its clinical
application in detecting occult or metastatic lesions in the prostate
bed (62, 79). However, 18F-PSMA analogs seemed to be more
favorable due to their longer half-life and a higher physical spatial
resolution (23), and 18F-PSMA-1007, as a second-generation 18F-
labeled PSMA tracer, demonstrated high labeling yields, better
tumor uptake, and hepatobiliary excretion, making it an ideal
PSMA-target tracer for diagnostic imaging in patients with BCR
(21, 23). Our meta-analysis found the pooled detection rate with
18F-PSMA of 58% for a PSA level of less than 0.5 ng/ml, 75% for a
PSA level of 0.5 to 0.99 ng/ml, and 86% for a PSA level of 1.0 to
1.99 ng/ml. These detection rates are equal or higher than those in
recent studies involving 68Ga PSMA PET/CT (80, 81).

Compared with FDA approval of 68Ga-PSMA-11 in late 2020,
11C-choline and 18F-fluciclovine PET/CT have one temporary
advantage as they have been granted FDA approval early. They
Frontiers in Oncology | www.frontiersin.org 10
were more accessible and used in the US and Europe. Many
studies compared the diagnostic utility of 18F-fluciclovine with
11C-choline PET/CT imaging, showing a better performance in
terms of lesion detection rate (48, 82). A recent meta-analysis
demonstrated that 18F-fluciclovine had the similar sensitivity and
detection rate compared with 11C-choline, but lower specificity
than 11C-choline (83). Unlike the short physical half-life of 11C-
choline, the radiofluorine of 18F-choline provides a long physical
half-life (109.8 min), allowing for centralized manufacture and
distribution. These intrinsic advantages of 18F labeling has made
18F-choline PET/CT valuable in staging patients with PCa and
detecting recurrently PCa metastases after initial treatment (33,
84). There were limited studies in comparing directly to
determine which imaging modality has a better diagnostic
efficiency between 18F-choline and 18F-fluciclovine. In our
meta-analysis, 18F-choline had a higher sensitivity and
FIGURE 8 | Forest plot of the proportion of 18F-labeled choline, fluciclovine, and PSMA positivity of prostate cancer patients with BCR for PSA 0.5–0.99 ng/ml.
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specificity than 18F-fluciclovine through assessing the summary
sensitivity and specificity. 18F-choline also has better detection
rates than 18F-fluciclovine at PSA levels under 0.5 ng/ml and 1.0–
1.99 ng/ml, but the pooled detection rate of 18F-fluciclovine was
higher than that of 18F-choline in biochemically recurrent PCa.
This difference could be interpreted by different biological
processes between amino acid transport and choline expression.
LIMITATIONS

There were several limitations to this study that should be
mentioned. First, we only evaluated the diagnostic accuracy of
Frontiers in Oncology | www.frontiersin.org 11
both 18F-choline and 18F-fluciclovine PET/CT in patients with
BCR, and the pooled sensitivity and specificity for 18F-PSMA
PET/CT were not feasible because of insufficient published
data. Second, there were significant heterogeneities among
institutions, PET/CT scanners, radiotracers, and prior
treatment of patients, which increased the risk of bias and
led to significant heterogeneity among 18F-choline, 18F-
fluciclovine and 18F-PSMA PET/CT. Third, most of the
included studies were retrospective analyses, had small
sample sizes, had limited reference standards, and lacked
prospective, large sample, and interagent comparison
studies. Fourth, there was publication bias according to
Egger’s test regarding the included studies of 18F-choline,
FIGURE 9 | Forest plot of the proportion of 18F-labeled choline, fluciclovine, and PSMA positivity of prostate cancer patients with BCR for PSA 1.0–1.99 ng/ml.
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18F-flocilovine, and 18F-PSMA PET/CT, limiting the
interpretation of the data to some degree.
CONCLUSION

PET/CT imaging with 18F-choline, 18F-fluciclovine, and 18F-
PSMA is promising in detecting prostate cancer patients with
BCR. 18F-PSMA PET/CT demonstrated a significantly higher
detection rate over 18F-choline and 18F-fluciclovine for different
PSA levels, particularly in PSA level less than 2.0 ng/ml.
Frontiers in Oncology | www.frontiersin.org 12
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