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Abstract

Mammalian germ cells stem from primordial germ cells (PGCs). Although the gene regula-

tory network controlling the development of germ cells such as PGCs is critical for ensuring

gamete integrity, substantial differences exist in this network among mammalian species,

suggesting that this network has been modified during mammalian evolution. Here, we

show that a hominoid-specific group of endogenous retroviruses, LTR5_Hs, discloses

enhancer-like signatures in human in vitro-induced PGCs, PGC-like cells (PGCLCs).

Human PGCLCs exhibit a transcriptome signature similar to that of naïve-state pluripotent

cells. LTR5_Hs are epigenetically activated in both PGCLCs and naïve pluripotent cells,

and the expression of genes in the vicinity of LTR5_Hs is coordinately upregulated in these

cell types, contributing to the establishment of the transcriptome similarity between these

cell types. LTR5_Hs are preferentially bound by transcription factors that are highly

expressed in both PGCLCs and naïve pluripotent cells (KLF4, TFAP2C, NANOG, and

CBFA2T2), suggesting that these transcription factors contribute to the epigenetic activation

of LTR5_Hs in these cells. Comparative transcriptome analysis between humans and

macaques suggests that the expression of many genes in PGCLCs and naïve pluripotent

cells is upregulated by LTR5_Hs insertions in the hominoid lineage. Together, this study

suggests that LTR5_Hs insertions may have finetuned the gene regulatory network shared

between PGCLCs and naïve pluripotent cells and coordinately altered the gene expression

in these cells during hominoid evolution.
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Author summary

To ensure the health of the next generation and the continuation of a species, the develop-

ment of germ cells, including primordial germ cells (PGCs), is strictly controlled by a

complex gene regulatory network. Nevertheless, the gene regulatory network controlling

the germ cell development has been substantially diversified during mammalian or even

primate evolution. Here, our integrated analyses using multiomics and comparative geno-

mics resources suggest that hominoid-specific insertions of endogenous retroviruses are

epigenetically activated in both in vitro-induced PGCs and naïve pluripotent cells and

may have coordinately altered the expression of the adjacent genes in these cells. This

study provides evidence suggesting that the gene regulatory network shared between

PGCs and naïve pluripotent cells may have been rewired by ERV insertions during homi-

noid evolution.

Introduction

Mammalian germ cells are first established as primordial germ cells (PGCs) from pluripotent

cells, such as epiblasts, in postimplantation embryos [1–3]. Aberrations in germ cells lead to

immediate infertility, genetic or epigenetic disorders in offspring, and genome integrity

impairment. Therefore, the differentiation of germ cells, including PGCs, is strictly controlled

by a complex gene regulatory network [1–3].

There is increasing interest in investigating the gene regulatory network in human germ

cells. However, it is ethically difficult to routinely access human germ cells, particularly those

from humans at early stages of development. Previous studies have established methodologies

to artificially induce human germ cells such as PGCs from human induced pluripotent stem

cells (iPSCs) [4,5]. In vitro-derived PGCs, referred to as PGC-like cells (PGCLCs), are consid-

ered to represent the premigratory stage of PGCs which present until 3 weeks postfertilization

in humans [6]. This stage of human PGCs a are not accessible due to ethical and legal con-

straints and is difficult to investigate, while more later stages of human PGCs (e.g., migrating

PGCs) are relatively accessible and have been investigated in previous studies [7–9]. Further-

more, recent studies have established methodologies to induce more differentiated stages of

germ cells such as prospermatogonia cells from iPSCs [10,11]. These methods have enabled us

to characterize the mechanisms of human germ cell development in detail. For example, previ-

ous studies using these methods have identified the critical transcription factors of human

PGCLCs, such as PRDM1, SOX17, TFAP2C, and TFAP2A [4,5,9,12].

The gene regulatory network controlling the development of germ cells such as PGCs is

critical for gamete integrity. However, substantial differences exist in this network among

mammalian species. For example, various transcription factors (TFs) are differentially

expressed between humans and mice [7]. In particular, SOX17 is a critical transcription factor

of PGCLC fate specification in humans but not in mice [4,5,12]. Additionally, a substantial

number of genes are differentially expressed between human PGCLCs and PGCs of the crab-

eating macaque (Macaca fascicularis), Old World monkey (OWM), although the expression

patterns of the critical transcription factors of PGCs are conserved between the two species [6].

These observations suggest that the gene regulatory network controlling germ cell develop-

ment has been finetuned during mammalian or even primate evolution.

Diversification of the gene regulatory networks is one of the molecular bases of evolution

and is driven by the turnover of regulatory sequences such as enhancers [13,14]. A substantial
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proportion of transposable elements (TEs) work as enhancers and play critical roles in gene

regulatory networks and their evolution [15]. Endogenous retroviruses (ERVs) are a class of

TEs originating from past retroviral infections. ERVs are particularly rich sources for creation

of new enhancers since they contain many regulatory elements in their long terminal repeat

(LTR) sequences, which originally functioned as viral promoters [16–18]. Notably, since ERV

loci belonging to the same ERV group share the same set of regulatory elements, numerous

inserted ERV loci can coordinately alter the expression patterns of multiple genes [18–20].

Furthermore, ERVs tend to possess regulatory elements that are activated in germline or early

embryonic niches to proliferate in the germline genome [18,21]. For example, LTR5_Hs, the

youngest human ERV subfamily expanded in the hominoid lineage (including humans, chim-

panzees, gorillas, orangutans, and gibbons, but not OWMs), are transcriptionally and epige-

netically activated in early embryonic cells such as the inner cell masses (ICM) of blastocysts

[22–25]. Furthermore, previous studies demonstrated the enhancer activity of LTR5_Hs using

the epigenetic perturbation by CRISPR activation (CRISPRa) and inhibition (CRISPRi) sys-

tems in embryonic carcinoma cells and embryonic stem cells (ESCs) [22,25]. Therefore, it is

possible that ERVs are involved in the evolution of the gene regulatory network in germ or

early embryonic cells [22,25–27].

Human PGCs and PGCLCs exhibit complex and mixed transcriptome signatures since var-

ious gene expression programs are initiated at this stage [8,12]. In particular, human PGCs

and PGCLCs highly express genes associated with naïve pluripotency [7,9,28,29]. Pluripotency

is classified into naïve and primed states, which represent the ground and more-differentiated

states, respectively [30–32]. For example, ICM of blastocysts or preimplantation epiblasts show

naïve pluripotency, while postimplantation epiblasts show primed pluripotency [30–32]. Sev-

eral key TFs, including naïve pluripotency factors (e.g., NANOG, KLF4, and TFCP2L1) and

some critical transcription factors of PGCLCs (e.g., TFAP2C and PRDM1), are commonly

upregulated in human PGCLCs and naïve pluripotent cells [4,5,7,9,12,33–35]. These observa-

tions suggest that the core gene regulatory network, which is driven by the key TFs above,

might be shared between PGCLCs and naïve pluripotent cells and play essential roles in estab-

lishing cellular identities in these cells. Indeed, a previous study showed that a substantial pro-

portion of open chromatin regions are shared between human PGCLCs and naïve ESCs, and

the shared open chromatin regions are frequently bound by TFAP2C [29]. Thus, the regula-

tory network shared between PGCLCs and naïve pluripotent cells has been recognized and

investigated. However, the downstream genes regulated by this network and the functions of

these genes have not been fully explored. Furthermore, the evolutionary origins of the cis-regu-

latory elements comprising this network and the evolution of this network have not been

elucidated.

In the present study, we investigated the gene regulatory network shared between human

PGCLCs and naïve pluripotent cells in detail. In this process, we found that several hundred

loci of LTR5_Hs are epigenetically activated in PGCLCs in addition to naïve pluripotent cells

[22–25]. This study provides evidence suggesting that LTR5_Hs insertions may have rewired

the gene regulatory network shared between PGCLCs and naïve pluripotent cells during homi-

noid evolution and possibly accelerated germ cell evolution.

Results

Similarity of the gene expression signature of PGCLCs with that of naïve

pluripotent cells

To characterize the similarity between PGCLCs and naïve pluripotent cells at the transcrip-

tome level, we compared the transcriptomic signatures of PGCLCs and naïve ESCs. We
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analyzed single-cell RNA sequencing (scRNA-Seq) datasets for in vitro-derived human male

germ cells [Hwang et al. [10]] and for naïve and primed ESCs [Messmer et al. [36]] (Fig 1A).

The Hwang et al. dataset contains information on germ cells that were sequentially differenti-

ated from primed iPSCs: incipient mesoderm-like cells (iMeLCs), PGCLCs, multiplying pros-

permatogonia-like cells (MLCs), and mitotically quiescent T1 prospermatogonia-like cells

(T1LCs), which are formed via transitional cells (TCs) (Fig 1A) [10]. Dimension reduction

analysis suggested that the global transcriptome is highly similar between PGCLCs and naïve

ESCs, consistent with previous reports (Fig 1A) [9,29].

To further assess the transcriptional similarity between PGCLCs and naïve ESCs, we first

focused on the genes upregulated in both cell types. Accordingly, we assigned a PGCLC-specific

expression score for each gene, which represents the similarity of the observed expression pattern

to the defined “PGCLC-specific” expression pattern (Fig 1B; see Definition of the PGCLC-spe-

cific expression score). We confirmed that genes highly expressed in in vivo PGCs compared to

the later stage of male germ cells tended to show a higher PGCLC-specific expression score (S1

Fig). According to this PGCLC-specific expression score and the log2-transformed fold change

(log2 FC) of the expression score between naïve and primed ESCs, we classified the protein-cod-

ing genes into four categories: genes upregulated in both cell types, genes upregulated only in

PGCLCs, genes upregulated only in naïve ESCs, and other genes (Fig 1C and S1 Table). As

expected, the genes upregulated in PGCLCs substantially overlapped with those upregulated in

naïve ESCs, supporting increased transcriptional similarity between these cell types (Fig 1D).

Gene Ontology (GO) enrichment analysis showed that the three of the gene categories were

enriched with distinct functional gene sets (Fig 1E and S2 Table). Notably, genes related to the

“metabolism of carbohydrates” term were enriched among the genes upregulated in both

PGCLCs and naïve ESCs (Fig 1E), suggesting that the mode of carbohydrate metabolism is similar

between these cell types in humans, similar to the observation in mice [37,38].

To identify the candidates of TFs responsible for the transcriptional similarity between

PGCLCs and naïve ESCs, we classified TFs according to their expression patterns (Fig 1C and

1F). Of the key transcription factors of PGCLCs (TFAP2C, SOX17, and PRDM1) [4,5,12],

TFAP2C were upregulated in both PGCLCs and naïve ESCs, while SOX17 was upregulated

only in PGCLCs (Figs 1C, 1F and S2A). Although PRDM1 was upregulated in naïve ESCs in

addition to PGCLCs, the expression level of PRDM1 in naïve ESCs was not so high (S2A Fig).

Furthermore, key regulators of pluripotency (NANOG, KLF4, and CBFA2T2) were upregu-

lated in both PGCLCs and naïve ESCs. Moreover, in addition to the native pluripotency-asso-

ciated TFs (KLF5, TFCP2L1, and ZNF42) (Figs 1C, 1F and S2A), a substantial number of

Krüppel-associated box (KRAB) domain zinc-finger protein (KZFP) family genes were upre-

gulated only in naïve ESCs (S3A and S3B Fig), consistent with the findings of a previous study

[22]. In contrast, the expression of KZFPs was generally low in PGCLCs but gradually

increased during male germ cell development (S3C Fig).

In addition, we analyzed additional transcriptome datasets for PGCLCs [Kojima et al. [12]

and the newly obtained data] and naïve ESCs [Takashima et al. [33] and Theunissen et al. [23]]

and confirmed that the upregulation of the TFs mentioned above was observed across datasets

(S2B Fig).

Regulatory elements underlying the transcriptional similarity between

PGCLCs and naïve ESCs

To identify the regulatory elements underlying the upregulation of genes in both PGCLCs and

naïve ESCs, we investigated published datasets from an assay for transposase-accessible chro-

matin using sequencing (ATAC-Seq) obtained from PGCLCs and naïve/primed ESCs [22,29].
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We first identified the open chromatin regions (i.e., ATAC-Seq peaks) that were activated in

PGCLCs or naïve ESCs compared to primed ESCs and subsequently classified the open chro-

matin regions into three categories: those activated in both PGCLCs and naïve ESCs, those

activated only in PGCLCs, and those activated only in naïve ESCs. Finally, we examined the

Fig 1. Characterization of the gene expression signature similarity between PGCLCs and naïve ESCs. (A) Dimension reduction

analysis of scRNA-Seq data using UMAP [62]. Data for in vitro-derived human male germline development [Hwang et al. [10]] and

for naïve and primed ESCs [Messmer et al. [36]] were integrated and subsequently used. The 3,000 protein-coding genes that were

the most differentially expressed among cells were used. (B) Scheme for definition of the PGCLC-specific expression score. For each

gene and TE, the sum of squared residuals (SSR) between the model (Panel 1) and the data (i.e., the normalized mean expression

value for each cell type; Panel 2) was calculated (Panel 3). Subsequently, the SSR value was −log10-transformed (see Definition of

the PGCLC-specific expression score). (C) Classification of protein-coding genes according to their expression patterns. The X-

axis indicates the PGCLC-specific expression score, and the Y-axis indicates the log2 FC of the expression score in naïve ESCs vs.

primed ESCs. The top 10% of genes with respect to the PGCLC-specific expression score were regarded as the genes upregulated in

PGCLCs. Genes with log2 FC values> 1 and FDR values< 0.05 were regarded as upregulated in naïve ESCs. The genes were

classified into four categories: genes upregulated in both cell types (dark gray), genes upregulated only in PGCLCs (purple), genes

upregulated only in naïve ESCs (brown) and other genes (light gray). In addition, TFs (except for KZFPs) with elevated expression

were annotated. The plot for KZFPs is shown in S3A Fig. (D) Association of the set of genes upregulated in PGCLCs with that in

naïve ESCs. The P value was calculated with Fisher’s exact test. (E) GO enrichment analysis results for the three gene categories

(genes upregulated in both cell types, genes upregulated only in PGCLCs, and genes upregulated only in naïve ESCs). The gene sets

that exhibited significant enrichment (odds ratio>2, FDR< 0.05; denoted by an asterisk) in any of the three gene categories are

shown. (F) Expression patterns of the TFs annotated in (C). A violin plot is shown in S2A Fig. Although TFAP2A was first classified

as a gene upregulated in both PGCLCs and naïve ESCs, we reclassified it as a gene upregulated only in PGCLCs since its expression

in naïve ESCs was somewhat low (Figs 1F and S2A). (G) Enrichment of activated open chromatin regions in the vicinities of the

upregulated genes. Three categories of open chromatin regions, namely those activated in both cell types, only PGCLCs, and only

naïve ESCs compared to primed ESCs, were detected (log2 FC> 1; FDR< 0.05). Subsequently, for the three categories of open

chromatin regions, the degrees of enrichment in the vicinity of (<50 kb from) the genes upregulated in both cell types, upregulated

only in PGCLCs and upregulated only in naïve ESCs were calculated using the GREAT scheme [68] (see Genomic Regions

Enrichment of Annotations Tool (GREAT) enrichment analysis). The P values were calculated with a binomial test. (H)

Enrichment of TF-binding events in the open chromatin regions. A publicly available ChIP-Seq dataset provided by the GTRD [39]

was used. For each TF, the enrichment (odds ratio) of the binding events in the respective categories of open chromatin regions

compared to the other open chromatin regions was calculated. Statistical enrichment was calculated using Fisher’s exact test. Of the

TFs with FDR values<0.05, the top 10 TFs with respect to the odds ratio are annotated. The upregulated TFs shown in (C) and (F)

are colored.

https://doi.org/10.1371/journal.pgen.1009846.g001
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enrichment of the respective categories of open chromatin regions in the vicinity of (<50 kb

from) the genes upregulated in both PGCLCs and naïve ESCs (Fig 1G). The open chromatin

regions activated in both cell types were clearly enriched near the genes upregulated in both

cell types, suggesting that the regulatory sequences activated in both cell types are important

for controlling the upregulated genes common to these cell types (Fig 1G).

To identify the candidate TFs critical for controlling the regulatory elements identified

above, we analyzed a publicly available chromatin immunoprecipitation sequencing (ChIP-

Seq) dataset for 1,308 types of TFs provided by the Gene Transcription Regulation Database

(GTRD) [39]. We used the data of ‘merged’ TF-binding sites, which were computed from

ChIP-Seq data for a certain TF performed under various experimental conditions (e.g., cell

line, treatment, and study). For the various TFs, we computed the enrichment of the binding

events in each category of open chromatin regions compared to the other identified open

chromatin regions (Fig 1H). The open chromatin regions activated in both PGCLCs and naïve

ESCs were preferentially bound by TFs that were upregulated in both cell types (TFAP2C,

KLF4, and CBFA2T2) or in one of these cell types (TFAP2A for PGCLCs and NCOA3 for naïve

ESCs). This result supports the importance of these TFs in regulating the genes upregulated in

both cell types (Fig 1H).

TEs that are commonly upregulated in PGCLCs and naïve ESCs

To identify the TEs that are activated as enhancers during the human male germline develop-

mental process, including PGCLCs, we analyzed the expression dynamics of TEs using the

Hwang et al. scRNA-Seq dataset for in vitro-derived human male germ cells (Fig 2) [10]. We

first used transcriptome data instead of epigenomic data since the transcriptional activity of

TEs is known to reflect enhancer activity, similar to that of enhancer RNAs [40]. Pseudotime

analysis [41] showed that the expression of TEs dynamically changed during in vitro-derived

male germline development (Fig 2A and 2B). As described previously [10], the expression of

most TEs (long interspersed nuclear elements [LINEs], short interspersed nuclear elements

[SINEs], and SINE-VNTR-Alu [SVA] and DNA transposons) was gradually upregulated with

the progression of development, presumably reflecting the gradual DNA demethylation that

occurred during this process (Fig 2B) [7,35]. On the other hand, the expression of the various

ERV subfamilies, including HERVH, LTR7, and LTR12C, was stage-specific (Fig 2B) [10]. In

particular, the expression of some ERV subfamilies, such as HERVK, LTR5_Hs and HER-

VIP10FH, was specifically upregulated in PGCLCs and subsequently downregulated in cells at

later stages (i.e., MLCs, TCs, and T1LCs) (Fig 2B and 2C). Notably, HERVK/LTR5_Hs

(LTR5_Hs is a type of HERVK LTR sequence) was one of the top-ranked TEs with respect to

the PGCLC-specific expression score (Fig 2D, X-axis). On the other hand, SVA transposons, a

group of chimeric TEs originating partially from HERVK/LTR5_Hs [42], did not exhibit such

a PGCLC-specific expression pattern (Figs 2B, 2D and S4).

Previous studies have shown that HERVK/LTR5_Hs is highly activated in naïve pluripotent

cells, such as naïve ESCs and cells in ICM of blastocysts (Fig 2C) [22–25]. Indeed, our data

showed that HERVK/LTR5_Hs was one of the top-ranked TEs upregulated in both PGCLCs

and naïve ESCs (Fig 2D). Together, these results raise the possibility that LTR5_Hs may serve

as enhancers shared between PGCLCs and naïve pluripotent cells and contribute to establish-

ing the transcriptional similarity between these two cell types.

Increased enhancer-like signatures of LTR5_Hs in PGCLCs and naïve ESCs

To evaluate the enhancer potential of LTR5_Hs in PGCLCs and naïve ESCs, we investigated

the chromatin accessibility and histone modification status of LTR5_Hs in these two cell types
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using ATAC-Seq and ChIP-Seq data targeting an active histone mark (i.e., H3K27ac), respec-

tively (Fig 3). We examined the statistical enrichment of the two types of epigenetic signals on

TEs in the various subfamilies (Fig 3A and 3B). In terms of both chromatin accessibility and

active histone marks, LTR5_Hs was the top-ranked TE that was epigenetically activated in

both PGCLCs and naïve ESCs. We next examined whether the chromatin accessibility of

LTR5_Hs was greater in PGCLCs and naïve ESCs than in primed ESCs (Fig 3C). The open

chromatin regions overlapping with LTR5_Hs tended to be activated in PGCLCs (Fig 3C,

upper panel) and naïve ESCs (Fig 3C, right panel) compared to primed ESCs. Furthermore,

LTR5_Hs was highly enriched in the open chromatin regions that were significantly activated

in both PGCLCs and naïve ESCs (Fig 3C, main panel and 3D). Indeed, LTR5_Hs exhibited

the strongest enrichment in these commonly activated open chromatin regions among all TEs

(Fig 3E). Together, our findings show that LTR5_Hs exhibits enhancer-like epigenetic signa-

tures in both PGCLCs and naïve ESCs.

We examined the enrichment of open chromatin regions in human PGCs on LTR5_Hs

using a published ATAC-Seq dataset [29]. Although the developmental stage of PGCs is differ-

ent from the stage represented by PGCLCs, we observed the strong enrichment of open chro-

matin regions on LTR5_Hs in PGCs, supporting the epigenetic activation of LTR5_Hs in

PGCs (S5 Fig).

Potential regulators of LTR5_Hs in PGCLCs and naïve pluripotent cells

We next surveyed the TFs that bind to LTR5_Hs and control its activity in PGCLCs and naïve

ESCs (Fig 4 and S3 Table). We analyzed the publicly available ChIP-Seq dataset for 1,308

Fig 2. Specific expression of HERVK/LTR5_Hs in PGCLCs and naïve ESCs. (A) Pseudotime analysis [41] of scRNA-Seq data for in
vitro-derived human male germline development [Hwang et al. [10]]. The 1,000 protein-coding genes that were the most differentially

expressed throughout the development process were used. (B) Expression dynamics of TE subfamilies throughout male germline

development. The cells are ordered according to the pseudotime shown in (A). The 100 TEs that were most differentially expressed

among cell types are shown. (C) ERV subfamilies that were specifically expressed in PGCLCs [annotated in (B) in black]. In addition

to the data for male germline development, data for naïve and primed ESCs [Messmer et al. [36]] are shown. (D) Identification of the

TE subfamilies that were specifically upregulated in both PGCLCs and naïve ESCs. The X-axis indicates the PGCLC-specific

expression score (defined in Fig 1B). The Y-axis indicates the log2 FC of the expression score between naïve ESCs vs. primed ESCs.

The names of the top 10% TEs with respect to the PGCLC-specific expression score are annotated.

https://doi.org/10.1371/journal.pgen.1009846.g002
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types of TFs and identified TFs that preferentially bound to LTR5_Hs. Of these TFs, we

extracted TFs that were expressed specifically in PGCLCs and naïve ESCs (Fig 4A and 4B). Of

the TFs that preferentially bound to LTR5_Hs, NANOG, TFAP2C, KLF4, and CBFA2T2 were

upregulated in both PGCLCs and naïve ESCs (Figs 1C, 4C and 4D). Furthermore, SOX17 and

TFAP2A were specifically upregulated in PGCLCs, while KLF5 was upregulated in naïve ESCs

(Figs 1C, 4C and 4D). Notably, these TFs are known to play central roles in gene regulation in

PGCLCs (i.e., SOX17 and TFAP2A) [5,9], naïve pluripotent cells (i.e., KLF5) [43,44] or both

cell types (i.e., NANOG, TFAP2C, KLF4, and CBFA2T2) (Fig 1H) [4,5,7,9,12,33,34,45]. More-

over, we confirmed that LTR5_Hs were preferentially bound by KLF4, NANOG, POU5F1,

and TFAP2C in naïve ESCs, by TFAP2C in PGCLCs, and by SOX17 in a germ cell tumor cell

line using publicly available ChIP-Seq datasets [29,46,47] (S6 Fig). Together, our data suggest

that these TFs contribute to the epigenetic activation of LTR5_Hs in PGCLCs and naïve plu-

ripotent cells.

Expression patterns of the genes adjacent to LTR5_Hs in PGCLCs and

ESCs

To elucidate the roles of LTR5_Hs in gene regulation in PGCLCs and naïve pluripotent cells,

we investigated the expression patterns of the genes adjacent to (<50 kb from) the LTR5_Hs

Fig 3. Potential enhancer activity of LTR5_Hs in PGCLCs and naïve ESCs. (A and B) Fold enrichment of the genomic overlap between TE loci and the peaks of

ATAC-Seq (A) and ChIP-Seq targeting an active histone mark, H3K27ac (B). The fold enrichment value compared to the random expectation was calculated by the

genomic permutation test. The X-axis and Y-axis indicate the log2-transformed fold enrichment values in PGCLCs and naïve ESCs, respectively. The ATAC-Seq and

ChIP-Seq data originated from Pontis et al. [22] and Chen et al. [29]. (C) Upregulation of the chromatin accessibility of LTR5_Hs loci in PGCLCs and naïve ESCs

compared to primed ESCs. For each ATAC-Seq peak (i.e., open chromatin region), the log2 FC scores of the chromatin accessibility in PGCLCs vs. primed ESCs (the X-

axis) and naïve ESCs vs. primed ESCs (the Y-axis) are shown. In the main panel, the peaks overlapping with LTR5_Hs are colored red or orange. The peaks are colored

red or black if they were upregulated in both PGCLCs and naïve ESCs (log2 FC> 1; FDR< 0.05). The color scheme is summarized in (D). In the upper and right panels,

the marginal distributions for the X- and Y-axes, respectively, are shown (Y [Yes], overlapped with LTR5_Hs; N [No], not overlapped). An asterisk denotes P< 1.0E-15

based on the two-tailed Wilcoxon rank sum test. (D) The enrichment of LTR5_Hs in the ATAC-Seq peaks upregulated in both PGCLCs and naïve ESCs compared to

primed ESCs. The P value was calculated with Fisher’s exact test. (E) The enrichment of the various TE subfamilies in the ATAC-Seq peaks was upregulated in both

PGCLCs and naïve ESCs. The fold enrichment value compared to the random expectation and the statistical significance were computed with the genomic permutation

test. The number of overlapping events is shown on each bar. The results for TEs with significant enrichment (FDR< 0.05; log2 fold enrichment> 1; overlap

events> 20) are shown.

https://doi.org/10.1371/journal.pgen.1009846.g003
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loci with transcriptomic or epigenetic activity (Fig 5 and S4 Table). The genes adjacent to

LTR5_Hs tended to be specifically upregulated in both PGCLCs (Fig 5A, upper panel) and

naïve ESCs (Fig 5A, right panel). Notably, the genes adjacent to LTR5_Hs were strikingly

enriched with genes upregulated in both PGCLCs and naïve ESCs (Fig 5A, main panel and

5B). Indeed, of the genes commonly upregulated in PGCLCs and naïve ESCs, approximately

25% (107/430) were located in the vicinity of LTR5_Hs (Fig 5B). These results suggest that the

epigenetic activation of LTR5_Hs is associated with the upregulation of adjacent gene expres-

sion in these cell types. GO enrichment analysis showed that genes associated with the “glucose

metabolism” and “glycogen breakdown” terms were particularly enriched among the genes

adjacent to LTR5_Hs and upregulated in both cell types (Fig 5C and S5 Table). These are

child terms of the “metabolism of carbohydrates” term, which was significantly enriched for

the genes upregulated in both PGCLCs and naïve ESCs (Fig 1E). Furthermore, glucose metab-

olism-related genes (i.e., AGL, ENO2, PFKL, PHKA1, and PYGB) were in the vicinity of

Fig 4. Identification of the potential regulators of LTR5_Hs in PGCLCs and naïve ESCs. (A and B) Identification of the TFs that bind to

LTR5_Hs and are upregulated in PGCLCs (A) and naïve ESCs (B). For each TF, the statistical enrichment of the binding events on LTR5_Hs was

calculated based on the publicly available ChIP-Seq dataset provided by the GTRD [39]. The Y-axis indicates the log2-transformed fold enrichment

of the TF-binding events compared to the random expectation. The X-axis indicates the PGCLC-specific expression score (A) or the log2 FC of the

expression score in naïve ESCs vs. primed ESCs (B). The symbols are colored according to the statistical significance of the TF-binding enrichment

calculated by the genome permutation test. The symbol shape represents the mean expression level in PGCLCs (A) and naïve ESCs (B). The

potential regulators of LTR5_Hs are annotated. The potential regulators were defined as the TFs satisfying the following criteria: (i) TFs that

exhibited significant binding enrichment on LTR5_Hs (log2 fold enrichment> 2; FDR< 0.05; binding events> 20); (ii) for regulators in PGCLCs,

TFs that were specifically upregulated in PGCLCs (the top 10% TFs with respect to the PGCLC-specific expression score; mean relative expression

(log2[CP10k+1]> 0.4 in PGCLCs); and (iii) for regulators in naïve ESCs, TFs that were specifically upregulated in naïve ESCs (log2 FC> 2;

FDR< 0.05; mean relative expression> 0.4 in naïve ESCs). (C) Classification of the potential LTR5_Hs regulators. The X-axis indicates the

log2-transformed fold enrichment of the TF-binding events. (D) Expression patterns of TFs identified as potential LTR5_Hs regulators.

https://doi.org/10.1371/journal.pgen.1009846.g004
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LTR5_Hs and were highly upregulated in both PGCLCs and naïve ESCs (Fig 5D). The genes

play central roles in energy generation via glycolysis (PHKA1 and PYGB) and glycogenolysis

(AGL, ENO2, and PFKL) (S7 Fig). These results suggest that the epigenetically activated

LTR5_Hs may play a role in the regulation of glucose metabolism in both PGCLCs and naïve

ESCs (see Discussion).

Gene expression alterations likely driven by LTR5_Hs during primate

evolution

LTR5_Hs proliferated in hominoid genomes after the divergence of hominoids and OWMs

[18]. To elucidate the alterations in gene expression driven by LTR5_Hs insertions, we per-

formed comparative transcriptome analysis between humans and an OWM, the crab-eating

macaque, focusing on PGCLCs (for humans) or the premigratory stage of PGCs (for

macaques) and naïve pluripotent cells (Fig 6). Similar to the findings in Fig 5A, the results

revealed that genes adjacent to LTR5_Hs in the human genome tended to be upregulated in

both PGCLCs and naïve ESCs compared to primed ESCs (Fig 6A and 6C). On the other hand,

the macaque orthologs of the human genes adjacent to LTR5_Hs did not show such a clear

trend (Fig 6B and 6D). Furthermore, the genes commonly upregulated in human PGCLCs

and naïve ESCs did not highly overlap with those in macaque PGCs and pluripotent cells

(12%, 61 out of 512 genes in humans), although the upregulation of key TFs, such as KLF4,

NANOG, TFAP2C, PRDM1, and CBFA2T2, was conserved between the two species (Fig 6E

and S6 Table). Moreover, of the genes that were upregulated in both human PGCLCs and

naïve ESCs but not in macaque PGCs and naïve pluripotent cells, approximately 21% (95 out

of 451 genes) were in the vicinity of LTR5_Hs (Fig 6E). We hereafter refer to these 95 genes as

Fig 5. Expression patterns of the genes adjacent to LTR5_Hs in PGCLCs and naïve ESCs. (A) Association of the expression patterns of genes and their

distance from LTR5_Hs in the genome. The X-axis indicates the PGCLC-specific expression score, and the Y-axis indicates the log2 FC of the expression score

in naïve ESCs vs. primed ESCs. Genes were stratified according to whether they were present within 50 kb of LTR5_Hs with epigenetic or transcriptomic

signals. In the main panel, the genes in the vicinity of LTR5_Hs are colored red or orange. The genes are colored red or black if they were upregulated in both

PGCLCs (the top 10% of genes with respect to the PGCLC-specific expression score) and naïve ESCs (log2 FC> 1; FDR< 0.05). The color scheme is

summarized in (B). In the top and right panels, the marginal distributions for the X- and Y-axes, respectively, are shown (Y [Yes], adjacent to LTR5_Hs; N [No],

not adjacent). An asterisk denotes P< 1.0E-15 in the two-tailed Wilcoxon rank sum test. (B) Enrichment of the genes adjacent to LTR5_Hs among the genes

upregulated in both PGCLCs and naïve ESCs. The P value was calculated with Fisher’s exact test. (C) Results of the GO enrichment analysis. The gene sets with

significant enrichment (FDR< 0.05) are shown. The names of the hit genes are shown on each bar. (D) Expression patterns of the genes present in the vicinity

of LTR5_Hs and related to glucose metabolism.

https://doi.org/10.1371/journal.pgen.1009846.g005
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Fig 6. Comparative transcriptome analysis between humans and crab-eating macaques. (A and B) Comparative analysis of the gene expression patterns in

PGCLCs/PGCs and naïve pluripotent cells between humans (A) and crab-eating macaques (B). (A) is similar to Fig 5A, but the X-axis indicates the log2 FC of the

expression score in PGCLCs vs. primed iPSCs. In (B), the X-axis indicates the log2 FC of the expression score in early PGCs (ePGCs) vs. postimplantation late

epiblasts (postL-EPIs; primed pluripotent cells), while the Y-axis indicates that in preimplantation epiblasts (pre-EPIs; naïve pluripotent cells) vs. postL-EPIs. In (B),

the macaque genes are colored red or orange if their orthologs in humans are present within 50 kb of active LTR5_Hs. �, P value< 1.0E-4; ��, P value< 1.0E-15; and

NS, P value> 0.05. Human scRNA-Seq data [Messmer et al. [36] and Kojima et al. [12]] and macaque data [Sasaki et al. [6]] were used. (C and D) Enrichment of the

human genes adjacent to LTR5_Hs (C) or their orthologs in macaques (D) among the genes upregulated in both PGCLCs/PGCs and naïve pluripotent cells. (E)

Comparison of the genes upregulated in both PGCLCs/PGCs and naïve pluripotent cells between humans and macaques. The numbers in parentheses denote the

numbers of genes adjacent to LTR5_Hs in the human genome or their orthologs in macaques. Only genes with ortholog information are included. The 95 genes (i)

present in the vicinity of LTR5_Hs and (ii) that exhibited PGC- and naïve-specific expression patterns only in humans were defined as the genes likely to be

regulated by LTR5_Hs. (F) Stratification of the genes that are likely to be regulated by LTR5_Hs according to the insertion date of the associated LTR5_Hs. On the

various branches of the primate species tree, the numbers of the genes that are likely to be regulated by LTR5_Hs inserted in the corresponding branch are shown.

The species tree was created with TimeTree [74]. Nd, not determined. (G) Expression patterns of the genes likely to be regulated by LTR5_Hs. Genes related to

glucose metabolism, genes related to oxidative phosphorylation, and genes whose proteins engage in PPIs with the proteins encoded by the genes above (see S11B

Fig) are annotated. Only genes exhibiting higher expression [mean expression (log2[CP10k+1]> 0.3] in both PGCLCs and ESCs are shown. (H) Summary of

finings in the present study and the proposed model.

https://doi.org/10.1371/journal.pgen.1009846.g006

PLOS GENETICS Gene regulatory network evolution driven by endogenous retroviruses

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009846 May 12, 2022 11 / 30

https://doi.org/10.1371/journal.pgen.1009846.g006
https://doi.org/10.1371/journal.pgen.1009846


the genes likely to be regulated by LTR5_Hs (Fig 6E). Taken together, these results suggest

that LTR5_Hs insertions may have altered the expression patterns of their adjacent genes to

the PGCLC- and naïve-specific patterns in the hominoid lineage.

In a previous study (Fuentes et al.) [25], CRISPRa/i that target LTR5_Hs were established,

and genes perturbed by these CRISPRa/i systems (i.e., genes regulated by LTR5_Hs) were

identified in embryonic carcinoma cells. We compared the 95 genes that are likely to be regu-

lated by LTR5_Hs defined in our analysis (shown in Fig 6E) with the genes perturbed by

LTR5_Hs-targeting CRISPRa/i systems in that study [25] (S8 Fig and S7 Table). We found

that these 95 genes significantly overlapped with the upregulated (56 out of 195) or downregu-

lated (30 out of 73) genes by the LTR5_Hs-targeting CRISPR systems from the previous study

[25], supporting the hypothesis that these genes are likely to be modulated by LTR5_Hs.

Finally, we examined the expression levels of i) HERVK/LTR5_Hs, ii) the glucose metabolic

genes, and iii) genes that are likely to be regulated by LTR5_Hs (shown in Fig 6E) in human in
vivo PGCs and early embryonic cells including naïve pluripotent cells such as ICM of blastocysts

using publicly available scRNA-Seq datasets [8,48–50]. As described in the Introduction section,

the developmental stages of the previously investigated PGCs (migrating PGCs) are more differ-

entiated than the stage represented by PGCLCs (premigratory PGCs) [6]. Nevertheless,

HERVK/LTR5_Hs and the genes mentioned above were more highly expressed in migrating

PGCs than in the later stages of germ cells or somatic cells (S9 Fig). Similarly, HERVK/

LTR5_Hs and the genes described above were highly expressed in naïve-like state cells (e.g.,

ICM of blastocysts) (S10 Fig). Together, these results suggest that our findings observed in in
vitro cells (PGCLCs and naïve ESCs) can be recapitulated in their in vivo counterparts.

Gradual progression of LTR5_Hs-mediated gene expression alterations

during hominoid evolution

The LTR5_Hs insertions started after hominoid-OWM divergence and continued even after

human-chimpanzee divergence (S11A Fig) [18]. This result suggests that the gene expression

alterations driven by LTR5_Hs may have proceeded gradually during hominoid evolution. To

address this possibility, we first determined the insertion dates of LTR5_Hs loci (S11A Fig and

S8 Table). Subsequently, the genes that are likely to be regulated by LTR5_Hs (Fig 6E) were

classified according to the insertion dates of the associated LTR5_Hs loci (Figs S11A and 6F).

As shown in Fig 6F, 24 out of 95 genes were associated with LTR5_Hs loci that were inserted

in the common ancestor of the hominoid lineage (i.e., the branch “HCGOG” in Fig 6F). On

the other hand, the majority of the genes (63 genes) were associated with LTR5_Hs loci that

were inserted after the common ancestor of Homininae (human, chimpanzee, and gorilla)

(Fig 6F). Of these, 34 genes were associated with human-specific LTR5_Hs loci (Fig 6F).

Finally, we examined the insertion dates of LTR5_Hs loci that are likely to regulate genes

related to the glucose metabolism pathway (shown in Fig 5C and 5D) and the genes encoding

proteins that exhibit protein–protein interactions (PPIs) with the proteins encoded by the

genes mentioned above (Figs S11B and 6G). Most of the core glucose metabolic genes (4 out

of 5 genes) were associated with the LTR5_Hs loci inserted in the common ancestors of Homi-

noidea or Hominidae (humans, chimpanzees, gorillas, and orangutans) (Figs S11B and 6G).

On the other hand, one of the core glucose metabolic genes (ENO2), the genes whose proteins

have PPIs with the proteins of the core glucose metabolic genes described above, and the genes

related to oxidative phosphorylation (i.e., NDUFAB1 and NNT) were associated with the

LTR5_Hs that were inserted more recently (Figs S11B and 6G).

LTR5_Hs insertions continued even after human speciation, and some LTR5_Hs loci are

insertionally polymorphic in modern human populations [51]. To address whether the
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LTR5_Hs that are likely important for the gene regulation in PGCLCs and naïve pluripotent

cells are insertionally polymorphic, we identified LTR5_Hs loci that are present in the human

reference genome (GRCh38) but are not fixed in 2,504 human genomes used as a global refer-

ence of human genome variation (S9 Table) [52]. Subsequently, we checked whether these

polymorphic LTR5_Hs loci overlap with the LTR5_Hs loci that are likely to regulate gene

expression (S12 Fig). Of the 11 polymorphic LTR5_Hs loci detected, two are in the vicinity of

genes (FOLR1 and TNK1) upregulated in both PGCLCs and naïve ESCs. This suggests the pos-

sibility that very recent insertions of LTR5_Hs have also contributed to alterations in gene

expression in these cell types. Together, these results support that the gene expression alter-

ations driven by LTR5_Hs in PGCs and naïve pluripotent cells may have proceeded gradually

during hominoid evolution.

Discussion

Previous studies have suggested that there are similarities in gene expression between PGCLCs

and naïve pluripotent cells. However, most of these studies have focused on several key TFs

and have not characterized the similarity at the whole-transcriptome level in detail

[4,5,7,9,12,29,33,34]. In the present study, we characterized the transcriptome signature and

regulatory sequences shared between PGCLCs and naïve ESCs in detail and illuminated the

presence of a shared gene regulatory network between these cell types (Fig 1).

We showed that numerous LTR5_Hs loci are epigenetically activated in both PGCLCs and

naïve ESCs (Figs 3 and 5). Although the enhancer-like signatures of LTR5_Hs in naïve plurip-

otent cells have been reported in previous studies [22–25], our data highlight the pleiotropic

activation of LTR5_Hs in PGCLCs and naïve ESCs, which likely contributes to the establish-

ment of transcriptome similarity between these cells. The results of our comparative transcrip-

tome analysis between humans and macaques support the hypothesis that LTR5_Hs insertions

have altered the expression patterns of their adjacent genes in PGC- and naïve pluripotent cell-

specific manners during hominoid evolution (Fig 6). Despite the centrality of PGCs and naïve

pluripotent cells to maintenance of the germline (and by extension the species), our results

suggest that gene expression in these cells may vary between humans based on polymorphisms

in specific LTR5_Hs loci. Together, our data suggest that LTR5_Hs insertions may have gradu-

ally rewired the core gene regulatory network shared between PGCLCs and naïve pluripotent

cells during hominoid evolution (Fig 6H).

We found that genes related to the metabolism of carbohydrates, including glucose, were

commonly upregulated in PGCLCs and naïve ESCs (Fig 1E). In mice, the manner of glucose

metabolism is similar between PGCLCs and naïve pluripotent cells [37,38,53,54]: mouse

PGCLCs and naïve pluripotent cells use both glycolysis and oxidative phosphorylation (i.e.,

both aerobic and anaerobic respiration, referred to as bivalent glucose metabolism), while

primed pluripotent cells depend exclusively on glycolysis (i.e., anaerobic respiration). On the

other hand, the manner of glucose metabolism in human PGCs and PGCLCs is still unclear,

although naïve human ESCs use bivalent glucose metabolism similar to that in naïve mouse

ESCs [37,53,55]. Together with the previous findings described above, our data suggest that

human PGCs and PGCLCs may also exhibit glucose metabolism similar to that of naïve ESCs

(i.e., bivalent glucose metabolism), consistent with the case in mice. Notably, the manner of

glucose metabolism affects the cellular identities of PGCLCs and naïve ESCs in mice [38].

Therefore, future functional studies seeking to characterize glucose metabolism in human

PGCLCs and PGCs are warranted.

Previous studies have demonstrated that naïve pluripotent cells in humans exhibit higher

glycolytic activity than primed pluripotent cells, while naïve pluripotent cells in mice and
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common marmosets (a New World Monkey) do not [55,56]. These findings suggest that glyco-

lytic activity in naïve pluripotent cells was elevated in the hominoid or more ancestral lineages

at least after human-marmoset divergence. The data obtained in the present study suggest that

the expression of genes related to glucose metabolism is likely controlled by LTR5_Hs in

PGCLCs and naïve pluripotent cells and was likely upregulated in these cells during hominoid

evolution (Figs 5C, 5D and 6G). Together, these findings raise the possibility that LTR5_Hs

insertions are associated with elevations in glycolytic activity in naïve pluripotent cells (and

possibly in PGCs/PGCLCs) during hominoid evolution. Since the manner of glucose metabo-

lism substantially affects the identities of these cells [38], the epigenetic activation of LTR5_Hs

may affect the establishment or maintenance of these cells in humans by modulating glucose

metabolism.

Our arguments in the present study are mainly based on the results of association analyses

using publicly available and snapshot datasets. Therefore, although our results strongly support

the hypothesis that the enhancers derived from LTR5_Hs play a pivotal role in the gene regula-

tory network shared between PGCLCs and naïve pluripotent cells, further experimental valida-

tion is needed to demonstrate this hypothesis. Furthermore, the biological significance of the

upregulation of carbohydrate metabolism-related genes in PGCLCs and the association of

these genes and LTR5_Hs should also be evaluated by experiments. A very recent study

showed that epigenetic perturbation by the CRISPRi systems of LTR5_Hs led to a decreased

induction level of PGCLCs from ESCs, suggesting that cis-regulatory elements derived from

LTR5_Hs work in the gene regulatory network associated with PGCLC specification [57]. Fur-

ther studies to elucidate the role of LTR5_Hs in the gene regulatory network and its evolution

are needed.

In conclusion, our data suggest that the core gene regulatory network shared between

PGCs/PGCLCs and naïve pluripotent cells may have been finetuned by LTR5_Hs insertions

during hominoid evolution. This gene regulatory network modification may contribute to

alterations in cellular characteristics, such as glucose metabolism, which are critical for the cel-

lular identities of PGCs/PGCLCs and naïve pluripotent cells. The present study provides

insights into germline evolution driven by selfish ERVs during hominoid evolution.

Materials and methods

Bulk RNA-Seq of PGCLCs

The iPSC (9A13 XY) line used in this study was established in a previous study [Hwang et al.

[10]]. iPSCs were cultured on plates coated with recombinant laminin-511 E8 (BG iMatrix-

511 Silk, Peprotech, Cranbury, NJ) and were maintained under feeder-free conditions in Stem-

Fit Basic04 medium (Ajinomoto, Tokyo, Japan) containing basic FGF (Peprotech) at 37˚C

under an atmosphere of 5% CO2 in air. For passaging or induction of differentiation, the cells

were treated with a 1:1 mixture of TrypLE Select (Life Technologies, Waltham, MA) and 0.5

mM EDTA/PBS to enable their dissociation into single cells, and 10 mM ROCK inhibitor (Y-

27632; Tocris, Abingdon, United Kingdom) was added.

PGCLCs were induced from iPSCs via iMeLCs as described previously [Sasaki et al. [4]]

and purified using the surface markers EpCAM and INTEGRINα6. Total RNA was extracted

from iPSCs and PGCLCs by using an RNeasy Micro Kit (Qiagen, Venlo, Netherlands) accord-

ing to the manufacturer’s instructions. cDNA was synthesized using 1 ng of purified total

RNA, and cDNA libraries were constructed for RNA sequencing by using a SMART-Seq HT

Kit (Takara, Shiga, Japan) and a Nextera XT DNA Library Preparation Kit (Illumina, San

Diego, CA) according to the manufacturers’ instructions. The libraries were sequenced using a

single-end sequencing protocol on an Illumina NextSeq 500 instrument.
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Single-cell and bulk RNA-Seq analyses of human data

In the present study, read count matrices containing both human gene expression and subfam-

ily-level TE expression data were prepared. To generate the count matrices, the human refer-

ence genome sequence (GRCh38/hg38) without ALT contigs was used. In addition, the gene

and TE transcript annotation file (i.e., GTF file) generated in a previous study [Hwang et al.

[10]] was used. Briefly, this annotation file contains the gene transcript annotations for

GRCh38/hg38 from GENCODE version 22 [58] and the TE annotations for GRCh38/hg38

from the RepeatMasker output file (15-Jan-2014). TE loci with low reliability scores (Smith-

Waterman scores < 2,500) were excluded. The annotation file is described in detail in and is

available from the GitHub repository (https://github.com/TheSatoLab/TE_scRNA-Seq_

analysis_Hwang_et_al/blob/master/CellRanger/input/hg38_TE_noAlt_unique.gtf.gz).

Regarding the scRNA-Seq dataset for human early male germ cell development [Hwang

et al. [10]], the read count matrix provided by Hwang et al. was used (https://github.com/

TheSatoLab/TE_scRNA-Seq_analysis_Hwang_et_al/blob/master/count_matrix_data/vitro/

data.merged.vitro.count.csv.gz). The read count matrix was generated using only reads that

were uniquely mapped to the human reference genome.

A read count matrix was generated for the scRNA-Seq datasets for naïve and primed ESCs [Mess-

mer et al. [36]], for PGCLCs and iPSCs [Kojima et al. [12]], and for in vivo male germ cells including

PGCs [Li et al. [8]] and early embryonic cells [48–50]. The sequencing reads were downloaded and

decrypted using the fastq-dump command in SRA Toolkit (https://ncbi.github.io/sra-tools/). If mul-

tiple FASTQ files were available for one single cell, the FASTQ files were concatenated. The sequenc-

ing reads were trimmed using Trimmomatic (version 0.39) [59] and subsequently mapped to the

human reference genome using STAR (version 2.6.1c) [60] with the gene-TE transcript model

described above. The read count matrix was constructed using featureCounts (version 1.6.3) [61]. In

this process, only reads that were uniquely mapped to the human reference genome were used.

Bulk RNA-Seq data for naïve and primed ESCs [Takashima et al. [33] and Theunissen et al.

[23]] and for PGCLCs (original data obtained in the present study) were analyzed according to

the same pipeline described in the above paragraph.

The read abundance of each TE subfamily was calculated by summing the read counts of

TE loci belonging to the TE subfamily using an in-house Python script (https://github.com/

TheSatoLab/TE_scRNA-Seq_analysis_Hwang_et_al/blob/master/make_count_matrix/script/

sum_TE_count.subfamily.py). The counts per 10,000 (CP10k) value was calculated as the rela-

tive expression level, and the log2-transformed CP10k with a pseudocount of one (log2[CP10k

+1]) value was subsequently computed.

Information on the RNA-Seq datasets analyzed in the present study is summarized in S10 Table.

Pseudotime analysis

Pseudotime analysis of the scRNA-Seq data for in vitro-derived human male germ cell devel-

opment [Hwang et al. [10]] was performed using Monocle 2 [41] according to the procedures

in the official tutorial (http://cole-trapnell-lab.github.io/monocle-release/docs/). The expres-

sion read count data were normalized under the negative binomial distribution assumption.

In the pseudotime analysis, the 1,000 protein-coding genes that were the most differentially

expressed during human male germ cell development were used. DDRTree was selected for

the dimension reduction method.

Data integration and dimension reduction analysis of scRNA-Seq data

Data integration between the Hwang et al. [10] and Messmer et al. [36] datasets followed by

dimension reduction analysis was performed using Seurat 3 (version 3.2.2) [62] according to
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the scheme described in the Seurat tutorial (https://satijalab.org/seurat/vignettes.html). For

each scRNA-Seq dataset, the expression data were normalized using SCTransform [63] by

regressing out the total expression levels of mitochondrial genes. Subsequently, the datasets

were integrated using the Seurat “anchoring” framework [62]. In the data integration, the

3,000 most differentially expressed protein-coding genes in both datasets were used. The

dimension reduction analysis was performed via uniform manifold approximation and projec-

tion (UMAP) [62] based on the integrated expression data. In the UMAP analysis, the first 30

principal components were used.

Definition of the PGCLC-specific expression score

In this analysis, scRNA-Seq data for in vitro-derived human male germ cell development

[Hwang et al. [10]] were used. The dataset includes data for a series of cells that were sequen-

tially differentiated from iPSCs (iPSCs, iMeLCs, PGCLCs, MLCs, TCs, and T1LCs). As shown

in the upper panel of Fig 1B, the model representing the PGCLC-specific expression pattern

was defined by a iPSC:iMeLC:PGCLC:MLC:TC:T1LC ratio of 0:0:1:0.5:0:0 (referred to as the

model). In this model, the expression value of MLCs was set to 0.5 since it is known that the

critical TFs of PGCs (e.g., TFAP2A, TFAP2C, SOX17, and NANOG) remain weakly expressed

in MLCs (and in multiplying prospermatogonia cells, the in vivo counterparts of MLCs) (Fig

4D) [10]. As shown in the middle panel of Fig 1B, for each gene and TE subfamily, the data

representing the expression pattern were defined. Briefly, the relative expression (log2[CP10k

+1]) values in the various cells were normalized as Z scores. Next, the mean expression values

in the different cell types were calculated according to the Z scores above, and these mean

expression values were rescaled to fit between 0 and 1. Here, a series of rescaled mean expres-

sion values is referred to as the data. Finally, as shown in the lower panel of Fig 1B, the sum of

squared residuals (SSR) between the model and the data was calculated, and the SSR value was

subsequently −log10-transformed. This −log10(SSR) value was defined as the PGCLC-specific

expression score. This analysis was performed using an in-house script (“calc_PGC_specifi-

c_expression_score.R”) available from the GitHub repository (https://github.com/

TheSatoLab/LTR5_Hs_PGC_Naive_enhancer).

Differential gene expression analysis

Differential gene expression analysis was performed using DESeq2 (version 1.26.0) [64]. Only

protein-coding genes were included in this analysis. Genes with relatively low expression levels

(i.e., those with a 90th percentile of reads per million value< 0.2) were excluded from the anal-

ysis. The statistical significance was calculated with the Wald test. The false discovery rate

(FDR) value was calculated by the Benjamini-Hochberg (BH) method.

Classification of protein-coding genes and TFs according to their

expression patterns

In this analysis, the protein-coding genes that were expressed in the dataset of either Hwang

et al. [10] or Messmer et al. [36] were used. Genes upregulated in PGCLCs were defined as the

top 10% of genes with respect to the PGCLC-specific expression score among the genes

expressed in the Hwang et al. dataset. Genes upregulated in naïve ESCs were defined as the

genes with log2 FC values> 1 and FDR values< 0.05 in the differential gene expression analy-

sis between naïve ESCs vs. primed ESCs using DESeq2. According to the above definitions, the

genes were classified as genes upregulated in both cell types, genes upregulated only in

PGCLCs, genes upregulated only in naïve ESCs, and other genes.
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The TFs shown in Fig 1C and 1F were selected according to the following scheme. Briefly,

a list of human TFs was downloaded from The Human Transcription Factors database (ver-

sion 1.01; http://humantfs.ccbr.utoronto.ca/index.php) [39]. CBFA2T2 was manually added to

the list of TFs. The listed TFs were classified as TFs upregulated in both cell types, TFs upregu-

lated only in PGCLCs, TFs upregulated only in naïve ESCs, and other TFs according to the

scheme described in the above paragraph. Of the TFs upregulated only in PGCLCs or only in

naïve ESCs, the TFs with a mean log2(CP10k+1) value>0.6 in the corresponding cell type

were selected. Of the TFs upregulated in both cell types, the TFs with a mean log2(CP10k+1)

value >0.6 in either PGCLCs or naïve ESCs and with a mean log2(CP10k+1) value>0.3 in the

other cell type were selected. In addition, TFAP2A was manually added to the list of the shown

TFs. Information on the gene classification is summarized in S1 Table.

GO enrichment analysis

A gene-gene set association file including Molecular Signatures Database (MSigDB) canonical path-

ways and InterPro entries was used. The MSigDB canonical pathways were downloaded from

MSigDB (http://software.broadinstitute.org/gsea/msigdb; version 6.1). InterPro entries were obtained

from BioMart on the Ensembl website (www.ensembl.org; accessed on 13th February 2018).

The statistical significance values of the overlaps between the list of genes of interest and the

predefined gene sets were calculated by one-tailed Fisher’s exact test. FDR values were calcu-

lated using BH method. As a universal (or background) set of genes, the protein-coding genes

satisfying the following criteria were used: 1) genes included in the gene-gene set association

file above and 2) genes whose expression was detected in either of the scRNA-Seq datasets

[Hwang et al. [10] or Messmer et al. [36]].

In the GO enrichment analysis shown in Fig 1E, the redundant gene sets whose members

highly overlapped with each other were removed from the results. First, the gene sets with sig-

nificant enrichment (FDR < 0.05) were ranked according to the odds ratio values. Second, if

the gene members of a certain gene set highly overlapped with those of the upper-ranked gene

sets, the gene set was removed from the results. Two gene sets were regarded as highly overlap-

ping if the Jaccard index was greater than 0.5. This gene set filtering was performed with an in-

house script (“rmRedundantGS_based_on_OR.py”) available from the GitHub repository

(https://github.com/TheSatoLab/LTR5_Hs_PGC_Naive_enhancer).

ATAC-Seq and ChIP-Seq analyses

Sequencing reads obtained from ATAC-Seq or ChIP-Seq were mapped to the human refer-

ence genome (GRCh38/hg38) using the BWA-MEM algorithm (version 0.7.17) [65]. Reads

mapped to the mitochondrial genome or with low mapping scores (mapping quality,

MAPQ < 10) were removed using SAMtools (version 1.10) [66]. In addition, PCR-duplicated

reads were removed using Picard MarkDuplicates (version 2.18.16) (http://broadinstitute.

github.io/picard/). Peak calling was performed using MACS2 callpeak (version 2.2.6) (https://

pypi.org/project/MACS2/) with the threshold FDR< 0.05. For ChIP-Seq, the input control

files were used in the peak calling step if the files were available. If>50,000 peaks were detected

in one dataset, only the top 50,000 peaks with respect to statistical significance were used in the

downstream analyses. Information on the analyzed data is summarized in S10 Table.

Identification of the open chromatin regions activated in PGCLCs or naïve

ESCs compared to primed ESCs

First, the union (or merged) set of ATAC-Seq peaks between the two compared conditions

(e.g., naïve ESCs vs. primed ESCs) was defined using the bedtools merge function (version
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v2.27.0) [67]. Second, from the sequencing read alignment (BAM) file of each ATAC-Seq run,

the reads that were assigned to the various merged peaks were counted using featureCounts

(version 1.6.3) [61]. Finally, the peaks (i.e., open chromatin regions) that were activated (log2

FC > 1; FDR< 0.05) in PGCLCs or naïve ESCs compared to primed ESCs were identified

using DESeq2 (version 1.26.0) [64]. Subsequently, the open chromatin regions were classified

into those upregulated in both cell types, those upregulated only in PGCLCs, those upregulated

only in naïve ESCs, and others.

Genomic Regions Enrichment of Annotations Tool (GREAT) enrichment

analysis

As shown in Fig 1G, the enrichment of the open chromatin regions of interest (the open chroma-

tin regions activated in both cell types, only PGCLCs, and only naïve ESCs) in the vicinity of the

genes of interest (the genes upregulated in both cell types, only PGCLCs, and only naïve ESCs)

was calculated according to the GREAT scheme [68]. This method is explained in detail elsewhere

[69]. Briefly, regions of interest were defined as the regions within 50 kb of the transcription start

sites (TSSs) of the genes of interest. Background regions were defined as the regions within 50 kb

of the TSSs of all protein-coding genes. The lengths of the regions of interest and the background

regions were calculated and referred to as Li and Lb, respectively. In the regions of interest and the

background regions, the open chromatin regions were counted (referred to as counts of interest

[Ci] and background counts [Cb], respectively). The fold enrichment value was calculated by

dividing Ci/Cb by Li/Lb, and the statistical significance was evaluated using a binomial test. This

analysis was performed using an in-house script (“great_pairwise.py”) available from the GitHub

repository (https://github.com/TheSatoLab/LTR5_Hs_PGC_Naive_enhancer).

Enrichment analysis of TF binding sites on the set of open chromatin

regions of interest

A public ChIP-Seq dataset for 1,308 types of TFs provided by the GTRD (version 19.10) [39] was

used. The ChIP-Seq peak data file “Homo sapiens_macs2_clusters.interval.gz” was downloaded

from the database above (http://gtrd19-10.biouml.org/) on 20th May 2020. This file contains the sin-

gle set of peaks (i.e., clustered peaks) for each TF. In this file, the peaks that had been computed for

the same TF under the different experimental conditions (e.g., cell line, treatment, and study) were

joined into clusters. For the various TFs, we detected overlaps between the TF binding sites and the

open chromatin regions. Next, we classified the open chromatin regions according to (i) whether

the open chromatin regions overlapped with the TF binding sites and (ii) whether the open chroma-

tin regions belonged to a set of open chromatin regions of interest (i.e., those activated in both cell

types, only PGCLCs, and only naïve ESCs). Subsequently, the odds ratios and P values were calcu-

lated with Fisher’s exact test. The FDR values were calculated with the BH method.

Genomic permutation test

To calculate the fold enrichment of the overlaps between TE loci and a set of genomic regions

of interest (e.g., ATAC-Seq peaks), randomization-based enrichment analysis (i.e., a genomic

permutation test) was performed. The genomic regions of interest were randomized using the

bedtools shuffle function [67]; subsequently, the genomic regions of interest on TE loci in the

randomized data were counted. This process was repeated 100 times, and the mean value of the

counts in the randomized datasets was regarded as the random expectation value. The fold

enrichment was calculated by dividing the observed count by the random expectation value.

The P value was calculated according to the assumption of a Poisson distribution. The random
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expectation value was used as the lambda parameter of the Poisson distribution. This analysis

was performed using an in-house script (calc_enrichment_randomized.great.py) available from

the GitHub repository (https://github.com/TheSatoLab/LTR5_Hs_PGC_Naive_enhancer).

Identification of the potential regulators of LTR5_Hs in PGCs and naïve

pluripotent cells

We first identified the TFs that preferentially bind to LTR5_Hs using public ChIP-Seq data for

1,308 types of TFs provided by the GTRD (version 19.10) [39].

For the various TFs, we calculated the fold enrichment of the TF-binding events on

LTR5_Hs over the random expectation as well as the statistical significance using the genomic

permutation test described in the above section. Next, we integrated the TF binding enrich-

ment data with the expression pattern data of these TFs. To identify the potential regulators of

LTR5_Hs in PGCs, the PGCLC-specific expression score defined in the above section was

used. To identify the regulators in naïve pluripotent cells, the log2 FC values of the expression

levels between naïve ESCs vs. primed ESCs computed using DESeq2 [64] were used. The

potential regulators of LTR5_Hs were defined as the TFs satisfying the following criteria: (i)

TFs that exhibited significant binding enrichment on LTR5_Hs (log2-fold enrichment > 2;

FDR< 0.05; binding events > 20); (ii) for regulators in PGCLCs, TFs that were specifically

upregulated in PGCLCs (in the top 10% with respect to the PGCLC-specific expression score;

mean relative expression (log2[CP10k+1] > 0.4 in PGCLCs); and (iii) for regulators in naïve

pluripotent cells, TFs that were specifically upregulated in naïve ESCs (log2[FC] > 2;

FDR< 0.05; mean relative expression > 0.4 in naïve ESCs).

Definition of the genes in the vicinity of active LTR5_Hs

The “active” LTR5_Hs loci, namely, the LTR5_Hs loci with transcriptomic or epigenetic sig-

nals, were defined. Specifically, LTR5_Hs loci with transcriptomic signals were defined as loci

whose expression was detected in >0.5% of the cell population in any of the following scRNA-

Seq datasets: (i) the PGCLC dataset of Hwang et al. [10], (ii) the PGCLC dataset of Kojima

et al. [12], and (iii) the naïve ESC dataset of Messmer et al. [36]. The LTR5_Hs loci with epige-

netic signals were defined as loci that overlapped with the epigenetic signal peaks in any of the

following ATAC-Seq or ChIP-Seq (targeting H3K27ac) datasets: (i) the PGCLC ATAC-Seq or

ChIP-Seq dataset of Chen et al. [29] and (ii) the datasets of naïve ESCs in Pontis et al. [22].

Information on the active LTR5_Hs loci is summarized in S8 Table.

The genes in the vicinity of the active LTR5_Hs were also defined. The TSSs of the various

transcripts for each protein-coding gene were extracted from the GENCODE gene annotation

model (version 22) [58]. The distance from the TSS of each gene to the closest LTR5_Hs copy

was computed using the bedtools closest function [67]. Subsequently, for each gene, the mini-

mum distance from the TSS to the active LTR5_Hs copy was calculated. A gene in the vicinity

of the active LTR5_Hs was defined as a gene within 50 kb of the minimum distance defined

above. We performed a sensitivity analysis on the distance parameter for proximity definition

and confirmed that our conclusions are relatively robust at various proximity definitions (e.g.,

within 20kb, 50kb, 100kb, 200kb, and 500kb) (S13 Fig).

scRNA-Seq analysis of crab-eating macaque data and comparative

transcriptome analysis between humans and macaques

For analysis of crab-eating macaque data, the reference genome (macFas5.fa), gene transcrip-

tome annotation (genes/macFas5.ensGene.gtf; corresponding to the Ensembl 99 gene
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transcriptome annotation), and RepeatMasker output files (macFas5.fa.out) were downloaded

from the University of California, Santa Cruz (UCSC) Genome Browser (http://hgdownload.soe.

ucsc.edu/goldenPath/macFas5/bigZips/) on 23rd March 2020. The gene-TE transcript model for

crab-eating macaques was constructed according to the same procedure used for humans. For the

gene model, transcripts with the flag “retained intron” were excluded. For the TE model, TE loci

with low reliability scores (i.e., Smith-Waterman scores< 2,500) were excluded. Additionally, the

regions of TE loci overlapping with the gene transcripts were also excluded. The gene-TE tran-

script model was generated by concatenating the gene and TE models.

The scRNA-Seq dataset of early embryos and germ cells from crab-eating macaques [Sasaki

et al. [6]] was analyzed. Briefly, the sequencing reads were trimmed using Trimmomatic (ver-

sion 0.39) [59] and subsequently mapped to the reference genome using STAR (version 2.6.1c)

[60] with the gene-TE transcript model above. The read count matrix was constructed using

featureCounts (version 1.6.3) [61].

Gene ortholog information between humans and crab-eating macaques was downloaded

from the Ensembl database (version 99) via BioMart (https://www.ensembl.org) on 23rd

March 2020.

Phylogenetic analysis of the LTR5 family

LTR5A, LTR5B, and LTR5_Hs loci with Smith-Waterman scores� 2,500 were extracted from

the RepeatMasker output file (15-Jan-2014; for GRCh38/hg38). Subsequently, the sequences of

these LTR5 loci were extracted from the human reference genome (GRCh38/hg38) using the

bedtools getfasta function [67]. A multiple sequence alignment (MSA) of these LTR5 loci was

constructed using MAFFT with the FFT-NS-i algorithm (version 7.407) [70]. In the MSA, the

alignment sites with<85% site coverage were eliminated using the in-house script “select_a-

lignment_site.py” available from the GitHub repository (https://github.com/TheSatoLab/

primate_A3_repertoire_and_evolution/blob/main/Trees/script). Subsequently, the sequences

that had gaps in >15% of alignment sites were eliminated using the script above. In addition,

tree-based filtering of the underlying dataset was performed prior to construction of a final

tree. A preliminary tree was constructed, and phylogenetic outlier sequences, which have

extremely long external branches (i.e., standardized external branch lengths > 3), were subse-

quently detected and discarded from the MSA used for final tree construction. The phyloge-

netic tree of LTR5 loci was reconstructed using RAxML (version 8.2.11) [71] with the

GTRCAT model.

Investigation of the distribution of orthologs of human LTR5 loci across

Simiiformes

LiftOver chain files were downloaded from the UCSC Genome Browser (http://hgdownload.

soe.ucsc.edu/goldenPath/hg38/liftOver/) (S11 Table). Using the LiftOver program (http://

genome.ucsc.edu/cgi-bin/hgLiftOver) and the LiftOver chain files, the genomic coordinates of

LTR5 loci in the human reference genome were converted to those in another species with the

option “Minmatch = 0.5”. If the conversion was successful, we inferred that the orthologs of

the LTR5 loci were likely present in the corresponding genome.

Estimate of the insertion dates of LTR5_Hs loci and stratification of the

genes likely to be regulated by LTR5_Hs according to the insertion dates

The insertion dates of the various LTR5_Hs loci were estimated according to information on

both (i) the distributions of orthologous insertions across primates and (ii) the positions of
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LTR5 loci in the phylogenetic tree. Since there were a substantial number of missing values in

the ortholog distribution information, we used phylogenetic information in addition to ortho-

log information to robustly estimate the LTR5_Hs insertion dates. First, LTR5_Hs loci were

ordered according to the phylogenetic relationship (from older to younger). Second, using the

framework of a sliding window analysis, the final positions of LTR5_Hs loci where more than

three out of ten LTR5_Hs loci had orthologous insertions were determined for each primate of

interest (chimpanzee, gorilla, orangutan, gibbon, macaque, and marmoset). For each species,

LTR5_Hs loci that were older than the final LTR5_Hs copy were regarded as LTR5_Hs loci

that were inserted before the divergence between humans and the corresponding species.

Information on the estimated insertion dates is summarized in S8 Table.

The genes that are likely to be regulated by LTR5_Hs were stratified according to the inser-

tion dates of the associated LTR5_Hs loci. If the associated LTR5_Hs of one gene was not

included in the phylogenetic tree of LTR5 loci, the gene was categorized as “not determined”.

In addition, if multiple LTR5_Hs loci with distinct insertion dates were associated with one

gene, the gene was also categorized as “not determined”.

PPI network analysis

PPI network information for humans was downloaded from the Search Tool for the Retrieval

of Interacting Genes/Proteins (STRING) database (version 11.0; “9606.protein.links.v11.0.txt.

gz”) [72]. The PPI links with confidence scores>400 were used for the analysis. The number

of interacting partners of each gene was computed with the igraph package implemented in R

(https://igraph.org/).

Detection of LTR5_Hs insertions that are present in the human reference

genome but not fixed in the human population

High-coverage whole genome sequencing (WGS) datasets in 1000 Genome Project [52] were

downloaded from the following URL: ’ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_

collections/1000G_2504_high_coverage/’. We searched WGS data for reads spanning the

insertion site of of LTR5_Hs loci as follows. We first detected/annotated LTR5_Hs from

GRCh38 using RepeatMasker with repeat sequence library provided from RepBase (version

24.01). We used the ‘-s -no_is’ options to sensitively detect LTR5_Hs. Next, we searched for

reads skipping annotated LTR5_Hs, that is, reads mapping to the genomic regions flanking

the LTR5_Hs insertion site (i.e. the predicted state/sequence of this locus prior to LTR5_Hs

integration). We screened reads in the WGS datasets and extracted soft-clipped reads with

‘SA:Z’ tag. During this step, supplementary reads were excluded from analysis. We checked

the mapped positions of the clipped and non-clipped regions on GRCh38. Here after, we refer

to the clipped and non-clipped regions as to clipped_seq and non_clipped_seq, respectively.

We next filtered out reads of which clipped_seq and non_clipped_seq are mapping to different

chromosomes. Then we checked whether the clipped_seq and non_clipped_seq are mapping

to flanking regions of an annotated LTR5_Hs locus. In this step, we considered that a read is a

skipping read if both the clipped_seq and non_clipped_seq map to 25-nt from the ends of an

annotated LTR5_Hs locus. We found 11 LTR5_Hs loci that are likely absent in at least one

datasets. The mean count of skipping reads per LTR5_Hs locus in a single dataset ranged from

3.4 to 12.8. To exclude potential false positives due to any technical reasons, such as index hop-

ping, we considered that an individual lacks at least one allele of a LTR5_Hs copy if two or

more skipping reads were found at the LTR5_Hs locus.
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Data visualization

All data visualizations were performed in R (version 3.6.3). Heatmaps were drawn using Com-

plexHeatmap [73]. The phylogenetic tree was visualized with ggtree (http://bioconductor.org/

packages/release/bioc/html/ggtree.html). The PPI network was visualized using ggnet2

(https://briatte.github.io/ggnet/). The other data were visualized with ggplot2 (https://ggplot2.

tidyverse.org/).

Statistical analysis

Statistical analysis was performed in R (version 3.6.3). Statistical significance was evaluated by

the two-tailed Wilcoxon rank sum test unless otherwise noted. FDR values were calculated by

BH method.

Supporting information

S1 Fig. PGCLC-specific score of genes that are upregulated in PGCs compared to the later

stages of male germ cells. The scRNA-Seq data from Li et al. [8] was analyzed. As controls,

the scores of genes that are downregulated in PGCs and those of genes that did not signifi-

cantly change between PGCs and the later stages are shown.

(TIF)

S2 Fig. TFs upregulated in both cell types, only PGCLCs, and only naïve ESCs. (A) Expres-

sion levels in various cell types from scRNA-Seq data for male germline development [Hwang

et al. [10]] and for naïve and primed ESCs [Messmer et al. [36]]. The results for the TFs anno-

tated in Fig 1C are shown. (B) Upregulation of TFs in PGCLCs and naïve ESCs observed

across datasets. For the various datasets, the log2 FC values of the expression scores in PGCLCs

vs. primed iPSCs or naïve ESCs vs. primed ESCs are shown. An asterisk denotes significant

upregulation (FDR < 0.05; log2 FC > 1). A gray asterisk indicates that the expression level of

the gene was not high (the mean expression level of the gene was below the 50th percentile for

all expressed genes) even though significant upregulation was observed. For PGCLCs, the data

of Hwang et al. [10] and Kojima et al. [12] were analyzed in addition to the original data in the

present study. For naïve ESCs, the data of Messmer et al. [36], Takashima et al. [33], and Theu-

nissen et al. [23] were analyzed.

(TIF)

S3 Fig. Expression patterns of KZFPs. (A) Classification of KZFPs according to their expres-

sion patterns. Highly expressed KZFPs in PGCLCs or naïve ESCs are annotated. The results

for TFs other than KZFPs are shown in Fig 1C. (B) Distributions of the log2 FC values of the

expression scores of KZFPs in naïve ESCs vs. primed ESCs. The dot color denotes the statisti-

cal significance of the gene expression change. (C) Expression patterns of KZFPs during in
vitro-derived human male germline development. The heatmap shows the relative mean

expression values in the various cell types. The upper panel shows the transitions of the indi-

vidual (gray) and mean (red) expression values.

(TIF)

S4 Fig. Expression patterns of SVA transposons. The results for the SVA transposons

included in the heatmap in Fig 2B are shown.

(TIF)

S5 Fig. The enrichment of open chromatin regions in human PGCs on LTR5_Hs. The

ATAC-Seq data from Chen et al. [29] was analyzed. The log2 fold enrichment and statistical
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significance values are shown as a volcano plot.

(TIF)

S6 Fig. The enrichment of TF binding sites on LTR5_Hs in cell types of interest. The

enrichment for KLF4, NANOG, POU5F1, TFAP2C in naïve human ESCs and that for

TFAP2C in PGCLCs are shown. In addition, the enrichment for SOX17 in a seminoma cell

line (TCam-2 cells) is shown. The log2 fold enrichment and statistical significance scores are

shown as a volcano plot. As controls, the enrichment scores for Tes other than LTR5_Hs are

shown.

(TIF)

S7 Fig. Pathway maps of glycolysis and glycogen breakdown. Pathway maps of glycolysis

(A) and glycogen breakdown (B). Genes that are likely to be regulated by LTR5_Hs (i.e., AGL,

ENO2, PFKL, PHKA1, and PYGB) are highlighted in orange. The pathway maps originated

from the Reactome pathway database (https://reactome.org/) (65).

(TIF)

S8 Fig. Comparison of genes regulated by LTR5_Hs defined in this study and a previous

study (Fuentes et al.) [25]. The 95 genes that are likely to be regulated by LTR5_Hs (shown in

Fig 6E) were compared with genes that were up- or downregulated by CRISPRa or CRISPRi

systems in embryonic carcinoma cells in a previous study (Fuentes et al.) [25]. To perform a

fair comparison, only genes contained in both datasets and located within 50 kb from

LTR5_Hs insertions (447 genes) were included in this analysis. These genes were stratified

according to (i) whether the genes were included in the 95 genes (shown in Fig 6E) and (ii)

whether the genes were perturbed by CRISPR systems in Fuentes et al. [25] (adjusted p

value< 0.05, log2 FC value> 1 for upregulation, log2 FC value< -1 for downregulation). Sub-

sequently, the degree of overlap between the stratified gene sets was evaluated. The P value was

calculated with Fisher’s exact test. Information on the genes is summarized in S7 Table.

(TIF)

S9 Fig. Expression pattern of HERVK/LTR5_Hs and genes that are likely regulated by

LTR5_Hs in human PGCs. The scRNA-Seq data from Li et al. [8], which includes male germ

cells (migrating PGCs and multiplying and mitotically quiescent prospermatogonia) and

somatic cells at 4–25 weeks post-fertilization, was analyzed. Please note that migrating PGCs

are more differentiated than the stage represented by PGCLCs (pre-migratory stage,�3 weeks

post-fertilization). A) Violin plot showing the expression of LTR5_Hs, HERVK, and the glu-

cose metabolism-related genes. B) Heatmap showing the normalized mean expression of

genes that are likely regulated by LTR5_Hs (defined in Fig 6E).

(TIF)

S10 Fig. Expression pattern of HERVK/LTR5_Hs and genes that are likely regulated by

LTR5_Hs in human early embryonic cells including naïve ICM of blastocysts. The scRNA-

Seq datasets from various studies [48–50], which include from Pronucleus cells to blastocysts

at embryonic day 7, were merged and analyzed. A) Violin plot showing the expression of

LTR5_Hs, HERVK, and the glucose metabolism-related genes. In blastocysts, dots for ICM

(red), trophectoderm (blue), and pre-lineage (yellow) are colored. In addition to data for the

embryonic cells described above, data for naïve and primed ESCs [36] are shown. B) Heatmap

showing the normalized mean expression of genes that are likely regulated by LTR5_Hs

(defined in Fig 6E).

(TIF)
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S11 Fig. Stratification of the genes likely to be regulated by LTR5_Hs according to the

insertion date of the associated LTR5_Hs. (A) Stratification of LTR5_Hs loci in the human

genome according to their insertion dates. (i) Phylogenetic tree of the LTR5 family (including

LTR5_Hs and related subfamilies [i.e., LTR5A and LTR5B]). (ii) Information on the distribu-

tion of orthologous insertions of LTR5 loci among primate genomes. According to the ortho-

log distribution and phylogeny, LTR5_Hs loci were stratified into five categories (HCGOG,

HCGO, HCG, HC, and H). (iii) Epigenetic and transcriptomic statuses of various LTR5_Hs

loci. (iv) LTR5_Hs loci that are likely to be associated with gene regulation. (B) PPI network

for the genes likely to be regulated by LTR5_Hs. Only PPI links among the proteins encoded

by the displayed genes are shown. The node color denotes the insertion date of the associated

LTR5_Hs of the gene. The node size is proportional to the number of interacting partners in

the whole PPI network. The glucose metabolism-related network is circled in orange. The PPI

information originated from the STRING database [72].

(TIF)

S12 Fig. Potential roles of polymorphic LTR5_Hs insertions on the gene expression in

PGCLCs and naïve ESCs. LTR5_Hs loci that are present in the human reference genome but

not fixed in the human population (referred to as polymorphic LTR5_Hs loci) were identified

using 1000 Genome Project datasets [52]. Information on the polymorphic LTR5_Hs loci is

summarized in S9 Table. (A) Comparison of the polymorphic LTR5_Hs loci and the

LTR5_Hs loci that are likely to regulate the gene expression in PGCLCs and naïve ESCs. The

names of the overlapping LTR5_Hs loci are shown ("LTR5_Hs|chr11:72164373–72165341|+"

and "LTR5_Hs|chr3:195927524–195928492|-"). (B) Geographical prevalence of the polymor-

phic LTR5_Hs loci in different human populations. Proportions of individuals with allele(s)

lacking the LTR5_Hs insertion in different populations are shown. AFR, African; AMR, Ad

Mixed American; EAS, East Asian; EUR, European; and SAS, South Asian. The map was gen-

erated using R maps (https://cran.r-project.org/web/packages/maps/index.html). (C) Expres-

sion levels of the genes associated with polymorphic LTR5_Hs in various cell types.

(TIF)

S13 Fig. A sensitivity analysis on the distance parameter for proximity definition. Protein-

coding genes were classified into genes adjacent to LTR5_Hs or not according to the various

distance thresholds for proximity definition. Subsequently, Log2 FC value (naïve ESCs vs.

primed ESCs) and PGCLC-specific expression score were compared between the two gene cat-

egories.

(TIF)

S1 Table. Classification of protein-coding genes according to their expression patterns

(related to Fig 1C).

(XLSX)

S2 Table. GO enrichment analysis results for the three gene categories (genes upregulated

in both cell types, genes upregulated only in PGCLCs, and genes upregulated only in naïve

ESCs) (related to Fig 1E).

(XLSX)

S3 Table. Identification of the potential regulators of LTR5_Hs in PGCLCs and naïve

ESCs (related to Fig 4).

(XLSX)
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S4 Table. Association of the expression patterns of genes and their distance from

LTR5_Hs in the genome (related to Fig 5A).

(XLSX)

S5 Table. Results of GO enrichment analysis using the genes that are present nearby

LTR5_Hs and upregulated in both PGCLCs and naïve ESCs (related to Fig 5C).

(XLSX)

S6 Table. Comparison of the genes upregulated in both PGCLCs/PGCs and naïve pluripo-

tent cells between humans and macaques (related to Fig 6E).

(XLSX)

S7 Table. Comparison of genes regulated by LTR5_Hs defined in this study and a previous

study (Fuentes et al.) [25].

(XLSX)

S8 Table. Information on respective LTR5 loci.

(XLSX)

S9 Table. LTR5_Hs loci that are present in the human reference genome (GRCh38) but

not fixed in the human population.

(XLSX)

S10 Table. Sequencing dataset analyzed in the present study.

(XLSX)

S11 Table. LiftOver chain files used in the present study.

(XLSX)
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blastocyst development and the normal self-renewal of mouse ESCs. Cell Stem Cell. 2008; 3(5):555–

67. Epub 2008/11/06. https://doi.org/10.1016/j.stem.2008.09.003 PMID: 18983969.

44. Yamane M, Ohtsuka S, Matsuura K, Nakamura A, Niwa H. Overlapping functions of Krüppel-like factor
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