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Despite intracardiac malformation correction, children with Tetralogy of Fallot (TOF)
may still suffer from brain injury. This cross-sectional study was primarily designed to
determine the relationship between blood oxygenation level-dependent (BOLD) signal
changes after surgery and cognition in school-aged children with TOF. To evaluate
the differences between TOF children (n = 9) and healthy children (n = 9), resting-
state functional magnetic resonance imaging (rs-fMRI) and the Wechsler Intelligence
Scale for Children–Chinese revised edition (WISC-CR) were conducted in this study.
The results showed that TOF children had a lower full-scale intelligence quotient (FSIQ,
95.444 ± 5.354, p = 0.022) and verbal intelligence quotient (VIQ, 92.444 ± 4.708,
p = 0.003) than healthy children (FSIQ = 118.500 ± 4.330;VIQ = 124.250 ± 4.404),
and that significant differences in regional homogeneity (ReHo) and amplitude of
low-frequency fluctuation (ALFF) existed between the two groups. Besides, VIQ had
significantly positive correlations with the decreased ALFF value of the middle inferior
occipital gyrus (MIOG, beta = 0.908, p = 0.012) after fully adjusting for all covariates. In
addition, elevated ReHo values of the left and right precuneus were positively related to
ALFF in the MIOG. This study revealed that brain injury substantially influences neural
activity and cognition in postoperative TOF children, providing direct evidence of an
association between BOLD signal changes and the VIQ and prompting further attention
to language development in TOF children.
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INTRODUCTION

Tetralogy of Fallot (TOF) is one of the most common cyanotic
congenital cardiac malformations (Diaz-Frias and Guillaume,
2020), accounting for approximately 5% of all congenital heart
diseases (CHDs) (Apitz et al., 2009). TOF is characterized
as a ventricular septal defect (VSD), aortic overriding, right
ventricular outflow tract obstruction, and right ventricular
hypertrophy (Warnes et al., 2008), and patients with TOF exhibit
a decrease in systemic vascular resistance and an increase in
pulmonary resistance, which leads to a right-to-left shunt in
combination with a VSD and an obvious decrease in saturation
(Ho et al., 2018). Less than 1% of patients survive to 40 years old
naturally (Ai et al., 2018), but nearly 90% of patients with early
diagnosis and surgical treatment will go on to survive (Hickey
et al., 2009); however, adverse outcomes can still occur many
years after cardiac surgery, including heart failure, arrhythmia,
and right ventricular outflow tract reobstruction (Apitz et al.,
2009). Notably, brain injury is still a non-negligible issue that
persistently negatively influences survivors (Gaynor et al., 2015).

Brain injury among repaired TOF cases has recently been
reported, for which children with multiple cerebral domain
injuries to areas such as the cortex, basal ganglia, thalamus, and
cerebral white matter account for nearly a fifth of cases (Hovels-
Gurich et al., 2006; Leonetti et al., 2019). Moreover, many
studies have shown that children with cerebral injuries usually
have neurodevelopmental disabilities, which may manifest as
cognitive impairment, oral dyskinesia, language expression
abnormalities, motor delays, or attention deficit/hyperactivity
disorder (ADHD) (Marino et al., 2012; Mussatto et al., 2014;
Wernovsky and Licht, 2016). Although it is thought that
human neurodevelopment is almost complete at the end of
the second or third trimester of pregnancy, recent studies
have shown that cortical neurogenesis is still active after birth
(Morton et al., 2017; Ortinau et al., 2018), and that children
with CHDs have delayed brain development (Clouchoux et al.,
2013). Thus, early detection and intervention could afford
greater neurodevelopmental benefits for children with CHDs.
Fortunately, functional magnetic resonance imaging (fMRI) has
been applied to identify neurodevelopmental disabilities more
accurately (Ma et al., 2020).

Two blood oxygenation level-dependent (BLOD) fMRI
signals, regional homogeneity (ReHo) and the amplitude of low-
frequency fluctuations (ALFFs) (Zang et al., 2004, 2007), have
been widely used to investigate the pathophysiology, diagnosis,
and treatment effectiveness of cognitive disorders (Ni et al., 2016;
Bak et al., 2018; Gur et al., 2021) and neuropsychiatric disorders,
such as depression (Liu et al., 2012), schizophrenia (Guo et al.,
2014; Xu et al., 2015), epilepsy (Maneshi et al., 2014), Alzheimer’s
disease (Liu et al., 2014; Lyu et al., 2021), and Parkinson’s disease
(Helmich et al., 2010; Li et al., 2018; Yue et al., 2020). ReHo
reflects regional functional connectivity or synchronization and
indicates the regional integration of information processing (Zuo
et al., 2013; Jiang et al., 2015). ALFF is a method of monitoring
low-frequency brain spontaneous activity and blood oxygen
levels, which indicates the spontaneous activity of brain regions
(Zang et al., 2007).

However, there was no research on ReHo and ALFF changes
in TOF or CHD and the influence of ReHo and ALFF changes
on the cognitive abilities of children following TOF repair
surgery remains to be elucidated. Our study explored ReHo and
ALFF fMRI changes, evaluated the cognitive abilities of TOF
children, and further identified the relationship between them.
Interestingly, the results revealed that decreased ALFF values in
the left middle inferior occipital gyrus are correlated with a lower
verbal intelligence quotient (VIQ).

MATERIALS AND METHODS

Subjects
From November 2015 to June 2016, 9 school-aged children with
TOF after repair surgery were validated as participants, and 9
healthy children (HC), identified as having no cardiovascular or
nervous system diseases and matched with the TOF children
by age, sex, and education, were enrolled as the control group.
All TOF children underwent correction surgery at Children’s
Hospital of Nanjing Medical University and were identified
to be free of central nervous system diseases or hereditary
syndromes, such as craniocerebral trauma, cerebral tumors,
or Down syndrome. Informed consent was obtained from
all the participants’ legal guardians. All children were right
handed and had no known contraindications to MRI, including
claustrophobia and implanted pacemakers. Finally, all 18
children underwent resting-state fMRI (rs-fMRI) examination.
Additionally, all data met the standards for further analysis: All
participants completed all testing tasks of Wechsler Intelligence
Scale. The results need not to be calculated by alternative subtests.
All children were requested to keep their eyes closed and avoid
sleeping, thinking about anything, or any head motion as far as
possible (less than 1 mm of translation or 1◦ of rotation) during
the MRI scanning.

Cognitive Ability Evaluation
The Wechsler Intelligence Scale for Children–Chinese revised
edition (WISC-CR) was used to evaluate the cognitive abilities
of the subjects. The WISC is an authoritative intelligence scale
to assess the cognitive ability of children (Marino et al., 2012).
Based on the Chinese population, the WISC-CR was adaptive for
Chinese children aged 6–16, and the test contains 12 domains,
including analogies, common sense, arithmetic, comprehension,
vocabulary, digit span, picture arrangement, missing picture
completion, block design, decoding, object collocation, and
mazes (of these, digit span and mazes are optional). According
to the operating manual and adjusted for the subject’s age,
the subjects’ scores were calculated. The VIQ depended on the
first six items, and the performance intelligence quotient (PIQ)
depended on the last six items. Finally, the full-scale intelligence
quotient (FSIQ) was measured.

Functional Magnetic Resonance Imaging
Data Acquisition and Preprocessing
Functional MRI scans were performed on all subjects using
a 1.5T MRI scanner (Siemens MAGNETOM Trio, Erlangen,
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Germany) at the Radiology Department of our hospital. Earplugs
and foam were used to decrease scanning noise and head
motion, respectively. All subjects were not anesthetized, and
were required to keep their eyes closed and avoid sleeping,
thinking about anything, or any head motion as far as possible
during the scanning. In total, 176 high spatial resolution T1-
weighted structural images were acquired using a magnetic
prepared gradient echo (GE) sequence [repetition time
(TR) = 1,940 ms, echo time (TE) = 3.08 ms, field of view
(FOV) = 250 mm × 250 mm, matrix = 256 × 256, slice
thickness = 1 mm; flip angle = 15◦], and 180 functional images
by using an echo-planar imaging sequence sensitive to BOLD
contrast (TR = 2,000 ms, TE = 25 ms, FOV = 240 mm × 240 mm,
matrix = 64 × 64, slice thickness = 4 mm, flip angle = 90◦).
Twenty-two fluid attenuated inversion recovery images
were used to screen for structural brain lesions by two
radiology chief physicians (TR = 8,000 ms, TE = 92 ms,
FOV = 220 mm × 220 mm, matrix = 512 × 464, slice
thickness = 5 mm).

Preprocessing was carried out by applying DPARSFA using
SPM8.1

We underwent preprocessing as follows:

(1) We have collected 180 points by BOLD in this study
and removed the first 10 time points to reduce the
influence of MRI magnetic field instability and noise
during the initial scan.

(2) Slice-timing correction: we carried out slice-timing
correction for the remaining time points make different
layers within a TR equivalent to the same time acquisition.

(3) Head movements correction: This included translation and
rotation in 3D space. Considering the long scan time and
the influence of magnetic resonance noise, the purpose
of head movement correction was to eliminate the tiny
head movement caused by respiration, heartbeat, and
other physiological factors. Subjects would be removed
from this study when their head movement of x, y, or
z axis were more than 1 mm of translation or 1◦ of
rotation.

(4) Spatial registration: All MRI images were standardized to
the same reference space (standard anatomical template
for the head, Montreal Neurological Institute, Canada)
because of the differences in brain morphology among
different subjects.

(5) Linear detrending: The standardized data were then
processed to remove linear trends to remove physiological
linear drift, noise caused by head movement, and
instability of the machine.

(6) Low-frequency filtering. A frequency band of 0.01–0.08 Hz
was considered valuable physiological signals and used to
filter out low-frequency drift.

(7) Spatial smoothing. A Gaussian kernel function with a full
width at half maximum (FWHM) of 4 × 4 × 4 mm3 was
used to perform spatial smoothing of fMRI images.

1www.fil.ion.ucl.ac.uk/spm

Regional Homogeneity and Amplitude of
Low-Frequency Fluctuation Analysis
The preprocessed fMRI data were used for the ReHo analysis of
all subjects. Kendall’s coefficient concordance (KCC) was used as
an indicator to measure the similarity between the time series of a
voxel and those of its adjacent neighbors in the ReHo analysis. We
considered 27 individual voxels as a whole and acquired ReHo
maps for each participant by calculating the KCC value between
each individual voxel and the other 26 adjacent voxels. ReHo
images were smoothed with an isotropic Gaussian kernel of 4 mm
full-width half-maximum (FWHM) to reduce space noise. The
brain was divided into different regions of interest (ROI), and the
mean ALFF value of each ROI was calculated with the Resting-
State fMRI Data Analysis Toolkit (REST version 1.8)2 (Song et al.,
2011). ReHo and ALFF differences between the children with
TOF and the HC were analyzed with a two-sample t-test in REST
software. AlphaSim was calibrated with P < 0.01 and a cluster
size = 23 voxels in the ReHo analysis. AlphaSim was calibrated
with P < 0.05 and a voxel size > 65 in the ALFF analysis.

Statistics
SPSS 20.0 (IBM Corp., Armonk, NY, United States) was used
to perform the statistical analyses in the study. We present
continuous variable data as the mean ± SE in Table 1. Differences
between the children with TOF and the HC were calculated
by two-sample t-tests. Correlations between the ALFF value,
ReHo value, intelligence quotient (IQ), and related covariates
were investigated by using single and multiple linear regression
analyses. Statistical significance was considered when P < 0.05.

RESULTS

The demographic characteristics of the TOF and HC
groups are shown in Table 1. The summarized hospital
information of the TOF children is also shown. No significant
differences were observed for age, sex, education, or household
income. Additionally, children with TOF had lower VIQ
(92.444 ± 4.708, P = 0.003) and FSIQ (95.444 ± 5.354, P = 0.022)
scores than the HC.

Differences in ReHo and ALFF are separately shown in
Tables 2, 3, respectively. Compared with the HC group, ReHo
values were increased in the right brainstem, right middle
occipital gyrus, right inferior parietal gyrus, right precuneus,
and left precuneus of the TOF group, but reduced in the right
posterior lobe of the cerebellum and right inferior temporal gyrus
(Table 2 and Figure 1). In addition, TOF children had higher
ALFF values of the left medial prefrontal cortex, left cingulum
and right parahippocampal gyrus, and lower ALFF values of the
left cerebellum, left middle inferior occipital gyrus (MIOG.L),
left inferior occipital gyrus, and right cerebellum (Table 3 and
Figure 2).

After analyzing the Pearson correlations between the
demographic variables and ReHo or ALFF changes in TOF
children, age at surgery, postoperative time, preoperative

2http://www.restfmri.net/forum/REST_V1.8
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TABLE 1 | Characteristics of TOF and healthy children.

Variables TOF HC p-value

(n = 9) (n = 9)

Age (month) 121.547 ±7.811 117.560 ±3.687 0.651

Sex (male%) 66.667 55.556 0.653

Education (month) 29.427 ±4.931 28.227 ±4.412 0.858

Household income
(Yuan per year)

82000.000 ±9327.379 84666.667 ± 6960.204 0.822

Age of surgery
(month)

27.309 ± 7.880 NA

Postoperative time
(month)

86.674 ± 11.232 NA

Hospital stays (day) 17.250 ± 1.943 NA

Preoperative SpO2

(%)
74.286 ± 5.830 NA

Preoperative SBP
(mmHg)

100.143 ± 3.622 NA

Preoperative DBP
(mmHg)

60.000 ± 2.104 NA

Preoperative Ph 7.339 ± 0.012 NA

CPB time (min) 62.750 ± 2.589 NA

AO time (min) 38.063 ± 1.848 NA

VIQ 92.444 ± 4.708 124.250 ± 4.404 0.003

PIQ 97.778 ± 6.302 108.000 ± 5.492 0.342

FSIQ 95.444 ± 5.354 118.500 ± 4.330 0.022

Mean ± SE.
TOF, Tetralogy of Fallot; HC, healthy children; SpO2, saturation of pulse oxygen;
SBP, systolic blood pressure; DBP, diastolic blood pressure; pH, potential of
hydrogen; CPB, cardiopulmonary bypass; AO, aortic occlusion; VIQ, verbal
intelligence quotient; PIQ, performance intelligence quotient; FSIQ, full scale
intelligence quotient; NA, not available.
Bold values represent that the results have statistical significance.

TABLE 2 | Cerebral ReHo changings in TOF group.

Voxel MNI coordinates T-value

X Y Z

Right brainstem 25 12 −27 −39 4.3840

Right posterior lobe of cerebellum 23 18 −84 −39 −3.4583

Right inferior temporal gyrus 28 51 12 −42 −4.1134

Right middle occipital gyrus 26 36 −96 6 4.9977

Right inferior parietal gyrus 52 48 −45 42 5.6256

Right precuneus 24 12 −54 69 5.5039

Left precuneus 37 −15 −48 75 3.9901

Adjusted by AlphaSim, Cluster size = 23, P < 0.01.
ReHo, regional homogeneity; TOF, Tetralogy of Fallot; MNI, Montreal Neurological
Institute.

saturation of pulse oxygen (SpO2), preoperative systolic blood
pressure (SBP), cardiopulmonary bypass (CBP) time, and aortic
occlusion (AO) time were found to be related to ReHo changes
(Supplementary Table 1), and preoperative SpO2, CBP time, and
AO time were related to ALFF changes (Supplementary Table 2).

The correlations between VIQ, FSIQ, and ReHo or ALFF
changes were further determined by multiple linear regression
(Table 4 and Supplementary Table 3). The results showed that

TABLE 3 | Cerebral ALFF changings in TOF group.

Voxel BA MNI coordinates T-value

X Y Z

Left cerebellum 132 18 −30 −66 −21 −4.8936

Left middle inferior occipital gyrus 122 19 −51 −75 6 −5.2099

Left inferior occipital gyrus 132 18 −21 −93 6 −4.6053

Right cerebellum 87 18 6 −81 −30 −3.6358

Left medial prefrontal cortex 88 46 −39 30 30 4.6931

Left cingulum 106 23 3 −63 21 4.7138

Right parahippocampal gyrus 94 36 30 −30 −18 4.6963

Adjusted by AlphaSim, voxel > 65, P < 0.05.
ALFF, amplitude of low frequency fluctuations; TOF, Tetralogy of Fallot; MNI,
Montreal Neurological Institute; BA, Brodmann area.

only ALFF changes in the MIOG.L were positively associated with
VIQ (beta = 0.908, P = 0.012) after adjusting for all covariates
(model 3). Additionally, Table 5 shows that ReHo changes in the
right precuneus (PCUN.R) and left precuneus (PCUN.L) were
positively associated with ALFF changes in the MIOG.L.

DISCUSSION

Our cross-sectional study was the first to identify positive
correlations between decreased ALFF values in the MIOG.L and
a lower VIQ in postoperative TOF children at school age. In
addition, abnormal ReHo values in the PCUN.L and PCUN.R
were also positively related to ALFF values in the MIOG.L,
which may compensate for the VIQ caused by low ALFF
values in MIOG.L.

ALFF and ReHo, two BOLD signals, can indirectly reflect
brain function (Golestani et al., 2017). Our previous study
focused on the effects of structural alteration on the cognitive
abilities of TOF children, indicating positive correlations between
decreased cortical thickness and a low VIQ (Ma et al., 2020).
Considering decreased oxygen consumption and oxygen delivery
in the brain before surgery (Sun et al., 2015), close attention to
neuronal activity changes should be paid in children with TOF.
However, few studies have investigated the relationship between
neuronal activity and cognition in TOF children. Herein, based
on units of neurons, the association between neuronal activity
and cognition was determined in this study, and combined with
the existing research, the underlying mechanisms of a low VIQ
induced by abnormal ReHo and ALFF values were also explored.

The results revealed that TOF children with lower ALFF values
in the MIOG.L had a lower VIQ, indicating that the MIOG.L
plays a critical role in language development. Generally, the
MIOG.L is recognized as a visual processing region; however,
it is also important to speech perception, including semantic
and syntactic processing, language processing strategy, semantic
representation, object identification, and generalization (Pigdon
et al., 2019; Stroh et al., 2019; Victoria et al., 2019; Fairhall, 2020;
Liu et al., 2020; Maffei et al., 2020). Different from the traditional
understanding of visual regions, some studies have shown that
visual processing also promotes early language development
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FIGURE 1 | Compared with HC, TOF children showed increased ReHo values in the right brainstem, right middle occipital gyrus, right inferior parietal gyrus, right
precuneus, and left precuneus, and decreased ReHo values in the right posterior lobe of the cerebellum and right inferior temporal gyrus. AlphaSim correction with
P < 0.01; cluster size > 23.

(Teinonen et al., 2008). Recently, left occipital regions were
demonstrated as a visual input to language areas, which might
manifest as pure alexia (without agraphia) when affected by
ischemia (Sheetal et al., 2019). Additionally, a study on children
with developmental language disorders showed that increased
left inferior occipital volume may compensate for language
regions (Pigdon et al., 2019). In addition, occipital regions can
couple with other brain regions participating in many forms
of verbal processing. When syntactic processing occurs, the left
middle occipital regions along with the right supramarginal
gyrus (SMG) are activated (Stroh et al., 2019). Moreover,
population-based studies have shown that occipitotemporal (OT)
regions play a crucial role in transforming visual symbols
into meanings and sounds (Taylor et al., 2019; Zhou et al.,
2019) and that semantic information strengthens the connection
between OT regions and the left ventral inferior frontal gyrus
(Wang J. et al., 2019).

Our results also showed that decreased ALFF values
in the MIOG.L are positively correlated with increased
ReHo values in the PCUN.L and PCUN.R, suggesting that
elevated neuronal connections in the PCUN.L and PCUN.R
may compensate for the low VIQ induced by inactive
spontaneous activity in the MIOG.L. The PCUN, an associative
region, is a part of the posteromedial parietal cortex, which
engages in visuospatial imagery, episodic memory retrieval,
self-processing, and consciousness by associating with many
brain regions, including the thalamus, posterior cingulate,
supplementary motor area, and dorsal premotor area (Cavanna
and Trimble, 2006; Cunningham et al., 2017; Wang Z.
et al., 2019). In addition, the parietal cortex, along with
the temporal cortex and occipital cortex, connects to the
temporoparietooccipital cortex (TPO), which is a highly
associative cortical network and is involved in the integration
of somatosensory, auditory, and visual information (Leichnetz,
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FIGURE 2 | Compared with HC, TOF children had higher ALFF values in the left medial prefrontal cortex, left cingulum, and right parahippocampal gyrus, but lower
ALFF values in the bilateral cerebellum, left middle inferior occipital gyrus, and left inferior occipital gyrus. AlphaSim correction with P < 0.05; cluster size > 65.

2001). Additionally, many studies have reported that the PCUN
is related to semantic processing and phonologic processing
(Kjaer et al., 2001; Coslett and Schwartz, 2018). Similarly, our
previous study suggested that the PCUN may connect with
the temporal lobe via the temporoparietal junction (TPJ) and
influence VIQ in TOF children (Ma et al., 2020). Thus, based
on our results and those of previous studies, we speculate that
increased neuronal connections in the PCUN.L and PCUN.R
play a compensatory role in low VIQ induced by decreased
ALFFs in the MIOG.L.

However, some limitations still exist in our study. First, our
research should have recruited more participants to increase
the reliability and generalizability of the results. Moreover, we
evaluated the cognitive ability of TOF children after surgery at

school age, and the specific timing of the start and maintenance
of ReHo and ALFF changes is still unclear. Those children require
continuous follow up. Furthermore, though recent study on 7–
11 years old children who were conducted general anesthesia
under 3 has shown that the exposure to general anesthesia
in early childhood was not markedly related to the reduced
intelligence in later stage (Schuttler et al., 2021), anesthesia was
still demonstrated to be a non-negligible factor of cognitive
levels in many studies (Pang et al., 2021; Shen et al., 2021;
Wu and Zhu, 2021). However, we did not analyze the effect
of anesthesia on cognition because of lots of anesthesia data
missed. Additionally, children who were suspected of having
neurodevelopmental disorders according to their guardians were
more likely to be enrolled in this study, which may result in
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TABLE 4 | Multivariable association of cerebral amplitude of low frequency fluctuations changings and cognitive abilities in TOF postoperative children.

VIQ FSIQ

Beta (95%CI) p-value Beta (95%CI) p-value

Cb. L

Model 1 −0.644 (−199.094, 30.801) 0.119 −0.482 (−262.708, 92.762) 0.274

Model 2 −0.644 (−199.094, 30.801) 0.119 −0.482 (−262.708, 92.762) 0.274

Model 3 −0.559 (−210.423, 72.949) 0.249 −0.453 (−319.912, 148.396) 0.367

MIOG. L

Model 1 0.847 (38.248, 236.593) 0.016 0.800 (24.405, 326.257) 0.031

Model 2 0.847 (38.248, 236.593) 0.016 0.800 (24.405, 326.257) 0.031

Model 3 0.908 (46.240, 210.637) 0.012 0.796 (−9.657, 355.872) 0.058

IOG. L

Model 1 −0.253 (−86.195, 54.243) 0.584 −0.133 (−108.428, 85.799) 0.777

Model 2 −0.253 (−86.195, 54.243) 0.584 −0.133 (−108.428, 85.799) 0.777

Model 3 −0.213 (−86.362, 62.957) 0.686 −0.110 (−126.076, 107.490) 0.836

Cb. R

Model 1 0.062 (−32.278, 35.964) 0.895 0.248 (−34.730, 54.677) 0.591

Model 2 0.062 (−32.278, 35.964) 0.895 0.248 (−34.730, 54.677) 0.591

Model 3 0.261 (−29.052, 43.112) 0.617 0.324 (−40.944, 67.800) 0.531

MPFC. L

Model 1 0.449 (−33.386, 85.252) 0.312 0.474 (−42.001, 115.858) 0.283

Model 2 0.449 (−33.386, 85.252) 0.312 0.474 (−42.001, 115.858) 0.283

Model 3 0.350 (−50.086, 86.926) 0.497 0.445 (−64.586, 136.754) 0.376

Cg. L

Model 1 0.638 (−4.989, 30.853) 0.123 0.505 (−13.307, 40.942) 0.247

Model 2 0.638 (−4.989, 30.853) 0.123 0.505 (−13.307, 40.942) 0.247

Model 3 0.521 (−13.304, 34.144) 0.290 0.485 (−22.459, 52.292) 0.330

PHG. R

Model 1 −0.387 (−119.600, 55.682) 0.392 −0.489 (−166.466, 57.361) 0.266

Model 2 −0.387 (−119.600, 55.682) 0.392 −0.489 (−166.466, 57.361) 0.266

Model 3 −0.295 (−120.564, 76.721) 0.571 −0.464 (−193.660, 87.659) 0.355

Model 1 adjusted for age, hospital stays, age of surgery and postoperative time.
Model 2 adjusted for model 1 plus CPB time and AO time.
Model 3 adjusted for model 2 plus preoperative SpO2, preoperative SBP, preoperative DBP and preoperative pH.
Cb. L, left cerebellum; MIOG. L, left middle inferior occipital gyrus; IOG. L, left inferior occipital gyrus; Cb. R, right cerebellum; MPFC. L, left medial prefrontal cortex; CG.
L, left cingulum; PHG. R, right parahippocampal gyrus; VIQ, verbal intelligence quotient; FSIQ, full scale intelligence quotient.
Bold values represent that the results have statistical significance.

TABLE 5 | Pearson correlation between cerebral ReHo changings and cerebral ALFF changings in TOF group.

Cb. L MIOG. L IOG. L Cb. R MPFC. L Cg. L PHG. R

BS. R 0.331 −0.144 0.666 0.170 −0.595 0.058 0.377

PLC. R −0.114 0.272 −0.248 0.577 0.346 −0.062 0.381

ITG. R −0.628 0.280 −0.586 −0.089 0.758* 0.166 −0.080

MOG. R 0.680* −0.492 0.679* 0.000 −0.656 0.254 −0.090

IPG. R −0.274 0.031 −0.817** −0.343 0.283 0.226 −0.125

PCUN. R −0.807** 0.750* −0.348 0.036 0.280 0.101 0.174

PCUN. L −0.633 0.846** −0.468 0.330 0.303 −0.235 0.218

*Correlation is significant at the 0.05 level, **Correlation is significant at the 0.01 level.
ReHo, regional homogeneity; ALFF, amplitude of low frequency fluctuations; TOF, Tetralogy of Fallot; Cb. L, left cerebellum; MIOG. L, left middle inferior occipital gyrus;
IOG. L, left inferior occipital gyrus; Cb. R, right cerebellum; MPFC. L, left medial prefrontal cortex; CG. L, left cingulum; PHG. R, right parahippocampal gyrus; BS. R, right
brainstem; PLC. R, right posterior lobe of cerebellum; ITG. R, right inferior temporal gyrus; MOG. R, right middle occipital gyrus; IPG. R, right inferior parietal gyrus; PCUN.
R, right precuneus; PCUN. L, left precuneus; VIQ, verbal intelligence quotient.
Bold values represent that the results have statistical significance.
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certain biases. Finally, this study was a cross-sectional study and
cannot be used to determine the causal relationship between
fMRI changes and cognition.

CONCLUSION

In summary, compared with HC, postoperative children with
TOF had a lower VIQ at school age, which was positively related
to decreased ALFF values of the MIOG.L. The results revealed
that preoperative brain injury in TOF children, even at school
age, have persistent negative effects on neurons, especially in
the MIOG.L. The possible mechanisms may be delayed language
development caused by inactive spontaneous neural activity in
the MIOG.L. Fortunately, these changes might be compensated
by increased neural connections in the PCUN.L and PCUN.R.
Therefore, it is important to pay close attention to the language
development of children with TOF. Cognitive ability evaluations,
especially verbal cognition, should be included in conventional
postoperative reviews and follow-ups.
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