
ORIGINAL RESEARCH
published: 30 June 2022

doi: 10.3389/fpubh.2022.912099

Frontiers in Public Health | www.frontiersin.org 1 June 2022 | Volume 10 | Article 912099

Edited by:

Reza Lashgari,

Shahid Beheshti University, Iran

Reviewed by:

Daniel Huson,

University of Tübingen, Germany

Wenhuan Zeng,

Institute for Bioinformatics and

Medical Informatics, University of

Tuebingen, Germany, in collaboration

with reviewer DH

Abdul Rehman Javed,

Air University, Pakistan

*Correspondence:

Guadalupe Gutiérrez-Esparza

ggutierreze@conacyt.mx

Enrique Hernández-Lemus

ehernandez@inmegen.gob.mx

Specialty section:

This article was submitted to

Infectious Diseases – Surveillance,

Prevention and Treatment,

a section of the journal

Frontiers in Public Health

Received: 04 April 2022

Accepted: 24 May 2022

Published: 30 June 2022

Citation:

Ramírez-del Real T,

Martínez-García M, Márquez MF,

López-Trejo L, Gutiérrez-Esparza G

and Hernández-Lemus E (2022)

Individual Factors Associated With

COVID-19 Infection: A Machine

Learning Study.

Front. Public Health 10:912099.

doi: 10.3389/fpubh.2022.912099

Individual Factors Associated With
COVID-19 Infection: A Machine
Learning Study

Tania Ramírez-del Real 1,2, Mireya Martínez-García 3, Manlio F. Márquez 3,

Laura López-Trejo 4, Guadalupe Gutiérrez-Esparza 1,3* and Enrique Hernández-Lemus 5,6*

1Cátedras Conacyt, National Council on Science and Technology, Mexico City, Mexico, 2Center for Research in Geospatial

Information Sciences, Mexico City, Mexico, 3Clinical Research Division, National Institute of Cardiology “Ignacio Chávez”,

Mexico City, Mexico, 4 Institute for Security and Social Services of State Workers, Mexico City, Mexico, 5Computational

Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico, 6Center for Complexity Sciences,

Universidad Nacional Autónoma de México, Mexico City, Mexico

The fast, exponential increase of COVID-19 infections and their catastrophic effects on

patients’ health have required the development of tools that support health systems in the

quick and efficient diagnosis and prognosis of this disease. In this context, the present

study aims to identify the potential factors associated with COVID-19 infections, applying

machine learning techniques, particularly random forest, chi-squared, xgboost, and rpart

for feature selection; ROSE and SMOTE were used as resampling methods due to the

existence of class imbalance. Similarly, machine and deep learning algorithms such as

support vector machines, C4.5, random forest, rpart, and deep neural networks were

explored during the train/test phase to select the best prediction model. The dataset

used in this study contains clinical data, anthropometric measurements, and other health

parameters related to smoking habits, alcohol consumption, quality of sleep, physical

activity, and health status during confinement due to the pandemic associated with

COVID-19. The results showed that the XGBoost model got the best features associated

with COVID-19 infection, and random forest approximated the best predictive model with

a balanced accuracy of 90.41% using SMOTE as a resampling technique. Themodel with

the best performance provides a tool to help prevent contracting SARS-CoV-2 since the

variables with the highest risk factor are detected, and some of them are, to a certain

extent controllable.

Keywords: COVID-19, machine learning, feature selection, imbalanced data, predictive model

1. INTRODUCTION

The exponential growth of infections by COVID-19, a disease associated with the SARS-CoV-2
virus leads to a global death burden, impelling theWorld Health Organization (WHO) to declare it
a global pandemic (1). The virus can spread from an infected COVID-19 person to a healthy person
through physical contact, mucous contact, or airborne transmission (2). It can be transmitted
before starting showing symptoms or without ever developing symptoms at all. The COVID-
19 pandemic has wreaked havoc globally, causing an economic crisis, a sanitary emergency, and
confinement periods that affected people’s lifestyles, habits, and daily activities (3).
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Despite scientific advances in medicine, particularly the
development of vaccines and Reverse Transcription Polymerase
Chain Reaction (RT-PCR) tests to detect COVID-19, the
pandemic has not been adequately controlled yet (3, 4). A
timely and effective diagnosis remains crucial to save lives
and prevent the spread of infections. Machine learning, an
integral part of artificial intelligence, has been widely applied to
predict or diagnose diseases, improve treatment accuracy, detect
anomalies, and provide solutions to other aspects derived from
the healthcare domain (5).

Concerning COVID-19, machine learning models have been
developed to predict the risk of contracting the virus, indicating
the severity, the risk of death, and other predictive tasks
with great potential (6, 7). The timely and effective detection
of COVID-19 has become an essential task for healthcare
organizations since it may help decrease the deadly effect of
the virus and support the planning of care (8–10). In these
cases, machine learning models have been developed to assess
the prognosis or mortality risk in patients with COVID-19 (11),
for instance, used a Random Forest (RF) model to predict the
forecasts of patients with COVID-19; similarly, the Gini index
was used to identify the most critical variables (features) to assess
risk and indicate the prognoses of patients.

The study by Pourhomayoun and Shakibi (12) included a
dataset of 32 items related to demographic, physiological, and
laboratory data and developed a predictive model to determine
the health risk and also forecast the risk of mortality for patients
with COVID-19. The techniques used there were: Support
Vector Machines (SVM), Artificial Neural Networks (ANN),
RF, Decision Tree (DTs), Logistic Regression, and K-Nearest
Neighbor clustering (KNN). The ANN demonstrated the best
performance with an accuracy of 93.75%.

Further research (13) has made use of computational
intelligence methods to predict the daily total COVID-19
infections and deaths as observed during three lockdown
schemas (partial, herd, complete). The techniques used were RF,
K-NN, SVM, DTs, polynomial regression, Holt winter, ARIMA,
and SARIMA. Finally, the authors concluded that herd lockdown
is the best policy to control COVID-19.

In García-Ordás et al. (14), the authors studied the impact
between the nutrition of the different countries and the number
of deaths caused by COVID-19. They made clusters with K-
means by country according to the distribution of fat, energy,
and protein in 23 different types of food and the ingested
in kilograms. They found a relationship between high-fat
consumption and the highest death rates.

The study by Kenneth and So (15) presents the application
of an extreme gradient boosting algorithm (XGboost) to
predict mortality (AUC of 81.4%) and severity (72.3%)
among infected individuals. The authors used 97 clinical
features, specifically: demographic variables, comorbidities,
blood measurements, anthropometric measures, and other risk
factors (e.g., smoking/drinking habits).

The analysis by Sun et al. (16) also used XGboost to
predict COVID-19 severities achieving a mean micro-average
AUROC (area under the receiver operating characteristic curve)
of 97%. Moreover, a mean micro-average AUPR (area under the

precision-recall curve) of 94%, using 60 features (consisting of
19 proteins, 11 metabolites, seven lipids, and 23 mRNAs) was
also achieved.

In García-Ordás et al. (14), the authors studied the association
between the feed habits of the diverse nations and the number
of deaths caused by the illness. The authors used demographic,
clinical, physiological, and biochemical tests. The authors
proposed an application to detect critical features and faculties
of self-care in individuals with COVID-19 disease, and infectious
and internal medicine specialists selected the elements to
consider in self-monitoring. They concluded that interventions
encouraging healthy conduct are essential conditions of COVID
surveillance (17).

However, other known risk factors for illness and death from
COVID-19, associated with sleep disturbances, physical activity,
alcohol, metabolic syndrome, and poor diet were not included in
their analysis (18–22). In this stdy, we used a dataset related to
clinical and anthropometric parameters, biochemical screening,
sleep disturbances, physical activity, alcohol, diet, habits, and
health status during the confinement due to the COVID-19
pandemic (refer to Table 1). The primary purpose is to identify
the main features of the participants who contracted COVID-
19, based on their health history as registered and stored in
the Tlalpan 2020 project (23), and considering the follow-up
questionnaire to determine the most importable risk factors for
infection.

Identifying potentially modifiable lifestyle and risk factors
increasing the odds of infection during a novel pandemic (such
as COVID-19) is highly relevant since it will provide the health
policy authorities with further information to broaden the
spectrum of non-pharmacological interventions (NPI), perhaps
to include data-driven strategies to lower population risks (24–
27). NPIs are still relevant to preventing infections, despite the
advancement of population-level vaccination (and in the absence
of widespread targeted therapies to treat people already infected);
in particular, in the context of the surge of new SARS-CoV2
variants, some of which may potentially escape the effects of
current vaccines.

Indeed, the use of computational intelligence and data
analytics approaches for the vigilance and early survey of SARS-
CoV2 infection has been an extremely relevant topic during
the COVID-19 pandemic. Shabbir and collaborators (28) have
implemented a strategy based on exploratory data analytics
from diverse sources, coupled with telemonitoring and the use
of internet of things (29–31) to detect COVID-19 severity in
the context of smart hospitals (32–34). Also relevant is the
use of concepts from computational social science (ambient
intelligence, in particular) and again data from wearables (in
this case, smartwatches) to develop early warning alerts (35–
37). Several additional approaches to use machine learning
to prevent or warn in advance for COVID-19 are discussed
in the monographic review by Saeed et al. (38). The authors
present a survey of recent literature regarding invasive non-
invasive or non-contact technologies to detect, diagnose, and
monitor human activities (39–41), particularly those inducing
risks for COVID-19 infection or reflecting individuals with
related symptoms, such as irregular respiration, in an automated
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TABLE 1 | Dataset variables.

Variable Name Type

Age Age Numeric

Sex Sex Dichotomous

weight Weight Numeric

height Height Numeric

BMI Body mass index Numeric

waist Waist circumference Numeric

SBP Systolic blood pressure Numeric

DBP Diastolic blood pressure Numeric

Phyactmet Physical activity measured in

metabolic Equivalent of task

(METs)

Dichotomous

anxst State Anxiety Factor: range from 1 to 4

anxtr Trait anxiety Factor: range from 1 to 4

slpsnrr1 Snoring during sleep Factor: range from 1 to 5

slpsob1 Sleep short of breath or

headache

Factor: range from 1 to 5

slps3 Sleep somnolence Factor: range from 1 to 5

slpop1 Optimal Sleep Dichotomous

smk Smoking habit Dichotomous

EtOH_avg Frequency alcohol consumption Dichotomous

uric Uric acid Numeric

crea Creatinine Numeric

HDL High-density lipoprotein Numeric

LDL Low-density lipoprotein Numeric

glu Glucose Numeric

chol Cholesterol Numeric

trig Triglycerides Numeric

na1 Serum sodium Numeric

met_s Metabolic syndrome Dichotomous

wrk_f Outdoor work Dichotomous

wrk_h Home office Dichotomous

umplyd Unemployed Dichotomous

wrk_hsp Working in hospital Dichotomous

wrk_off Working in office Dichotomous

MaritStat Marital status (single or married) Dichotomous

cocr Worry for contagion of the

COVID-19

Factor: range from 0 to 2

trbslpt Sleep problems during

COVID-19 pandemic

Dichotomous

quislt Isolation during COVID-19

pandemic

Factor: range from 0 to 4

outli Outings limited during COVID-19

pandemic

Dichotomous

kpgoing Keep coming out with

precautionary measures

Dichotomous

phyact Physical activity during the

pandemic

Factor: range from 0 to 4

violence Domestic violence during

pandemic

Dichotomous

EtOH_q Frequency alcohol consumption

during pandemic

dichotomous

obsty Obesity Numeric

ovrw Overweight Numeric

(Continued)

TABLE 1 | Continued

Variable Name Type

smk_q Smoking during pandemic Dichotomous

anxdsr Anxiety during pandemic Dichotomous

hipert Hypertension during pandemic Dichotomous

news_f Listen to the news by the family Dichotomous

news_sn See to the news by social

networks

Dichotomous

news_tv Listen to the news on the

television or radio

dichotomous

lckd_hosp Hospitalization for COVID-19

infection

Dichotomous

COVID Diagnosis of COVID-19 Dichotomous

anxst is 1 = not at all, 2 = a little, 3 = quite, 4 = a lot.

anxtr is 1 = rarely, 2 = sometimes, 3 = frequently, 4 = usually.

slpsnrr1 is 1 = 100, 2 = 80, 3 = 60, 4 = 40, 5 = 20, 6 = 0, being the value of 100, the

bigger problem.

slpsobl is 1 = 100, 2 = 80, 3 = 60, 4 = 40, 5 = 20, 6 = 0, being the value of 100, the

bigger problem.

slps3 is 1 = 100, 2 = 80, 3 = 60, 4 = 40, 5 = 20, 6 = 0, being the value of 100, the

bigger problem.

cocr is 0 = not at all, 1 = a little, 2 = quite, 4 = a lot.

quislt is 1 = not at all, 2 = a little, 3 = quite, 4 = a lot.

phyact is 1 = not at all, 2 = a little, 3 = quite, 4 = a lot.

fashion. Additional advances along these lines can be found in the
studies by Kallel et al. (42), Conroy et al. (43), Pandey et al. (44),
and Khoa et al. (45), to name but a few remarkable studies.

Despite all these timely and worthy contributions, much
of these require special efforts, measurement devices, and
infrastructure that may not be available at a large scale in under-
developed or in-development economies. Even in medium-
to-high income countries such as Mexico and even in the
context of a large metropolis such as Mexico City there are
large disparities in health services that prevent such (somehow
sophisticated) strategies to be applied massively. In this regard,
the contributions of this study will be centered on providing
a machine learning approach to analyze relatively accessible
clinical and sociodemographic data available in most medium-
to-large hospitals (i.e., those that can treat most COVID-19
hospitalized cases), in order to provide clues for health officials
to monitor for risk factors in large populations. The conditions
needed for our analyses are thus of more broad applicability,
in particular in places with disparities in access to healthcare
services and appliances.

This article is organized as follows: In Section 2, the materials
and methods are introduced. In Section 3, computational
experiments’ performance is shown and results are presented. A
discussion (Section 4) and some concluding remarks are given
(Section 5), also some ideas on the implications for future studies
are outlined.

2. MATERIALS AND METHODS

2.1. Data
The dataset comprised in this research was acquired from the
Tlalpan 2020 study (23), a cohort at the National Institute
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of Cardiology in Mexico (Instituto Nacional de Cardiología-
Ignacio Chávez, INC-ICh) [IRB approval code 13-802]. Data
was collected from the baseline of 714 healthy adult residents
of Mexico City between 20 and 50 years old. Also, a follow-
up survey to know participants’ habits and health status
during confinement due to the COVID-19 pandemic; a total
of 218 participants confirmed having contracted the COVID-
19 infection. It is essential to mention that all participants gave
written informed consent.

This dataset includes health variables that are related
to anthropometric measurements and clinical parameters,
biomedical tests, other factors such as smoking habit, alcohol
consumption, physical activity, psychological stress level, sleep
disorders, dietary as well as habits, and health status during the
confinement due to pandemic associated with COVID-19 (refer
to Table 1). Also, it is essential to mention that the dataset is
imbalanced; this scenario is expected in medical diagnoses for
detecting illnesses (46).

2.1.1. Anthropometric Measurements and Clinical

Parameters
The International Society for the Advancement of
Kinanthropometry (ISAK) policies (47) declare necessary
measurements with the patient fasting, particularly the weight,
height, and waist circumference. The ratio between weight and
height to the square is the BMI, and the ratio of waist and height
is the WHtR in cm. Another registration is the blood pressure,
specifically systolic (SBP) and diastolic (DBP); therefore, the
record consists of the average of three measures with a 3-min gap.
The JNC7 standard procedure defines the hypertension status
when SBP ≥ 140 mm Hg, a DBP ≥ 90 mm Hg, or both (48).

2.1.2. Biochemical Tests
The records for the screen test consist of measuring fasting
plasma glucose (FPG), triglycerides (TGs), and high-density
lipoprotein-cholesterol (HDL-C) in blood after 12 h of overnight
fasting at the Central Laboratory of INC-ICh.

2.1.3. Additional Risk Factors
(1) The classification for the smoking practice is as a never,

retired or present smoker.
(2) In the case of alcohol consumption, the category is a present

drinker or not; the number of drinks (cups or beers) and
frequency is another registration.

(3) The extended version of the International Physical
Activity Questionnaire, IPAQ (49) measures the physical
conditioning, through the activity in METs (metabolic
equivalents)-minutes/week, and the categories are low,
moderate, and high, via questions concerning four
occupations: work, home, transportation, and leisure time.

(4) Psychological stress level was determined by the State-Trait
Anxiety Inventory (STAI) categorized into five categories
high-level anxiety (>65), moderate-high anxiety (56–65),
medium anxiety (46–55), minor anxiety (36–45), and low-
level anxiety (<35) (50, 51).

In the case of (5) sleep disorders, the Medical Outcomes Study-
Sleep scale of 12 items was measured (52, 53).

2.1.4. Habits and Health Status During the

Confinement Due to the COVID-19 Pandemic
The following habits and health status during confinement due to
the COVID-19 pandemic were collected.

(1) Workplace during pandemic (wrk_f, wrk_h), (2) Degree
of concern about COVID-19 (cocr), (3) Isolation level during the
pandemic (quislt, outli, kpgoing), (4) Diseases and comorbidities,
(5) Situations of family violence during the pandemic (violence),
(6) Media consulted for news about the pandemic (news_f,
news_sn, and news_tv), (7) Diagnosis of COVID-19 (COVID),
(8) Recovery place COVID-19 (lckd_hosp), (9) Cigarettes
consumed per day (smk_q), and (10) Diagnosis of hypertension
(hipert) and (11) physical activity during the pandemic (phyact),
which was defined by exercising at least three times per week for
at least 30 min per session according to the minimum guidelines
by American College of Sports Medicine (54).

2.2. Methods
Figure 1 illustrates a general representation of the prediction
model and describes the methodology applied, where we used
the data that the participants have provided to the Tlalpan 2020
project (physical activity, dietary, sleep disorders, smoking habit,
alcohol consumption, psychological stress, biochemical test, and
anthropometric) in visits and follow-ups, as well as the data from
the follow-up questionnaire carried out during the COVID-19
lockdown.

Moreover, we used the National Cholesterol Education
Program Adult Treatment Panel III criteria to classify
participants with metabolic syndrome (MetS). From the
follow-up questionnaire, it was possible to extract the habits and
health status and positive COVID-19 infections from the same
participants.

Once the dataset was conformed, we applied feature selection
methods (Chi-squared, random forest, rpart, and Xgboost)
to obtain the essential variables. Subsequently, we performed
a correlation coefficient analysis to determine irrelevant and
redundant features to create a new subset of features that contains
the best features obtained by each method. The dataset was
divided into two-thirds for the training and one-third for testing.
Consequently, we applied data balancing methods such as over-
sampling, under-sampling, and synthetic minority oversampling
technique (SMOTE) to change the class distribution in the
training dataset.

In this study, we applied four machine learning models:
random forest, CART, C4.5, XGBoost, as well as deep neural
networks, based on their high performance to diagnose COVID-
19 (11, 55–57). To evaluate each model we made 30 executions
with different seeds. Subsequently, we evaluated themodels based
on the following performance measures: sensitivity (SENS),
specificity (SPC), accuracy (ACC), balanced accuracy (B.ACC),
and the geometric mean (G-means); these last two metrics have
been used for imbalanced data learning assessment (58). Finally,
an optimized predictive model was obtained.

2.2.1. Data-Balancing Methods
The data-balancing methods improve the performance of
machine learning models when the class distribution in a dataset
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FIGURE 1 | Prediction model.

is not equal. Models have a better performance in the majority
class and a higher misclassification rate in the minority class
(59). For this reason, we used two-hybrid methods, the function
Random Over-Sampling Examples (ROSE) from the ROSE
package (60) and SMOTE from performanceEstimation package
(61), to change the class distribution in the training dataset.

Datasets related to COVID-19 have imbalanced data (62);
some studies declare the improvement of machine learning
methods applying SMOTE technique (63–66) and a novel variant
of SMOTE (67), also ROSE is used (68).

2.2.2. Correlation Coefficient Analysis
The correlation coefficient analysis allows the feature selection
procedure to measure the relationship between the dataset
variables. The range of correlation values is between -1 and 1,
indicating the relationship’s dependency on the variables. To
make this process, we used Pearson correlation, with a correlation
coefficient threshold of 0.5, as defined by Equation 1 (69):

pcc(u, u′) =
∑

i∈I(ru,i − ru)(ru′ ,i − ru′ )
√

∑

i∈I(ru,i − ru)2
√

∑

i∈I(ru,i − ru′ )2
, (1)

where ru,i and ru′,i are the contribution scores, and also ru and ru′

are the average assortments.

2.2.3. Chi-Square
Chi-square is a statistical test –based on the eponymous statistic
and distribution– commonly used in machine learning to rank
variables and support the feature selection process (70). Given a
feature f and the class c (f , c as complements), the chi-squared
could be computed as follows:

X2 =
k

∑

i=1

(xi −mi)
2

mi
(2)

where k is the number of classes, xi is the frequency of occurrence
in class i, and themi is the expected frequency for the same class.

2.2.4. ANOVA
Another method used to rank the importance of continuous
variables was the analysis of variance (ANOVA), which is a
family of statistic tests applied to compare if the means of two
or more samples are significantly different. ANOVA tests can be
implemented for feature selection (71), in this study, we used
ANOVA f-tests to estimate the ranks of features.
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2.2.5. Random Forest
Random forest developed by Breiman (72), is an ensemble
machine learning algorithm consisting of multiple randomized
decision trees. This algorithm is able to derive the importance
score for each variable via statistical permutation tests, both
methods correlate adequately (73). Hence, in this study, we
calculated the variable importance through the second method
using the Gini Index, computed by the equation:

VI =
(

Xj

)

=
1

ntree

[

1−
ntree
∑

k=1

Gini(j)k

]

(3)

where ntree is the number of trees.

2.2.6. Classification and Regression Trees
Classification and regression trees (CART) is the name of a family
of Decision Tree inference methods that are algorithmically
based on either classification or regression. The actual nature
of the inference task (classification, regression, clustering-based,
or a combination) depends on the type of data available. CART
has grown up to be a robust suite of methods, able to deal
with mixed data types for which optimized data pre-processing
schemes (discretization, normalization, etc.) are available thus
expanding the original scope of decision tree inference methods.
This algorithm is implemented in the rpart package (74) and uses
the Gini Index (as defined by Equation 3) to split each node and
allow for optimized feature selection.

2.2.7. C4.5
Themachine learning algorithmC4.5 developed by Quinlan (75),
builds a decision tree using recursive partitions. Similarly, it
applies the gain ratio to select the attribute to split the tree. The
gain ratio can be calculated by the following equations:

Entropy H(S) = −
m

∑

i=1

pi log2pi (4)

where S is a set of the data samples distributed on m distinct
classes, pi is the probability of samples that belongs to the class.

2.2.8. Extreme Gradient Boosting
The extreme gradient boosting (XGBoost) proposed by Chen and
Guestrin (76) is an ensemble machine learning method based on
the tree boosting algorithm that can obtain a predictive model
with high accuracy and calculates feature importance.

2.2.9. Support Vector Machines
Support vector machines introduced by Bose et al. (77) is a
supervised machine learning algorithm. SVM uses mathematical
functions (kernels) to take training data as the input space and
transform it into an upper dimensional space (feature space),
where it aims to obtain a maximum margin hyperplane that
divides the data between classes. In this research, we used the
linear kernel SVM approach.

2.2.10. Performance Measures
Each model was evaluated using B.ACC, SENS, SPC (78), and
G-means performance evaluation metric to determine their
predictive performance, customarily defined as follows:

SENS =
TP

TP + FN
(5)

SPC =
TN

FP + TN
(6)

ACC =
TP + TN

P + N
(7)

B.ACC =
(

1

2

) (

TP

P
+

TN

N

)

(8)

G−means =
√
SENS ∗ SPC (9)

Where P = Positive, N = Negative, TP = True Positive, FN =
False Negative, TN = True Negative, and FP = False Positive,
respectively.

2.2.11. Deep Learning
The basis for improving deep learning is ANN, which works
within the association among multiple hidden layers to train and
obtain features for the final model (79). The implementation
used here is carried out by the library Keras (80) in Python,
particularly applying the sequential model; it implies that the
ANN is designed by layer.

The input for the network conforms to the number of
the established characteristics; then, a convolutional layer is
connected with a dimension of 16, after a flattening process is
made; the second layer is dense in eight dimensions; finally, a
dense network of a single output is obtained; and the activation
function is a sigmoid. For the training process, the essential
parameters are Adam’s optimizer, 2,500 epochs, and a batch size
of 100. The selected parameters and architecture are according to
proof of better achievement.

3. EXPERIMENTAL SETUP

Themachine learning algorithms were executed using R platform
3.6.1 with RStudio and the following packages: FSelector
(81), caret (82), randomForest (83), rpart (84), ROSE (60),
performanceEstimation (61), xgboost (85), and Matrix (86). In
the case of deep learning, we used the Python programming
language.

The computer equipment used was a Workstation Dell, Core
Intel(R) Xeon(R) with 32 GB of RAM and 3.50 GHz processor
speed, and Windows as an operating system. The computational
resources in studies using machine learning applied to help
manipulate data about COVID-19 are various and similar to
those presented here. Rasheed et al. (87) used 32 GB in RAMwith
a processor of 3.40 GHz, even when they employed chest images;
other works needed a GPU (graphic processor unit) (88). Also,
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TABLE 2 | Results of the feature selection process.

RF Chi-squared ANOVA Xgboost rpart Correlation coefficient Consensus set

BMI Cocr Weight BMI BMI Weight BMI

Waist Quislt BMI Glu Cocr Waist Cocr

Weight Ovrw Waist Cocr Quislt BMI Quislt

Uric Outli SBP HDL Trig Uric

Trig DBP Quislt Waist HDL

HDL Uric Trig HDL Trig

LDL Age EtOH_q Age

DBP Slps3 Workf Glu

Age LDL Ovrw SBP

crea Crea Glu EtOH_q

SBP SBP smk Slps3

Glu Phyactmet DBP

Chol EtOH_q Weight

Height Uric

specific studies operate a quantum computer (89), and others
utilized fewer resources in processor (2.8 to 3.2 GHz) and RAM
(8 or 12 GB) (90–92).

4. RESULTS

The first step was to obtain the essential variables of the dataset
by applying RF, chi-squared, xgboost, and rpart. Table 2 shows
a list of these features sorted in descending order. Similarly, a
correlation coefficient analysis was carried out to determine how
strong the relationship between the features is.

Figure 2 displays the graphic correlation coefficient of
features, where it was possible to identify the statistical
dependency structures. The results of this process indicated
that weight, waist, BMI, and height were strongly correlated
as expected. A fifth subset (consensus set) was created by
summarizing the effects of the essential variables, comprising
the best features obtained by each method; nevertheless, highly
correlated variables were eliminated to avoid colinearity.

As shown in Table 2, only the BMI feature remains in the
consensus set unlike weight, waist, and uric, which appear in the
previous subsets. Each subset of features was tested to find which
subset gives the best performance.

In order to choose the best subset of features, we made 30
independent executions using each machine learning algorithm
(rpart, C4.5, RF, and SVM) with different seeds, considering the
metrics presented in the performance measures section B.ACC
is the primary metric to consider. Similarly, it was needed to
use balancing methods (SMOTE and ROSE) with each algorithm
since a class imbalance in the dataset affected the performance of
the algorithms.

In the case of rpart, RF, and SVM, it was necessary to perform
a pre-execution for parameter tuning. For tuning RF, the value of
the ntree parameter varied between 100 and 1,000, and the mtry
was varied between 1 and 10. In all cases, the grid search method
introduced by Hsu et al. (93) was applied. Similarly, we used

10-fold cross-validation with ten replays in the training process
and ensured the different proofs of the diversity partition of data.

Table 3 displays each classifier’s results filtered by applying
SMOTE as a balancing method, the average of the 30 executions,
and the standard deviation (SD). The highest average result of
each classifier in B.ACC is highlighted in bold.

As shown in Table 3 three classifiers got the best performance
using the subset generated by Xgboost. Then, RF has the
more remarkable achievement in balanced accuracy (B.ACC) of
90.41% and SD of 1.05. Followed by 80.61% in B.ACC and 3.03
in SD using rpart. The third place is the C4.5 model (B.ACC
= 85.25% and SD = 2.35). The model obtained by SVM shows
a better result through the rpart subset obtained; however, the
performance is not the highest; the metrics are B.ACC = 72.81%
and SD= 0.93.

Table 4 shows the results using ROSE as a balancing method,
where the SVM with the subset of features obtained by rpart
achieved the best performance, reaching a B.ACC of 73.11%
and SD of 0.0140. Nevertheless, the results obtained with ROSE
do not improve in comparison with the results obtained with
SMOTE.

The worst performance was obtained by the deep learning
model since the sensitivity is low (refer to Table 4), which may be
due to the number of existing patient records since the capacity
of neural networks with a more significant amount of data has
been demonstrated. Therefore, according to the metrics results
obtained by the machine learning classifiers, it was feasible to
determine the most suitable model and the main characteristics
of participants who contracted COVID-19.

The finest model was RF with a ntree of 200 and a mtry of
3, and the subsequent attributes obtained by Xgboost: BMI, glu,
cocr, HDL, quislt, trig, age, slps3, LDL, crea, SBP, phyactmet,
EtOH_q, and weight. These relevant features are firmly related
to COVID-19 infections, such as the consumption of alcoholic
drinks (94–96), sleep disorders (97), BMI (98–100), age (101,
102), and physical activity (103).
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FIGURE 2 | The correlation coefficient of the continuous variables of the dataset.

5. DISCUSSION

It is interesting to notice that even though computational
intelligence and machine learning approaches at the level
presented here are not able to provide any mechanistic nor semi-
mechanistic explanation of the underlying phenomena behind

their predictions; since this is not the goal for which they were
designed.

These tools can be used however to perform timely predictions
based on the data. These predictive models can thus be used
by decision makers and public health authorities for the design
and implementation of policy and actionable measures that are
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TABLE 3 | Feature selection results (SMOTE).

Classifier Parameters Filter Balancing method B.ACC (%) Sensitivity (%) Specificity (%) G-means (%) PosPred NegPred

Value (%) Value (%)

rpart q = 0 RF Smote 78.68 78.45 78.92 78.62 90.07 60.43

±2.69 ±4.49 ±3.71 ±0.27 ±1.62 ±4.86

rpart q = 0 chi-squared Smote 78.20 85.98 70.43 70.43 87.68 67.61

±2.90 ±3.07 ±5.84 ±5.84 ±2.05 ±4.72

rpart q = 0 xgbost Smote 80.61 86.91 74.30 80.24 89.26 70.30

±3.03 ±3.27 ±6.63 ±3.26 ±2.41 ±4.63

rpart q = 0 rpart Smote 79.89 85.74 74.03 79.60 88.98 68.29

±3.12 ±2.94 ±5.61 ±3.27 ±2.16 ±4.99

rpart q = 0 bst Smote 79.03 87.09 70.97 78.49 88.04 69.48

±3.63 ±2.73 ±7.28 ± 3.99 ±2.61 ±4.62

C4.5 RF Smote 82.13 80.40 83.87 82.10 92.40 63.84

±1.58 ±2.45 ±2.43 ±1.59 ±1.03 ±2.85

C4.5 chi-squared Smote 84.60 90.75 78.44 84.33 91.15 77.80

±2.25 ±1.70 ±4.55 ±2.41 ±1.68 ±3.16

C4.5 xgbost Smote 85.25 88.34 82.15 82.15 92.36 74.53

±2.35 ±2.63 ±3.81 ±3.81 ±1.54 ±4.36

C4.5 rpart Smote 83.29 89.80 76.77 82.99 90.42 75.78

±2.03 ±2.46 ±3.87 ±2.14 ±1.42 ± 4.16

C4.5 bst Smote 71.87 72.28 71.47 71.84 68.50 75.08

±2.60 ±3.44 ±3.16 ±2.61 ± 2.73 ± 2.70

RF mtry = 3

ntree = 200

RF Smote 85.07 83.09 87.04 85.04 93.98 67.94

±1.05 ±1.64 ± 0.99 ±1.06 ± 0.47 ±2.20

RF mtry = 3

ntree = 200

chi-squared Smote 88.97 93.53 84.41 88.85 93.60 84.37

± 0.69 ±1.34 ±1.15 ± 0.69 ± 0.41 ±2.68

RF mtry = 3

ntree = 200

xgboost Smote 90.41 94.86 85.97 90.30 94.28 87.36

±1.05 ±1.27 ±1.75 ± 1.07 ± 0.67 ±2.76

RF mtry = 3

ntree = 200

rpart Smote 87.78 92.38 83.17 87.65 93.05 81.88

± 1.09 ±1.55 ± 1.88 ± 1.10 ± 0.71 ±3.07

RF mtry = 3

ntree = 200

bst Smote 88.85 92.49 85.22 88.77 93.85 82.42

± 1.16 ±1.42 ± 1.85 ±1.18 ±0.73 ±2.73

SVM k = linear

c = 1, g = 0.01

RF Smote 52.12 43.75 60.48 51.35 72.94 30.64

± 2.37 ± 3.53 ± 4.42 ±2.36 ± 2.35 ±1.69

SVM k = linear

c = 1, g = 0.01

chi-squared Smote 69.44 76.47 62.42 69.05 83.21 52.34

± 1.30 ± 3.23 ± 2.12 ±1.21 ± 0.65 ±3.05

SVM k = linear

c = 1, g = 0.01

xgboost Smote 65.45 67.68 63.23 65.39 81.77 44.58

±1.55 ± 2.08 ± 2.73 ± 1.59 ±1.11 ± 1.71

SVM k = linear

c = 1, g = 0.01

rpart Smote 72.81 81.59 64.03 72.27 84.68 58.86

± 0.93 ± 1.41 ± 1.54 ± 0.96 ± 0.55 ±1.77

SVM k = linear

c = 1, g = 0.01

bst Smote 62.53 63.44 61.61 62.46 80.12 40.93

±1.42 ±2.61 ± 3.45 ± 1.43 ± 1.19 ±1.41

Bold value indicates the highest value achieved by each of the models in the balanced accuracy metric.

especially needed in critical times such as the ones presented by
the global COVID-19 pandemic.

Hence, even though it is quite likely that the selected
features are indeed proxies for the actual (unknown and
likely unmeasured) determinants of infection; they present an
important opportunity since many of them are actionable (either
controllable or measurable).

Take for instance the selected features in the Consensus
set. As presented in Table 2, the set consists of 11 features:

body mass index (measurable and to some extent controllable),
worry for COVID-19 contagion (measurable, or more properly,
surveyable and to a certain extent controllable), isolation
during the COVID-19 pandemic (measurable and controllable),
uric acid levels (measurable and to some extent controllable),
HDL levels (measurable and to some extent controllable),
triglycerides levels (measurable and to some extent controllable),
age (measurable), glucose levels (measurable and to some
extent controllable), Systolic Blood Pressure (measurable and
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TABLE 4 | Feature selection results (ROSE).

Classifier Parameters Filter Balancing method B.ACC. (%) Sensitivity (%) Specificity (%) G-means (%) PosPred NegPred

Value (%) Value (%)

rpart q = 0 RF ROSE 58.03 92.09 23.97 41.65 74.77 72.99

±4.80 ±18.2 ±18.0 ±14.3 ±2.28 ±23.2

rpart q = 0 chi-squared ROSE 61.77 86.40 37.15 55.81 77.18 53.33

±4.41 ±6.22 ± 11.68 ±6.97 ±2.85 ±7.13

rpart q = 0 xgbost ROSE 60.55 87.77 33.33 53.76 76.26 52.59

±3.46 ±2.18 ±7.01 ±5.74 ±1.86 ±6.49

rpart q = 0 rpart ROSE 61.43 85.56 37.31 55.66 77.04 51.81

±4.21 ±5.98 ±11.38 ±7.05 ±2.68 ±7.07

rpart q = 0 bst ROSE 59.77 89.86 29.67 50.45 75.79 56.59

±3.95 ±4.79 ±10.68 ±9.36 ±2.17 ±10.80

C4.5 RF ROSE 57.27 78.04 36.51 48.00 75.17 48.96

±3.64 ±22.74 ±21.51 ±10.01 ±2.30 ±14.65

C4.5 chi-squared ROSE 66.10 85.92 46.29 62.13 79.85 0.5938

±3.99 ±7.71 ±12.74 ±6.52 ±2.99 ±8.90

C4.5 xgbost ROSE 62.44 90.95 33.92 54.95 77.12 63.13

±2.26 ±5.01 ±8.60 ±5.34 ±1.59 ±9.19

C4.5 rpart ROSE 67.46 92.56 42.37 62.16 79.72 72.61

±3.54 ±4.92 ±8.81 ±5.82 ±2.08 ±11.21

C4.5 bst ROSE 61.81 91.15 32.47 53.79 76.74 64.11

±2.44 ±5.80 ±8.14 ±5.58 ±1.44 ±12.64

RF mtry = 3

ntree = 200

RF ROSE 51.65 50.99 52.31 48.73 71.70 31.38

±4.31 ±18.89 ±15.62 ±6.30 ±4.01 ±4.80

RF mtry = 3

ntree = 200

chi-squared ROSE 65.43 83.93 46.94 60.89 79.77 61.04

±4.16 ±12.29 ±15.95 ±8.47 ±3.07 ±14.25

RF mtry = 3

ntree = 200

xgboost ROSE 64.33 94.08 34.58 56.92 58.97 85.57

±1.91 ±1.74 ±4.19 ±3.24 ±2.72 ±3.23

RF mtry = 3

ntree = 200

rpart ROSE 64.66 92.23 37.08 58.38 59.43 82.85

±1.81 ±2.05 ±4.17 ±2.95 ±2.74 ±3.47

RF mtry = 3

ntree = 200

bst ROSE 64.56 93.78 35.34 57.42 59.19 85.30

±2.12 ±2.18 ±4.88 ±3.56 ±2.93 ±3.69

SVM k = linear

c = 1, g = 0.01

RF ROSE 57.55 58.28 56.83 57.10 76.71 36.18

±2.83 ±8.20 ±7.42 ±2.94 ±2.08 ±3.26

SVM k = linear

c = 1, g = 0.01

chi-squared ROSE 68.97 78.32 59.62 68.02 82.64 53.83

±1.86 ±6.32 ±7.16 ±2.50 ±1.60 ±4.70

SVM k = linear

c = 1, g = 0.01

xgboost ROSE 65.47 68.52 62.42 65.40 81.68 45.19

±1.49 ±5.59 ±5.05 ±5.31 ±1.17 ±2.93

SVM k = linear

c = 1, g = 0.01

rpart ROSE 73.11 79.93 66.29 72.63 85.32 58.08

±1.40 ±4.74 ±5.36 ±1.58 ±1.45 ±4.23

SVM k = linear

c = 1, g = 0.01

bst ROSE 65.54 69.03 62.04 65.20 81.67 45.51

±1.45 ±6.03 ±5.80 ±1.45 ±1.36 ±3.17

Deep learning RF 61.52 24.02 99.01 47.83 55.60 77.82

± 2.53 ±5.46 ± 6.00 ± 9.55 ± 4.38 ± 1.11

Deep learning chi-squared 61.35 31.26 91.45 53.31 57.90 78.17

±2.08 ±4.65 ±1.86 ±3.59 ±5.17 ±1.08

Deep learning xgboost 63.19 30.86 95.53 54.22 73.03 78.80

±1.42 ±2.91 ±2.05 ±2.41 ±7.85 ±6.57

Deep learning rpart 65.80 34.36 97.39 57.77 83.10 79.97

±1.69 ±3.56 ±6.05 ±2.99 ±3.06 ±8.35

Deep learning bst 63.89 29.77 98.01 53.85 84.72 78.97

± 2.31 ±4.59 ±0.77 ±4.25 ±5.16 ±1.08

Bold value indicates the highest value achieved by each of the models in the balanced accuracy metric.
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to some extent controllable), frequency of alcohol consumption
during the pandemic (surveyable and controllable), and sleep
somnolence (surveyable). Similar remarks can be made about
most other features selected by the diverse approaches used in
this study.

Several of these features have been of course analyzed
in the context of disease severity, once the individuals are
already infected, but the role they may be playing or their
potential associations with the infection itself, have been less
discussed in the literature with some remarkable exceptions
regarding BMI (104, 105), HDL (106, 107), age (108),
alcohol consumption (109), and somnolence (110), among
others.

In a nutshell, even if the actual risk factors are not the
features selected by our machine learning algorithm, these
are likely either a combination of those features selected
or a statistically dependent set of these. In either case, it is
likely that by controlling/modifying these issues, COVID-
19 infections may become intervened. Hence, knowing
these variables, that in the end predicted with very high
sensitivity and specificity COVID-19 infections in an urban
population of a large metropolitan area such as Mexico
City, may provide some opportunities for interventional
policy.

A number of these featured variables for instance are related
to metabolism, food consumption, exercise habits, and lifestyle.
Though these issues are not easily modifiable in the short run,
public health interventions can be made to address them in a
medium to a long time.

However, since these indicators are measurable or surveyable,
this opens the possibility to implement policy measures to
protect high risk individuals (HRIs). For instance, HRIs can
be prioritized to work from home or they can be tested
more often, etc. Indeed, the data-driven design of non-
pharmaceutical interventions to alleviate the burden caused by
COVID-19 infections has been discussed recently in diverse
contexts including social contact structure, human mobility, and
environmental constraints (24–27).

In fact, in recent times, it has been consistently discussed how
machine learning approaches may be extremely valuable tools for
the design of public health policy (111, 112). This is particularly
true for the management of infectious diseases, both in the
clinical decision and primary care (113, 114), epidemiological
surveillance (115), social perception (116), and policy making
levels (117–119).

In particular, feature selection approaches to risk assessment
of infectious diseases have been successfully applied in the case of
tuberculosis (120), zika (121), dengue (122), clostridium difficile
(123), HIV (124), and even COVID-19 (125, 126). These previous
efforts have shown the advantages of these approaches as reliable
tools for epidemic outbreak prevention and containment.

In the particular case of the present study, we can highlight the
fact that the features selected are not only measurable/surveyable
but are actually relatively easy to measure. Indeed, measurements
and surveys are low cost, easily manageable, and highly scalable.
These characteristics are relevant in the context of the actual
implementation of the predictivemodels here presented to design

policy and implement actions to tackle a challenging situation
such as the COVID-19 pandemic.

6. CONCLUSION

Machine learning algorithms have played a critical role in
the diagnostics and containment of the COVID-19 pandemic
since, through multivariate methods, these tools may provide
an overview of the association between various factors and
their relationship regarding potential risk factors for infection,
unveiling hidden patterns that may result essential for the proper
implementation of public health policy.

In the approach followed in this study, we have implemented
and bench-marked several state of the art feature selection
methods on a dataset obtained in real time over a well-
studied cohort consisting of adults of both sexes living in the
metropolitan area of Mexico City. We believe that some of
our results, aside from being useful in our socio-geographical
context, maybe somehow generalizable to other similar urban
populations.

We are confident that embracing data-driven policy designs
may further contribute to faster, targeted interventions to cope
with current and future challenges to public health, such as the
case of the COVID-19 pandemic.
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