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Simple Summary: The biology of a multicellular organism is extremely complex, leaving behind a
realm of compound yet systematic mechanisms still to be unraveled. The nucleus is a vital cellular
organelle adapted to storing and regulating the hereditary genetic information. Dysregulation
of the nucleus can have profound effects on the physiology and viability of cells. This becomes
extremely significant in the context of development, where the whole organism arises from a single
cell, the zygote. Therefore, even a mild aberration at this stage can have profound effects on the
whole organism. However, studying the function of individual nuclear components at this point
is exceptionally complicated because this phase is inherently under the control of maternal factors
stored in the female germ cell, the egg. Here, we focus on the lamins, as essential nuclear components,
and summarize the current knowledge of their role in development. Although scientists encounter
challenges working with these miniscule yet key proteins, the demand to know more is increasing
gradually due to the mutations caused in lamins leading to irreversible phenotypic conditions
in humans.

Abstract: Lamins are essential components of the nuclear envelope and have been studied for decades
due to their involvement in several devastating human diseases, the laminopathies. Despite intensive
research, the molecular basis behind the disease state remains mostly unclear with a number of
conflicting results regarding the different cellular functions of nuclear lamins being published. The
field of developmental biology is no exception. Across model organisms, the types of lamins present
in early mammalian development have been contradictory over the years. Due to the long half-life of
the lamin proteins, which is a maternal factor that gets carried over to the zygote after fertilization,
investigators are posed with challenges to dive into the functional aspects and significance of lamins
in development. Due to these technical limitations, the role of lamins in early mammalian embryos is
virtually unexplored. This review aims in converging results that were obtained so far in addition to
the complex functions that ceases if lamins are mutated.

Keywords: nuclear lamins; laminopathies; preimplantation embryo; development; maternal factors

1. Introduction

The majority of the eukaryotic cells, except for the red blood cells, have a membrane
bound organelle, the nucleus. Occupying a variable proportion of the total cellular volume
in different cell types and significantly known as the storehouse of hereditary genetic
information, the nucleus regulates replication and subsequent transcription of DNA [1,2].
The exceptional feature of the metazoan cell nucleus is the presence of a nuclear envelope
(NE), which demarcates the cytoplasm from the nucleoplasm. The nuclear envelope plays
a vital role in regulating gene expression [3], chromatin reorganization [4], in addition to
nuclear integrity [5]. All of these roles are exerted by the combination of selective nuclear
transport of materials such as proteins or RNAs across the NE and by providing structural
and mechanical support for setting up the 3D organization of the nucleus and chromatin.
The correct NE function is extremely important in the context of very early embryos as the
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whole organism arises from only a single cell, the zygote. Therefore, every dysregulation at
this stage can have a profound effect, not only on the somatic cells of the new organism, but
also potentially impact the next generation if the primordial germ cells, the predecessors
of gametes, are affected. While the nuclear envelope has been shown to be a dynamic
structure with respect to its composition in somatic cells [6,7] (for review see [8]), possibly
reflecting the immediate physiological state, the situation in early embryos is different.
Parental gametes, unlike their somatic counterparts, are transcriptionally inactive and
are, therefore, reliant on the maternal pool with different resources, both proteins and
mRNA, which are accumulated by oocytes prior to fertilization. Since the components of
the NE are directly inherited, the embryos most likely possess limited options to regulate
NE composition and possibly functional correction, should the situation demand. For
this reason, a precise number of maternal factors and their faithful regulation during the
pronuclear formation and assembly of the NE are vital for a successful development and
execution of the developmental program. Although the overall structure of the nuclear
envelope is immensely complex, in this review, we will focus specifically on the nuclear
lamina, a proteinaceous structure of the inner NE. Over the years, NE components and its
structural proteins, the nuclear lamins, have received considerable attention due to their
role in several overwhelming human diseases as well as their link to cellular differentiation.

Although our view of the role of nuclear lamins in development has been tradition-
ally shaped in conjunction with the different disease states, in light of recent studies we
might have to reconsider their biological roles as these might be far more complex than
previously anticipated.

The nuclear envelope consists of a lipid bilayer. Very early electron microscopy showed
that the structure of the outer nuclear membrane (ONM) as being continuous with the
endoplasmic reticulum [9]. Sandwiched between the inner nuclear membrane (INM) and
the peripheral chromatin inside of the nucleus is a protein meshwork called the nuclear
lamina [10]. This protein meshwork was proposed to not only provide mechanical support,
but also to be a major component to promote chromatin anchoring to the nuclear pore
complex that spans the ONM and INM and facilitates the communication between the
nuclear interior and the cytoplasm [11]. The key component of the proteinaceous layer
called the nuclear lamina, coating the INM, is in most metazoan cells, the lamins [12]
(Figure 1).

The nuclear lamins have historically received substantial attention due to the number
of mutations (as of 31 January 2020, nearly 500 different mutations have been identified in
the human LMNA gene, http://www.umd.be/LMNA/ accessed on 28 December 2021)
and their association with several devastating human diseases called laminopathies [13–15].
Due to the extensive research of lamin phenotypes, their proposed functions range from
a direct regulation of gene activity [16,17] and/or locking in the differentiated state in
development [18], through their role in DNA replication and repair to preserving mitotic
spindle structure and promoting chromosome segregation fidelity [19,20]. However, as
we will describe in more detail in latter parts of this review, the overall picture might be
skewed by the different experimental models and systems used by individual research
groups and not all the observed phenotypes and functions were corroborated when such
experimental model was exchanged. Therefore, when describing the lamin function(s), the
biological context seems crucial. Next, we will describe the structure of these proteins, their
basic biology and their how mutations manifest in humans.

http://www.umd.be/LMNA/
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2. Structure of Lamins

Nuclear laminae are type V intermediate filaments (IF) that are evolutionarily con-
served in eukaryotes [21]. Restricted to the animal kingdom, electron microscopy of isolated
plant nucleo-skeleton show structures similar to that of the metazoan lamina. Although
plants lack lamins and genes that encode for the lamin-binding proteins [22], the function
is substituted by the nuclear matrix constituent proteins (NMCP) [23]. The presence of an
equivalent dense proteinaceous structure lining the INM indicates its wider importance
and a possible common function in several organisms.

There are two main types of lamins based on their domain structures, A-type lamins
and B-type lamins (lamin A and lamin B, respectively). A- type lamins are coded by
the single gene, Lmna. Alternate splicing of the Lmna gene in the mammalian system
leads to the production of lamin A and lamin C. The gene Lmna also encodes for a less
abundant, somatic cell isoform of lamin called lamin A∆10 [24]. Differential splicing of the
A-type lamins in mouse pachytene spermatocytes [25] and in the early stages of different
mammalian oocytes [26] produces lamin C2, showing similarities with lamin C. The B-
type lamins are of two types: Lmnb1 and Lmnb2. While Lmnb1 encodes for a single type of
lamin protein, lamin B1, Lmnb2 encodes for lamin B2 and a lamin B3, which is produced
by the differential splicing and restricted to the mouse spermatocytes [27]. Unlike lamin
B, which are expressed in all tissues and are ancestrally conserved [28], lamin A was
described to be expressed only in terminally differentiated tissues and dispensable for
mouse development [29]. In rat liver nuclei, the lamina was described as a 150 Å thick
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proteinaceous layer underlying the inner nuclear membrane [30], and associated with the
nuclear pore complex. In 1993, the first reported Caenorhabditis elegans nuclear lamins [31]
formed intermediate filament-like structures which were approximately 10 nm long [32].
However, analysis of the lamin filaments in other model organisms showed their relatively
variable properties. In Xenopus, the average lamin B filament length was 15 nm, whereas
exogenously produced lamin A filaments were shorter but thicker [33]. A recent very
detailed study using mouse cells described the presence of filaments of a highly variable
length ranging from 50 nm to 2700 nm [34]. Irrespective of the variations described, the
ability to polymerize and form filaments lies at the heart of the lamina formation.

Identical to most intermediate filaments [11], the conserved structure of lamins consist
of an elongated central α-helical coiled rod domain flanked by variable amino -terminal
head and carboxy- terminal tail domains [35] with a relative molecular mass (Mr) between
60,000 to 75,000 [12]. At the carboxyl end, the lamins contain a sequence CaaX motif
which provide site modifications such as isoprenylation and methylation, which have
been shown to be important to associate the lamins to the inner nuclear membrane [36]
(p. 2). The absence of codons for 82 amino acids including the CaaX motif, and with a
striking homology rises another variant of lamin A, is lamin C [11]. Characteristic to all
lamin types, between the C-terminal and the rod domain are the nuclear localization signal
sequences (NLS) which is vital for nuclear transport [37,38]. The interaction of lamins and
the nuclear transport machinery might be more important than just providing the means of
their nuclear import. Interestingly, the level of the nuclear transport factor importin α was
suggested to influence the lamin assembly possibly by preventing their self-association as
well as by modulating the interaction with their binding partners [37].

3. The Consequence of Lamin Genes Disruption

The formation of this proteinaceous meshwork begins by the organization of lamin
dimers at the interphase of chromatin and the nucleoplasmic surface of the inner nuclear
membrane [12]. Initially suggested to provide only nuclear integrity [39], the assembly of
lamins are key to the diverse functions such as DNA replication, DNA repair, chromatin
anchorage, and even gene regulation, therefore the mutations in genes encoding lamins
cause serious malfunctioning in humans, leading to a wide range of disease conditions [40].
Studies have shown the mutation in the LMNA gene encoding for lamin A/C to be detri-
mental in affecting the striated muscles to cause diseases such as Emery–Dreifuss muscular
dystrophy [41] and postnatal growth retardation [42], inheritable disorders such as limb-
girdle muscular dystrophy [43], and dilated cardiomyopathy leading to abnormal postnatal
growth retardation and death of newborns [44]. In addition to the muscular dystrophies
caused by the mutation of lamin A/C, there are reports that involve bone tissue, adipose
tissue, the peripheral nervous tissues, and also a syndrome called the Hutchinson–Gilford
progeria syndrome (HGPS) (Refer Table 1 below).
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Table 1. Some of the defects and irregularities caused by the mutations in lamins.

Disease Lamin Mutations

Emery-Dreifuss muscular dystrophy (EDMD)

• X- linked recessive disorder, Emerin (STA) mutation [45]
• Mutation in Lamin A/C produced by the alternate

splicing of LMNA gene [46]

Mandibuloacral dysplasia and partial lipodystrophy Homozygous missense mutation, Arg527His, in LMNA gene.
Muation in ZMPSTE24 [47]

Mandibuloacral dysplasia with type A lipodystrophy (MADA) Homozygous mutation in R527H in the LMNA gene [48]

Restrictive dermopathy (RD)

• Dominant de novo LMNA mutations, recessive
ZMPSTE24 [FACE-1 in humans] mutations (either
homozygous or heterozygous), both within exon 9 [49]

• RD with ZMPSTE4 mutation—a complete absence of
Lamin A protein—also a factor to identify lethal neonatal
laminopathy

Hutchinson- Gilford progeria syndrome (HGPS)

• Single point mutation in LMNA gene causing production
of permanently farnesylated mutant Lamin A protein,
progerin [50] (p. 22)

• Recurrent de novo single-base substitution within exon
11 of LMNA [51]

Limb Girdle muscular dystrophy type 1B (LGMD1B) Mutation linked to the chromosome 1q11-q21 of LMNA gene
[43]

Dilated cardiomyopathy (DCM) R89L, 959delT, R337H, S573L mutation in LMNA [52,53]

Autosomal recessive axonal Charcot-Marie-Tooth type 2 (CMT2) R298C mutation in lamin A/C [54]

Dunnigan type familial partial lipodystrophy (FPLD) R482Q mutation in lamin A/C, mutation in the gene mapped
to chromosome 1q21-22 encoding for the LMNA gene [55]

Adult autosomal dominant leukodystrophy (movement disorder) Associated with increase or accumulation of lamin B1 [56]

Primary microcephaly (neuro—developmental disorder) Heterozygous dominant pathogenic variants in both lamin B1
and lamin B2 [57]

Progressive myoclonus epilepsy including the early identification
of ataxia

Rare and novel homozygous missense p.His157Tyr mutation
in the alpha- helical rod of the lamin B2 protein [58]

Acquired partial lipodystrophy (APL) Mutation in the LMNB2 gene on 19p13.3 might be the cause of
this disease [59]

Interestingly, although a number of mutations in the LMNA gene have been described
(see Introduction), practically no laminopathies linked to B-type lamins (LMNB1/LMNB2
mutations) have been reported to date with very few exceptions presented in Table 1. For
this reason, the general notion is that mutations in the genes encoding for B-type lamins,
or their loss, are developmentally lethal and that lamins B1/B2 might be essential at the
cellular level, i.e., necessary for cell viability. This conception is in agreement with early
developmental studies, showing that while LMNA was detected only in some cells and in
conjunction with a more advanced differentiation state, the B-type lamins were present in
all probed cell types irrespective of their differentiation state [60,61]. Indeed, fitting with the
general view, knocking down the LMNA mRNA by siRNA in HeLa cells has been described
to have no effect, whereas both LMNB1 and LMNB2 were shown to arrest the cells and to
cause cellular death [62]. Although widely accepted, this view has been strongly challenged
by more recent studies produced using animal models instead of transformed cells in
culture [62]. Both Lmnb1- or Lmnb2-deficient animals progressed through development,
but died shortly after birth [63,64]. Although these results indicate the non-essentiality of
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B-type lamins, it was not possible to exclude that, under these conditions, the second lamin
B gene partially rescued the phenotype. This, in turn, indicated a certain level of B-type
lamin redundancy. Nevertheless, this possibility has been partially addressed by Yang
and colleagues who produced mice with a double deletion of both Lmnb1 and Lmnb2 in
keratinocytes [65]. As reported by the authors, the mice survived for an extended periods
(over two years of age) and were grossly normal showing that, at least in this specific
cell type, B-type lamins are indeed not essential. Practically, the same conclusion has
been reached even at the organismal level when double Lmnb1/Lmnb2 knockout mice were
produced [66]. As reiterated in the aforementioned studies, postnatal death of these animals
was caused due to lack of breathing. Although these animals had all essential internal
organs, more detailed analysis revealed that the overall size was slightly smaller when
compared to their littermates [66]. In summary, these animal models provide practically no
support for the generally accepted notion of lamin B essentiality.

Assuming that the mouse models developmentally reflect the situation in humans, one
would expect at least some record of B-type lamin mutations in human patients, stillborn
babies, or in relation to miscarriages, as the redundancy between the lamin B gene products
could be excluded. Still, practically no lamin B mutations were clinically reported. There
might be essentially two explanations: firstly, either the mouse model is developmentally
unique or additional mammalian models would bring different results, and secondly,
lamins are only essential immediately after the post fertilization period. Undoubtedly, the
second explanation cannot be strictly ruled out since the various homozygous knockout
animals used for the phenotype analysis, which are not viable after birth, were produced
by the breeding of the heterozygous parents. Therefore, the egg, which will give rise to
the individual homozygous knockout embryos, will be pre-loaded with both maternal
proteins and their respective mRNAs. Effective manifestation of gene disruption can
only begin when the maternal stores are depleted. This could potentially mask the early
phenotype. This makes the analysis of the role nuclear lamins in the early post-fertilization
phase extremely difficult. Next, we will focus on female germ cells and early embryos and
summarize the results on the role of nuclear lamins at these stages of development.

4. The Cellular Functions of the Lamins in Development

Historically, the system that was used to investigate the function of nuclear lamins
which also greatly shaped our perception of their cellular function, were the Xenopus
egg extracts and in vitro assembly of nuclei. Oocytes of Xenopus laevis were found to
exhibit only one type of lamin—the lamin L111 (laminB3 L homeolog, lmnb3.L - https:
//www.ncbi.nlm.nih.gov/gene/397910; accessed on 28 December 2021). By contrast,
somatic cells, such as erythrocytes, were found to express additional types: L1 (lamin B1,
lmnb1; https://www.ncbi.nlm.nih.gov/gene/394806; accessed on 28 December 2021) and
L11 (lamin B2, lmnb2; https://www.ncbi.nlm.nih.gov/gene/100038111; accessed on 28
December 2021) [67], and differentiated cells such as myocytes and neurons expressed all
three types: L1, L11, and L111 [68]. The presence of one major type of lamin protein, the
large size of the Xenopus eggs and embryos, as well as their abundance and the relative ease
of manipulation make the system of extracts ideal to elucidate the mechanism of nuclear
assembly and function of different nuclear components.

In 1990, Newport, Wilson and Dunphy showed that the lamin LIII is not essential for
the nucleus formation, but the artificially formed nuclei produced in lamin LIII immunode-
pleted extracts were fragile and failed to expand [69]. Quite interestingly, nuclei formed
in these extracts also failed to replicate the DNA [69]. A similar observation was further
made in 1991 by Meier and colleagues [70], who also failed to detect the incorporation
of radiolabeled isotopes to nuclei formed from demembranated sperm heads in extracts
where LIII was blocked by an antibody. The lack of DNA replication is somewhat puzzling
in context of the lamin B knockout animal models described above. However, since lamin
LIII, being the predominant lamin type in this system, was blocked or depleted, it might
be possible that the presence of at least one type of lamin, irrespective of whether A- or

https://www.ncbi.nlm.nih.gov/gene/397910
https://www.ncbi.nlm.nih.gov/gene/397910
https://www.ncbi.nlm.nih.gov/gene/394806
https://www.ncbi.nlm.nih.gov/gene/100038111
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B-type, is crucial to ensure the DNA replication capacity. However, this is contradicted
by the study where the lamin triple-knockout embryonic stem cells were generated and
analyzed [29]. To maintain cells in culture, replication of their DNA is vital. Therefore, it
is unknown whether the observed replication block can be attributed specifically to the
lamin LIII. Another unexpected role of the Xenopus oocyte lamin is its participation in
the spindle assembly by forming a so-called spindle matrix [71]. The spindle matrix and
spindle could be disrupted by again immunodepleting the Xenopus M-phase extracts with
either a monoclonal or a polyclonal antibody against the oocyte-specific lamin type.

Both replication and spindle assembly are indeed vital cellular functions, however,
whether the results obtained in Xenopus egg extracts can be extrapolated to other tissues,
other model organisms or the remaining lamin protein types is unclear. On the one hand,
the structural comparison between the naturally occurring A- type lamins to the B- type
lamins in Xenopus revealed that the B-type lamins were relatively conserved and ancestral
to the A- type lamins that were produced due to exon shuffling among the same species [28],
which would indicate that the function might be shared among the different lamin types.
On the other hand, there are various results showing that individual lamins have gene-
specific roles.

The situation in mammalian oocytes and eggs are much more intricate. The infor-
mation available comes mostly from the murine [72,73], bovine, and porcine oocytes and
eggs [74,75]. Although the results on the presence of different lamin types tend to vary,
which can probably be attributed to the different antibodies used by the authors and a
well-known property of epitope masking of the nuclear structural proteins [76], we may
presume that all lamin types are present in oocytes and eggs. Indeed, a more recent pro-
teomic analysis supports this conclusion [77,78]. Because the oocyte nuclear proteins serve
as building blocks which is utilized by the early embryo prior to its own genome activa-
tion, it is likely that the maternally inherited lamins directly participate in the parental
pronucleus formation [79]. However, it cannot be strictly ruled out at present that maternal
lamins are degraded during the meiotic maturation and/or early post-fertilization period
and synthesized de novo based on maternal mRNA. Only later, together with the major
embryonic genome activation, can we expect a more dynamic regulation of the nuclear
lamina in embryos. Concurrently, in 1988, Houliston et al. [80] described that all three
lamins, lamin A/C and lamin B, were present in the mouse pre-implantation embryos, right
from the fertilized egg to the blastocysts. Specifically, lamin A was more predominantly
found to be expressed in the oocytes or unfertilized eggs than blastocysts and other mouse
cell types indicating a gradual depletion of the maternal lamin A. Lamin B was detected
in 8-cell stage and blastocysts [80]. However, in this case a straight conclusion on the
re-expression of lamin B cannot be made due to the limited embryonic stages analyzed,
since its presence can be theoretically caused by a mere unmasking of the maternal protein.
Nevertheless, essentially the same results were obtained by Schatten et al. [73] and Maul
and colleagues in 1987 [81]. Taken together, these studies suggest that the specific lamins in
the later stages of embryo development are not, at least to some degree, from the maternal
pool of reserves.

In the context of the above mentioned general view of the role of lamins in develop-
ment, these findings, to a great extent, contradict the widely accepted opinion that the
presence of lamin A/C only appears with an advanced differentiation state [60]: the zygote
is a quintessential totipotent cell which has the ability to give rise to all cells of the body,
and therefore represents the least differentiated state while still having a noticeable amount
of this lamin type. Furthermore, the spindle localization as described in Xenopus was also
not confirmed in mammals [73–75,82]. Therefore, the functional significance of different
lamin types in early mammalian embryos remain elusive.

5. Lamin Function in Early Mammalian Embryos

The very biology of mammalian fertilization, i.e., the presence of maternal materials,
the limited availability of mammalian oocytes and embryos in combination with the long
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half-life of lamin proteins make the analysis of putative lamin functions extremely difficult,
see Figure 2. More specifically, the widely popular approaches used to study the gene
function in mammalian embryos, i.e., siRNA or morpholino oligo injection, will likely not
produce a change in the protein level rapidly enough (HF, personal experience). For these
reasons, very few options remain.
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In somatic cells, one of the functions of nuclear lamina is to participate in the 3D
organization of chromatin, reviewed in [83], which, in turn, can lead to changes in gene
expression, for review see [84]. Based on a differential staining of chromosomes, between
1928 and 1935, it was Emil Heitz who coined the term heterochromatin and euchromatin.
Through the years of constant investigation of the expression studies and the compart-
mentalization, it was found that heterochromatin is essential to transcriptionally regulate
genes according to specific cell type by genes repression [85]. In somatic cells, the nuclear
periphery and the nucleolus are typically the sites where heterochromatin localizes and
the peripheral positioning often, but not always, correlates with the inactivity of the DNA
sequences, for review see [86,87].

Advanced technique such as the high throughput chromatin conformation capture-
based (Hi-C) assay coupled with DNA adenine methyltransferase identification (DamID)
can be used to identify protein-DNA interactions. By engineering a specific fusion construct
of Dam and a protein of interest, one can identify the DNA sequences which come into close
contact with this exogenous fusion protein [88]. Dam is a bacterial (Escherichia coli) enzyme
capable of introducing a stable methylation at the 6th position of Adenine giving rise to N6-
methyladenine (m6A), a DNA modification thought to be absent in mammals [89]. When
lamin-Dam fusion protein is exogenously introduced into cells, DNA sequences in contact
with the nuclear lamina can be probed and analyzed [90–92]. Although very powerful,
there are some limitations of the DamID method: the level of the exogenously introduced
fusion protein must not interfere with a normal cellular function, and only DNA regions
harboring the Dam methyltransferase recognition sequence (GATC) will be labelled [89].
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Unfortunately, this motif is not evenly distributed throughout the mammalian genome.
Therefore, sequences such as the satellites, the basic units of centromeres, pericentric
chromatin, and telomeres—the prototypical examples of sequences associated with the
nuclear lamina—fall through the cracks [93]. Next, the m6A modification of DNA is
not as scarce as previously thought [94], and seems to be very abundant in embryos,
including mammals [95,96]. Nevertheless, using this technique, a more detailed picture
of the individual elements and genes in close contact with the nuclear lamina has been
elucidated [92,97]. Complex compartmentalization of heterochromatin with respect to their
nuclear organization leads to genome stability. Errors in organization leads to irreversible
repair, and disease progression [98–100].

Nevertheless, when applied to early embryos, it has been shown that LADs are
established de novo in the post-fertilization period and asymmetrically between the two
parental genomes [101]. This is not too surprising, given the distinct epigenetic remodeling
of the parental genomes after fertilization. While the maternal (oocyte) genome exhibits
somatic-like features, the paternal genome undergoes much more extensive changes. In
order for the male pronucleus to be formed, the paternal protamines, which organizes
DNA in the sperm to a near crystalline state, needs to be removed and replaced by histones
originating from the oocyte cytoplasm, for review see [102,103]. By contrast, the maternal
genome is organized by histones throughout the whole oogenesis.

In line with the general mechanism of histone incorporation, histones associated with
the paternal DNA are mostly acetylated [104]. The methylation marks are established only
later on, following replication (for review, see [105,106]). Although the first embryonic
replication is essential for further embryonic development, it seems to be dispensable
for the establishment of parental LADs [101]. Instead, the paternal LADs were shown
to be dependent on the methylation of H3K4. The link between the epigenetic status of
the parental genomes and the LAD establishment seems to be further supported by the
convergence of parental LADs no earlier than the eight-cell embryonic stage [101], when the
parental epigenetic asymmetry is equalized [107] (p. 1). Although the study by Borsos and
colleagues [101] brings interesting insight into the lamina-DNA interaction establishment
following fertilization, several important questions arise.

The most important question is how faithfully does the analysis recapitulate the in vivo
state? Here, it is important to bear in mind that certain sequences will not be captured by
the DamID technique, as already mentioned [93]. However, in very early embryos, rather
than the nuclear lamina, the major organizing structure seems to be the nucleolus precursor
bodies, the embryonic equivalents of nucleoli [108]. Therefore, the inherent inability of
the DamID to detect these sequences might not be as problematic as one might initially
expect. However, there are additional caveats, such as lamin B1 not being the only protein
interacting with and organizing specific sequences. For example, at least in some cells,
the heterochromatin tethering to the nuclear lamina was shown to be dependent on lamin
A and lamin B receptor [109]. Moreover, abrogating the DNA tethering led to changes
in gene expression. In the context of the aforementioned study, it is currently unclear
whether the association of specific sequences with lamin B1 in embryos has a functional
consequence. The overexpression of Kdm5b by the mRNA injection leads to a general
decrease of the H3K4me3 mark, which will likely have a wider consequence that simply
overrules the LAD establishment in the paternal genome [101]. Unfortunately, no further
functional and developmental data can be obtained under the described experimental
setup. Irrespective of the technical limitations, the study brings interesting insights into
how LADs are established post fertilization.

6. Future Directions

Although the nuclear lamins have been long recognised for their importance in nor-
mal cellular biology, their specific properties and current technical limitations leave their
distinct roles in early development largely unrecognised. Understanding their precise
biology, developmental roles, their interaction partners, and interacting DNA sequences of
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nuclear lamins promise to bring key insights, which might lead to alleviating the dramatic
phenotypes associated, namely, with the lamin A/C mutations. As a proof of this concept,
mutation studies that induce Emery–Dreifuss muscular dystrophy (EDMD) conducted in
C. elegans lamin (LMN-Y59C) coupled with the DamID identification of lamina associated
chromatin showed that ablation of a protein that anchors H3K9- methylated chromatin,
CEC-4, in the LMN-Y59C condition was able to reduce the disease phenotype and improve
mobility of the worms [110]. Although mammals, including humans, are much more
complex than C. elegans, a similar strategy of deleting a lamin A/C interaction partner was
shown to ameliorate the phenotype of Lmna ablation in mice [111].

In contrast to the situation with Lamin A/C, the near total absence of clinical phe-
notypes associated with mutations or absence of lamin B1/B2 in humans is, to say the
least, puzzling. Whether this absence is given by the redundancy between the lamin
B genes or the prenatal severity of the phenotype is currently anonymous. One of the
major limitations faced with investigating the role of lamins in the very early stages of
mammalian development is the lack of appropriate tools. For this reason, the function
of specific lamin genes and their products are virtually unprobed. Since the ablation of
lamins, which are expressed in the early stages of egg development, could cause nuclear
irregularity and chromatin instability already in the female germ cells, conditional knock-
out or homozygous knock out studies can be challenging. Overall, mutation studies in vivo
seem to be highly challenging as the ablation of vital genes such as the lamins may never
lead to production of preimplantation embryos at all. At the same time, many of the
lamin-associated phenotypes described in tissue cultures were recapitulated. Due to these
limitations, novel and more refined strategies are considered necessary.
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