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CONTEMPORARY REVIEW

Therapeutic Challenges and Emerging 
Treatment Targets for Pulmonary 
Hypertension in Left Heart Disease
Christelle Lteif , PharmD; Ali Ataya , MD; Julio D. Duarte , PharmD, PhD

ABSTRACT: Pulmonary hypertension (PH) attributable to left heart disease (LHD) is believed to be the most common form of 
PH and is strongly associated with increased mortality and morbidity in this patient population. Specific therapies for PH-LHD 
have not yet been identified and the use of pulmonary artery hypertension-targeted therapies in PH-LHD are not recom-
mended. Endothelin receptor antagonists, phosphodiesterase-5 inhibitors, guanylate cyclase stimulators, and prostacyclins 
have all been studied in PH-LHD with conflicting results. Understanding the mechanisms underlying PH-LHD could potentially 
provide novel therapeutic targets. Fibrosis, oxidative stress, and metabolic syndrome have been proposed as pathophysi-
ological components of PH-LHD. Genetic associations have also been identified, offering additional mechanisms with bio-
logical plausibility. This review summarizes the evidence and challenges for treatment of PH-LHD and focuses on underlying 
mechanisms on the horizon that could develop into potential therapeutic targets for this disease.
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Pulmonary hypertension (PH) attributable to left 
heart disease (LHD) has historically been de-
fined by a mean pulmonary artery pressure 

(mPAP) ≥25  mm  Hg and a mean pulmonary artery 
wedge pressure (PAWP) >15 mm Hg, determined by 
right heart catheterization (RHC).1 However, the 6th 
World Symposium on Pulmonary Hypertension has 
recently recommended to reconsider the definition of 
PH by lowering the mPAP cutoff based on accumu-
lating data indicating that an mPAP of 20 mm Hg is 
a more appropriate threshold for abnormal pulmonary 
artery pressure.2 The major hemodynamic feature dif-
ferentiating PH attributable to LHD from other forms 
of PH is the elevation in the PAWP, which estimates 
left atrial pressure and provides an indirect measure of 
left ventricular function.1 However, caution should be 
used when interpreting PAWP since it only estimates 
left ventricular end diastolic pressure, which is con-
sidered the gold standard measurement of left ven-
tricular filling pressure. Previous studies have shown 
that PAWP can incorrectly classify patients with PH 

potentially attributable to measurement techniques 
or patient characteristics such as hypoxemia, venti-
lation, and obesity.3–7 PH-LHD can occur in patients 
with heart failure (HF) with reduced ejection fraction 
(HFrEF), heart failure with preserved ejection fraction 
(HFpEF), and left-sided valvular disease. It falls within 
the World Health Organization classification of Group 
2 PH. Although its prevalence is not well determined, 
it is believed to be the most common form of PH ac-
counting for up to 70% of PH cases.8–11 The estimated 
prevalence of PH in HFpEF is collectively reported by 
multiple studies and registries to range between 36% to 
80%, irrespective of the method for PH diagnosis.12–16 
As for patients with HFrEF, the prevalence of PH has 
been reported to be anywhere from 40% to 75%.17,18 
Variations in PH definitions and, most importantly, in 
diagnostic modalities are the main reasons for a poorly 
defined prevalence of PH-LHD. Nevertheless, it is im-
portant to identify PH in LHD because it is strongly 
associated with increased mortality and morbidity in 
this patient population.8–11 Although optimizing the 
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treatment of the underlying LHD can reduce the sever-
ity of PH,17–19 specific therapies for PH in LHD have not 
yet been identified. Treatments that specifically target 
PH in LHD could slow its progression and potentially 
improve disease severity, leading to far better clinical 
outcomes. This review focuses on the challenges of 
discovering optimal therapies for PH-LHD and under-
lying mechanisms on the horizon that could develop 
into potential therapeutic targets for this disease.

PATHOPHYSIOLOGY AND DIAGNOSIS
The elevation of mPAP in patients with PH-LHD is ini-
tially a manifestation of LHD; it results from an elevation 
in left atrial or ventricular filling pressures, which are 
consequences of systolic or diastolic left ventricular 
dysfunction.20 PH-LHD can be divided into 2 subcat-
egories, defined as isolated post-capillary PH (IpcPH) 
and combined pre- and post-capillary PH (CpcPH). In 
IpcPH, the mPAP is passively elevated because of in-
creased left-sided filling pressure which congests the 
pulmonary circulation. In CpcPH, mPAP is elevated 
from increased left-sided filling pressures in addition 
to pulmonary vascular disease secondary to pulmo-
nary vasculature remodeling and vasoconstriction. 
To further sub-classify all forms of PH, the 6th World 
Symposium on PH suggested including a pulmonary 
vascular resistance (PVR) ≥3 WU into the definition of 
pre-capillary PH with mPAP >20 mm Hg, regardless 
of underlying etiology.2 In fact, the Symposium’s task 
force on PH attributable to left heart disease suggested 

defining (1) IpcPH as a PAWP >15 mm Hg and mPAP 
>20  mm  Hg, and PVR <3  WU and (2) CpcPH as a 
PAWP >15 mm Hg and mPAP >20 mm Hg, and PVR 
≥3 WU.2 Other measures that have been used to differ-
entiate CpcPH and IpcPH include the transpulmonary 
gradient (=mPAP−PAWP; with values >12–15 mm Hg 
indicating CpcPH) and the diastolic pressure gradient 
(=pulmonary artery diastolic pressure−mean pulmo-
nary arterial wedge pressure; with values >7 mm Hg 
indicating CpcPH).1 Although the elevation in mPAP is 
attributable to increase in left heart filling pressures in 
the majority of patients with IpcPH, early pulmonary 
vascular remodeling can still occur.21 The resulting 
reduction in pulmonary artery compliance leads to 
stiffness in the pulmonary vasculature, subsequently 
increasing PVR and right ventricular afterload.22 On 
the other hand, the elevation in mPAP in patients with 
CpcPH is disproportionate to the pressure resulting 
from the left heart filling pressure transmission and 
the increase in mPAP is usually more severe than with 
IpcPH.21 This subgroup of patients develops pulmo-
nary vascular disease attributable to chronic vaso-
constriction and pulmonary vasculature remodeling.23 
Chronic contraction of the right heart against the in-
creased pulmonary artery pressure can lead to right 
ventricular contractile impairment and afterload mis-
match, resulting in right heart dysfunction on top of left 
ventricular dysfunction.24 CpcPH also exhibits features 
of distal pulmonary artery hypertrophic remodeling, fi-
brosis, and luminal occlusion, and the degree of pul-
monary vascular remodeling may be associated with 
increased PVR and reduced pulmonary artery compli-
ance.25 The increase in pulmonary hemodynamic se-
verity observed in CpcPH is often proportional to the 
increase in right ventricular dysfunction and has been 
shown to be independent of PAWP when contrasting 
IpcPH and CpcPH.26 This suggests that the precap-
illary component in CpcPH may be a result of addi-
tional mechanisms at the arterial level.21,26,27 The lower 
prevalence of right ventricular dysfunction in IpcPH is 
also paralleled by an overall better prognosis and sur-
vival compared with CpcPH.28 Characteristics such as 
estimates of vascular compliance and right ventricular 
function have been associated with PH-LHD progno-
sis, suggesting that additional measures could be in-
cluded to characterize patients with this disease.17,29–32

Patients with PH-LHD often present with symptoms 
related to their underlying LHD and right ventricular dys-
function. While non-specific, patients often complain of 
fatigue, progressive shortness of breath with exertion, 
edema of the lower extremities, as well as shortness 
of breath with lying flat (orthopnea) and bending over 
(bendopnea).1 It is difficult to distinguish IcpPH, CpcPH 
and uncomplicated LHD based on physical exam-
ination alone, but patients with CpcPH may present 
with jugular venous distention, ascites, and peripheral 

Nonstandard Abbreviations and Acronyms

CpcPH	 combined pre- and postcapillary 
pulmonary hypertension

ERAs	 endothelin receptor antagonists
HFpEF	 heart failure with preserved ejection 

fraction
HFrEF	 heart failure with reduced ejection 

fraction
ID	 inhibitor of DNA binding
IpcPH	 isolated post-capillary pulmonary 

hypertension
LHD	 left heart disease
mPAP	 mean pulmonary artery pressure
PADN	 pulmonary artery denervation
PAH	 pulmonary arterial hypertension
PASP	 pulmonary artery systolic pressure
PAWP	 pulmonary artery wedge pressure
PDE5	 phosphodiesterase-5
PH	 pulmonary hypertension
RHC	 right heart catheterization
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edema once they progress to right ventricular dysfunc-
tion which can be determined by echocardiographic 
findings of a dilated and dysfunctional right ventricle.33 
PH is often suspected in patients with LHD when 
echocardiography suggests right heart dilation, right 
ventricular dysfunction, or moderate-to-severe tricus-
pid regurgitation with an elevated right ventricular sys-
tolic pressure >35 mm Hg.1 In patients with PH-HFpEF, 
a low diffusion capacity of the lung for carbon mon-
oxide also suggests worse progression of the disease 
and increased risk for mortality.34 The differential di-
agnosis of PH-LHD includes other conditions underly-
ing PH that could also be present concomitantly with 
LHD. These conditions include chronic thromboem-
bolic disease, pulmonary arterial hypertension (PAH), 
and other underlying lung diseases such as chronic 
obstructive pulmonary disease.1 RHC remains the gold 
standard to differentiate PH-LHD from other forms of 
PH, particularly by the assessment of the PAWP.1 To 
rule out chronic thromboembolic disease as a contrib-
uting factor for PH, a ventilation/perfusion scan is also 
recommended as HF presents with a hypercoagula-
ble state.1 RHC is indicated if there is evidence of right 
ventricular dysfunction on the echocardiography, if the 
cause of PH is unclear, or if advanced HF therapies 
are considered to support treatment decisions.1 Once 
a comprehensive hemodynamic profile is obtained 
from the RHC, the use of PVR alone has strongly been 
recommended for the identification of the subtypes of 
PH-LHD.2 The 2 conditions that are sometimes con-
fused clinically are PH-LHD and PAH; but advanced 
age, obesity, diabetes mellitus, hypertension, and cor-
onary disease are more likely associated with PH-LHD 
than PAH.16 A pre-test likelihood score of LHD based 
on clinical risk factors should be included in the deci-
sion process leading to RHC.20 A recent study showed 
a gradual increase in circulating microRNA-204 (miR-
204), which is known to promote proliferation in pulmo-
nary artery smooth muscle cells, across the pulmonary 
vasculature in patients with PAH and not in PH-LHD.35 
This offers a potential novel strategy to diagnose and 
better discern these 2 clinical groups of PH, although it 
is not clear whether the patients with PH-LHD belonged 
to the IpcPH or CpcPH subtype.35 Growing evidence 
shows that the real difficulty is in differentiating CpcPH 
from PAH in the presence of LHD because of their sim-
ilarities in some clinical and hemodynamic characteris-
tics. In patients with suspected LHD and a PAWP of 13 
to 15 mm Hg, provocative testing—by exercise or fluid 
challenge when exercise is not feasible—is recom-
mended to identify occult LHD.20 Similar to PAH, right 
ventricular dysfunction and pulmonary artery remodel-
ing develops more frequently in CpcPH compared with 
IpcPH.28 Some evidence also suggests that patients 
with CpcPH could share similar age, body mass index, 
natriuretic peptide levels, 6-minute walk distance, and 

comorbidities with idiopathic PAH.36 These findings, 
along with the histopathology of CpcPH, resulted in the 
hypothesis that PH could be a continuum ranging from 
PAH to PH-LHD with CpcPH in the middle.36 Whether 
this is true, and whether real distinctions between the 
different subtypes of PH cannot be made remain to be 
confirmed.

TREATMENTS
Although PAH and PH-LHD have some similarities 
in presentation, confusing them in the clinical setting 
can lead to inappropriate therapeutic care of patients 
with PH.33 The 6th World Symposium on Pulmonary 
Hypertension strongly recommends against the use 
of PH-targeted therapies for PH-LHD because based 
on the available evidence PH-targeted therapies have 
failed to show benefit in these patients.2 There are 
currently no treatments for PH-LHD, and the stand-
ing paradigm for its treatment consists of optimizing 
the management of the underlying disease37 such as 
aggressively treating HF and performing valvular re-
pair when indicated to reduce the progression of the 
disease.1,38 The first line agents recommended for 
HFrEF consist of beta-blockers in combination with 
angiotensin-converting enzyme inhibitors, angiotensin 
receptor blockers, or angiotensin receptor-neprilysin 
inhibitors as well as sodium-glucose cotransporter-2 
inhibitors for their mortality benefit.39–41 As for patients 
with HFpEF, the current guidelines recommend opti-
mizing treatment of comorbidities and use of diuret-
ics for congestion since randomized controlled trials 
have not resulted in beneficial therapies in this setting 
yet.39,40 Metabolic syndrome and other risk factors for 
cardiovascular comorbidities should be managed as 
well.1,38 Finally, other disorders such as chronic ob-
structive pulmonary disease, pulmonary embolisms, 
and sleep apnea could also lead to PH and should be 
adequately treated.1,38

Multiple PAH-targeted medications across different 
drug classes have been studied in PH-LHD. The fol-
lowing sections review the results of trials investigating 
the various drug classes for the treatment of PH-LHD 
(Table 1).

Endothelin Receptor Antagonists
Activation of endothelin receptors on endothelial and 
vascular smooth muscle cells leads to potent vaso-
constriction.64 Increased expression of endothelin-1 in 
vascular endothelial cells has been associated with PH 
development, rendering it a potential treatment target 
in this disease.65 In fact, endothelin receptor antago-
nists (ERAs) such as bosentan, ambrisentan, and mac-
itentan have been approved for the treatment of PAH. 
Some evidence has also suggested an association of 
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endothelin-1 with HF development and progression, 
further emphasizing the importance of investigating its 
role in the treatment of PH-LHD.66–68 The ERAs bosen-
tan, macitentan, and darusetan have not shown signifi-
cant benefit in clinical trials of PH-LHD and have raised 
concern for greater adverse effects.42–47 The goal of 
the REACH-1 (Research on Endothelin Antagonism 
in Chronic Heart Failure) pilot study was to investigate 
the long-term clinical outcomes of bosentan in patients 
with advanced HFrEF, but it was terminated before 
reaching the recruitment goal because of high rates 
of liver function abnormalities in the treatment arm.42 
Although the study did report significant improvement 
in the New York Heart Association class with bosen-
tan in the subgroup of patients who were followed up 
for the entire study period, it also showed a higher 
risk of death and HF worsening with bosentan early 
after treatment initiation.42 In the ENABLE (Endothelin 
Antagonist Bosentan for Lowering Cardiac Events in 
Heart Failure) trial, endothelin antagonism with bosen-
tan in patients with advanced HFrEF did not improve 
the New York Heart Association functional class or the 
global clinical assessment of patients at 9 months, but 
resulted in early and increased fluid retention mani-
fested as increased peripheral edema and weight gain 
leading to a significant increase in hospitalization for 
HF.43 Bosentan also failed to show significant improve-
ment in systolic pulmonary arterial pressure (PAP) or 
tricuspid regurgitation velocity in patients with PH-
LHD in a multicenter randomized controlled trial, while 
showing a higher rate of serious adverse events.44

Macitentan, another ERA, was investigated in the 
MELODY-1 (Macitentanin Subjects with Combined 
Pre- and Post-Capillary Pulmonary Hypertension 
Due toLeft Ventricular Dysfunction) randomized con-
trolled trial for patients with left HF with CpcPH.45 After 
12 weeks of treatment, macitentan did not significantly 
improve PVR, PAWP, or mean right atrial pressure 
compared with placebo.45 Although not statistically 
significant, macitentan also resulted in numerically 
more adverse events such as significant fluid retention 
and worsening New York Heart Association functional 
class.45 Finally, while darusentan improved cardiac 
index in patients with HF after 3 weeks of treatment 
in the HEAT (Heart Failure Endothelin A Receptor 
Blockade Trial), it did not significantly reduce PAWP, 
mPAP, PVR, or right atrial pressure. Similar to other 
ERAs, it also was associated with significantly higher 
rates of adverse events in the higher dosage groups.46 
Unlike the HEAT trial, the EARTH (Endothelin Receptor 
Antagonist Trial in Heart Failure ) trial did not show any 
improvement of cardiac remodeling or clinical status 
of patients with chronic HF treated with darusentan 
for 24  weeks in addition to first line HF therapies.47 
Only 1 of the above trials included patients with PH 
suspected by echocardiography and none showed 
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a long-term improvement in clinically significant out-
comes from ERAs in PH-LHD. Overall, most trials of 
ERAs in PH-LHD showed a higher rate of adverse 
events, with some being terminated early because of 
safety concerns. This has led to the conclusion that 
ERAs lack efficacy and safety rendering them inap-
propriate for the treatment of PH-LHD.

Phosphodiesterase-5 Inhibitors
Inhibiting phosphodiesterase-5 (PDE5), the enzyme 
responsible for the degradation of cyclic guanosine 
monophosphate, results in vasodilation.1 The pul-
monary vasculature has significant levels of PDE5; 
therefore, the potential benefit of this class of drugs 
has been investigated in PH-LHD.69,70 PDE5 inhibi-
tors have been widely investigated for the treatment 
of PH in LHD. Sildenafil showed promising results in 
the earlier smaller trials. In patients with HFrEF, treat-
ment with sildenafil resulted in significantly lower pul-
monary artery systolic pressure (PASP) estimated 
by echocardiography in 1 study.48 In another small 
study, patients with HFpEF with right ventricular fail-
ure treated with sildenafil had a significant improve-
ment in their mPAP and right ventricular function and 
a reduced right atrial pressure and PAWP.49 Chronic 
treatment with sildenafil significantly decreased mPAP, 
PAWP, and PVR compared with placebo in patients 
with HF with exercise oscillatory breathing.50 In the 
RELAX (Phosphodiesterase-5 Inhibition to Improve 
Clinical Status and Exercise Capacity in Heart Failure 
with Preserved Ejection Fraction) trial, 216 patients with 
HFpEF were randomized to sildenafil or placebo.51 At 
24  weeks, sildenafil showed no improvement com-
pared with placebo in the primary outcome of exer-
cise capacity or in the secondary outcomes including 
change in 6-minute walk distance, left ventricular mass, 
diastolic dysfunction, and a composite of death, car-
diac/renal hospitalization, or increased HF symptoms. 
Although not statistically significant, there was a small 
increase in vascular adverse events such as headache, 
flushing, and hypotension in the sildenafil group.

In a study of patients with PH-LHD, sildenafil signifi-
cantly improved PVR, cardiac output, 6-minute walk 
distance, and exercise capacity.52 In another study 
investigating patients with HFpEF with PH, sildena-
fil did not improve mPAP, PAWP, cardiac output, and 
peak oxygen consumption compared with placebo.53 
In the SOVIAC (Sildenafilfor Improving Outcomes after 
VAlvular Correction) study, sildenafil was investigated 
in patients with PH-LHD who had undergone a suc-
cessful mitral and/or aortic valve replacement or repair 
and had evidence of persistent precapillary PH after 
valvular surgery.54 Treatment with sildenafil resulted in 
significantly worse clinical outcomes including death 
and HF hospitalization compared with placebo.54

Multiple meta-analyses have combined the results 
of studies evaluating the effects of various PDE5 inhibi-
tors or sildenafil alone in PH-LHD.71–75 The results were 
consistent across the meta-analyses with PDE5 inhib-
itors resulting in significant improvements in mPAP, 
PVR, LVEF, exercise capacity, and quality of life in pa-
tients with HFrEF, but not in patients with HFpEF.71–75 
However, most studies that included patients with 
HFpEF had a relatively small sample size of this sub-
set; therefore, more research is required to determine if 
PDE5 inhibitors benefit this group.71–75

The studies showing benefit with PDE5 inhibitors 
included patients with HFrEF or HFpEF with right ven-
tricular failure or both HFpEF and HFrEF. Patients with 
HFpEF without right ventricular failure did not appear 
to benefit despite the larger sample size. Right ven-
tricular dysfunction is a predictor of poor prognosis in 
HFrEF and HFpEF, but is more marked in HFrEF than 
HFpEF for a given level of PH.76 Therefore, the findings 
on PDE5 inhibitors attest to the hypothesis that the 
presence of right ventricular dysfunction might predict 
a beneficial response to PDE5 inhibitors.77

Soluble Guanylate Cyclase Stimulators
While PDE5 inhibitors exert vasodilation by slowing cy-
clic guanosine monophosphate degradation, soluble 
guanylate cyclase stimulators enhance its production 
resulting in increased vasodilation.78 Vericiguat was 
given at multiple doses and compared with placebo in 
the SOCRATES-REDUCED (Soluble Guanylate Cyclase 
Stimulator in Heart Failure Patients With REDUCED EF) 
and the SOCRATES-PRESERVED (Soluble Guanylate 
Cyclase Stimulator in Heart Failure Patients with 
PRESERVED EF) trials which included patients with 
HFrEF and patients with HFpEF, respectively.55,56 The 
goal of these trials was to determine the optimal dose 
and tolerability of vericiguat in worsening chronic HF. 
In the SOCRATES-REDUCED trial, vericiguat was well 
tolerated, but it did not result in significant changes in 
NT-proBNP (N-terminal pro-b-type natriuretic peptide) 
compared with placebo, nor in echocardiographic pa-
rameters and in clinical outcomes such as all cause 
death or the composite of cardiac death or HF hospi-
talizations.55 In the SOCRATES-PRESERVED trial, veri-
ciguat did not reduce NT-proBNP levels and did not 
improve left atrial volume compared with placebo, but 
it was well tolerated and was associated with improve-
ments in the patients’ quality of life according to the 
Kansas City Cardiomyopathy Questionnaire Clinical 
Summary Score used in the study.56 The stepwise ad-
dition of vasodilatory drugs to the regimen of patients 
with HF raises their risk of adverse events because of 
pronounced lowering of blood pressure specifically 
in patients with worsening HF and a lower baseline 
blood pressure.79–81 The VICTORIA (Vericiguat Global 
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Study in Subjects with Heart Failure with Reduced 
EjectionFraction) trial was a multicenter study that ran-
domized 5050 patients with HFrEF and evidence of 
worsening symptoms to vericiguat or placebo.57 The 
composite of death from cardiovascular causes or HF 
hospitalizations was significantly lower in the vericiguat 
group compared with the placebo group.57 There were 
no statistically significant differences in serious and 
non-serious adverse events between the 2 treatment 
arms.57 PH is a manifestation of advanced HF, so the 
beneficial effects of vericiguat on the progression of 
HF could also prove valuable if it results in significant 
reduction of disease advancement and potential pre-
vention of PH development.

Riociguat, another soluble guanylate cyclase stim-
ulator, was given at multiple doses to patients with 
PH-HFrEF in the LEPHT (Left Ventricular Systolic 
Dysfunction Associated With Pulmonary Hypertension 
Riociguat Trial).58 Although it did not result in significant 
improvements in mPAP at any dose, it was well toler-
ated and it significantly improved cardiac index, stroke 
volume index, and pulmonary and systemic vascular 
resistance in the highest dose group.58 The effect of 
riociguat in patients with PH-HFpEF were evaluated in 
the DILATE-1 (Acute Hemodynamic Effects of Riociguat 
in Patients With Pulmonary Hypertension Associated 
With Diastolic Heart Failure) trial and were compara-
ble with its effect in PH-HFrEF.59 Riociguat was well 
tolerated and improved stroke volume and systolic 
blood pressure, but it did not have significant effects 
on mPAP and PVR.59 Given the tolerability of vericiguat 
and some encouraging clinical benefits in the setting 
of LHD, future trials could prove valuable in investigat-
ing additional end points in PH-LHD such as mortal-
ity and hospitalizations to evaluate the progression of 
the disease. However, the lack of efficacy of riociguat 
on mPAP could also indicate that soluble guanylate 
cyclase stimulators do not improve PH in LHD, pos-
sibly because of the advanced stage of the disease. 
In contrast the beneficial effects of soluble guanylate 
cyclase stimulators in HFrEF could be through the im-
provement of cardiac index, stroke volume, and total 
pulmonary resistance.

Prostacyclin Analogs
Prostacyclin is primarily produced by endothelial cells; 
it stimulates vasodilation and has antithrombotic and 
antiproliferative effects, which can improve outcomes in 
HF.82 Epoprostenol, a synthetic analog of prostacyclin, 
was approved for the treatment of PAH, and its poten-
tial to reduce pulmonary vascular resistance coupled 
with its beneficial effect on right ventricular dysfunc-
tion in PAH provided a basis to investigate it in PH-
LHD. FIRST (Flolan International Randomized Survival 
Trial) investigated the use of intravenous epoprostenol 

in patients with severe HFrEF for the improvement of 
hemodynamic and clinical outcomes.60 Although epo-
prostenol resulted in a significant increase in cardiac 
index, decrease in PAWP, and decrease in systemic 
vascular resistance, the study was stopped early be-
cause of a strong trend toward decreased survival 
with epoprostenol.60 The majority of death events 
were caused by progressive congestive heart failure, 
with the hypothesis that vasodilators could result in 
short-term benefit but activate deleterious neurohor-
monal systems and lead to renin secretion in the longer 
term.60 Treprostinil, a newer prostacyclin analog is ap-
proved for the treatment of PAH and improves pulmo-
nary hemodynamics in PAH.83

In animal models, prostacyclin analogs and pros-
tacyclin precursors appear to reverse metabolic 
syndrome and prevent HFpEF development, respec-
tively.84,85 This raised the possibility that treprostinil 
could have beneficial effects on the pulmonary vascu-
lature and on systemic metabolic features in PH-LHD. 
Although it has not been studied in human subjects 
with PH-LHD yet, it has shown some promising results 
in animal studies. Treprostinil was studied in mouse 
and rat models of PH-HFpEF with features of meta-
bolic syndrome and diabetes mellitus, which are com-
monly seen in patients with PH-LHD.86 In the mouse 
model, 16-week treatment with treprostinil significantly 
improved hyperglycemia and trended to lower pulmo-
nary pressures.86 Early treatment (concurrently with 
semaxinib [SU5416​] exposure) of the rat model with 
treprostinil significantly improved hyperglycemia and 
pulmonary pressures.86 Late treatment (7 weeks after 
a single injection of SU5416) of the rat model with tre-
prostinil and metformin lowered hyperglycemia and 
improved cardiac function through the activation of 
AMP-activated protein kinase in skeletal muscle and 
the right ventricle, but did not reduce pulmonary pres-
sures.86 Whether the beneficial effect of treprostinil will 
be translated in human patients remains to be seen, 
but the data suggests that treatments targeting skele-
tal muscle liver kinase B1/sirtuin-3-AMP-activated pro-
tein kinase and right ventricle AMP-activated protein 
kinase could potentially be developed for the preven-
tion of metabolic syndrome-associated PH-LHD.86 In 
contrast, the FIRST trial in which continuous infusion 
of epoprostenol failed to show any benefit, included 
patients with HFrEF who had not necessarily devel-
oped PH yet. This could mean that prostacyclin an-
alogs could work better in PH-HFpEF, which typically 
demonstrates different comorbidities and subsequent 
development such as in the setting of metabolic syn-
drome and diabetes mellitus compared with HFrEF 
which normally presents as a consequence of myo-
cardial infarction and ischemia.

A recent study evaluated the pooled effect of mul-
tiple PAH-targeted therapies, mostly PDE5 inhibitors 



J Am Heart Assoc. 2021;10:e020633. DOI: 10.1161/JAHA.120.020633� 9

Lteif et al� Therapeutic Challenges and Novel Targets in PH-LHD

and ERAs, on the disease progression of patients 
with CpcPH.87 The majority of the included patients 
had HFpEF and did not experience improvement in 
symptoms, echocardiographic parameters, or func-
tional capacity. However, they did experience higher 
morbidity and mortality with PAH-targeted medica-
tions.87 A meta-analysis pooling the results of multi-
ple PH-targeted therapies such as PDE5 inhibitors, 
prostanoids, ERAs, and soluble guanylate cyclase 
stimulators has concluded that PDE5 inhibitors may 
improve exercise capacity in patients with LHD, but 
that all drug classes resulted in a higher risk for ad-
verse events.88

Pulmonary Artery Denervation
Pulmonary Artery Denervation (PADN) is a catheter-
based technique aimed at ablating the densely in-
nervated regions in or near the pulmonary artery that 
are involved in the baroreceptor reflex resulting in 
PH.89,90 Following successful animal studies showing 
preclinical efficacy of PADN, it was tested in patients 
with PAH who were resistant to medical therapies 
and was shown to be safe and efficacious in improv-
ing their hemodynamic parameters and functional 
capacity.89,90 Recently, studies in preclinical models 
of PH-LHD have shown that the upregulation of al-
pha-1 and downregulation of beta adrenergic recep-
tors in the lung tissue of PH-LHD-induced rats was 
counteracted by PADN.91 In a phase II trial of mixed 
PH etiologies including PH-LHD, PADN resulted in 
overall improvements in mPAP and 6-minute walking 
distance.92 Finally, a multi-center trial of PADN effi-
cacy on CpcPH led to a decrease in mPAP, systolic 
PAP, and diastolic PAP, and to an increase in car-
diac output and 6-minute walking distance.93 PADN 
also resulted in a reduction of clinical worsening and 
hospitalizations compared with the control group.93 
However, PADN was compared with sildenafil, which 
is not approved for the treatment of PH-LHD; there-
fore, the results are disputable. Overall, PADN shows 
promise in different PH types including PH-LHD, but 
further research is required to assess its long-term 
safety and clinical outcomes.93

Ongoing Clinical Trials
Levosimendan is a calcium sensitizer that enhances 
myocardial contractility and results in arterial, venous, 
and coronary vasodilation.94 Its positive inotropic ef-
fect does not increase myocardial oxygen demand 
and its vasodilatory effect results in the protection of 
the myocardium from ischemia and a reduction in right 
ventricular preload and afterload.94 These 3 pharma-
cological effects together could target the pathophysi-
ology of PH-LHD. Levosimendan is currently being 
studied in a phase II trial of patients with PH-HFpEF 

who will receive a weekly dose and be periodically 
evaluated over 2  years for primary outcomes of ad-
verse events and secondary outcomes of effective-
ness such as 6-minute walk test, New York Heart 
Association functional class, and incidence of death 
and hospitalizations.61 The early results of the HELP 
(Hemodynamic Evaluation of Levosimendan in Patients 
With PH-HFpEF) trial show that levosimendan reduced 
resting mPAP, and resting and exercise central venous 
pressure and pulmonary capillary wedge pressure 
(PCWP); it also increased the 6-minute walking dis-
tance, demonstrating a promising role in the treatment 
of PH-LHD.95 However, further studies are necessary 
to evaluate the long-term effects of levosimendan in 
this setting.95

Another phase II clinical trial is currently investigat-
ing the efficacy of oral sodium nitrite compared with 
placebo in patients with PH-HFpEF. Exogenous nitrite 
has vasodilatory effects and has shown to reduce pul-
monary pressures.96,97 The primary outcome of interest 
in the phase II clinical trial is mPAP during submaximal 
exercise after 10 weeks of treatment.62 In fact, inhaled 
sodium nitrite has shown to improve pulmonary, right 
atrial, and pulmonary capillary wedge pressures in 
patients with PH-HFpEF in a pilot phase II study. This 
effect was mainly achieved by lowering left and right 
ventricular filling pressures and increasing pulmonary 
artery compliance. This adds to the notion of the phys-
iological benefit of exogenous administration of nitrite 
in PH-LHD.98

Stimulation of the β3 adrenergic receptor has 
proven to be cardioprotective in multiple animal models 
of HF by attenuating hypertrophic remodeling through 
nitric oxide synthase and possibly through reduced 
sodium-potassium pump stimulation in the heart.99–101 
The SPHERE-PH (β3 Adrenergic Agonist Treatment in 
Chronic Pulmonary Hypertension Secondary to Heart 
Failure) trial is currently investigating the effects of mi-
rabegron, a clinically available β3 adrenergic agonist 
approved for the treatment of overreactive bladder, 
on pulmonary hemodynamics, clinical, biochemical 
and cardiac imaging measures in CpcPH secondary 
to HF.63 The investigators of the SPHERE-PH trial had 
previously found that β3 adrenergic agonists signifi-
cantly reduced PVR and improved right ventricular 
function in a porcine model of IpcPH.102 These studies 
propose new approaches to treat PH in LHD and could 
potentially overcome the limitations and failures of the 
previous studies.

Finally, the National Institutes of Health/National 
Heart, Lung, and Blood Institute launched the 
PVDOMICS (Redefining Pulmonary Hypertension 
through Pulmonary Vascular Disease Phenomics) ini-
tiative with the goal of increasing our understanding of 
different PH classifications based on biological char-
acteristics.103 The study will enroll 1500 participants 
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with PH, with or without heart and lung diseases, and 
healthy volunteers.103 The broad hypothesis of the 
study is that the combination of epidemiological and 
clinical features with -omic data will update the classifi-
cation of pulmonary vascular diseases.103 In addition to 
the main hypothesis, the different participating centers 
will be focusing on specific hypotheses.103 At the end 
of the study, it is expected that the data collected will 
serve as a valuable source to investigators seeking to 
identify therapeutic targets.103

THERAPEUTIC CHALLENGES
Despite a better understanding of the subtypes of 
PH-LHD, many challenges still exist slowing the 
discovery of effective therapies. As discussed 
above, the heterogeneity in the presentation and 
the different phenotypes observed within PH-LHD 
could contribute to the failure of treatment stud-
ies. Furthermore, the contribution of the underlying 
cardiac disease along with the multiple comorbidi-
ties that many patients with PH-LHD present with, 
could complicate studies of PH progression and 
act as complex confounders when assessing clini-
cal outcomes. Finally, an important element needed 
for the discovery of new therapies is the availability 
of animal models that correlate to the clinical pres-
entation of PH-LHD. While monocrotaline-induced 
PH results in right ventricular dysfunction and HF 
in a rat model, it manifests changes not associated 
with human HF.104,105 Similarly, pulmonary aortic 
banding leads to pulmonary hypertension and right 
ventricular hypertrophy with greater tricuspid regur-
gitation,106 but left-sided disease characteristics are 
generally not achieved.106 A SU5416/obese ZSF1 rat 
model of PH-HFpEF has recently been developed 
by combining endothelial injury with metabolic syn-
drome features.107 The SU5416-induced pulmonary 
endothelial injury resulted in elevated pulmonary 
pressure that overall improves the model. Although 
this model more closely resembles the clinical phe-
notype of human PH-HFpEF, it is expensive and lim-
ited in the number of molecular procedures that can 
be performed on it.107 Therefore, the development of 
a high-fat diet–induced pulmonary hypertension in 
AKR/J mice proved to be significant.108 This mouse 
model parallels the clinical presentation of patients 
with PH-HFpEF with key clinical features such as 
aging, metabolic syndrome, elevated right ventricular 
systolic pressure, and left ventricular end-diastolic 
pressure.108 It was also validated and shown to be re-
liable and reproducible, offering new possibilities for 
the mechanistic study of this disorder and the test-
ing of potential new therapies.108 The recent develop-
ment of more accurate preclinical models of PH-LHD 

should accelerate not only our understanding of the 
disease, but also the development of specific and ef-
ficacious therapies.

POTENTIAL NOVEL TREATMENT 
TARGETS
The proper diagnosis of PH-LHD may be challeng-
ing, yet it has direct therapeutic consequences. 
Since our understanding of IpcPH and CpcPH is 
still growing, the studies mentioned above could 
have missed distinguishing these subtypes. This 
could potentially have masked significant effects 
of a drug on one of the subtypes. Also, CpcPH 
and PAH have similar right ventricular dysfunction 
and pulmonary artery remodeling,28 which could 
explain some of the conflicting results observed if 
patients with CpcPH benefit from some of the PAH-
targeted therapies and patients with IpcPH do not. 
Moreover, even with the current recommendations 
of optimizing the treatment of the underlying dis-
ease, clinically significant PH in LHD still remains.109 
The failure of previous clinical trials in demonstrat-
ing safety or efficacy of PAH therapies in the setting 
of PH-LHD further highlights the need for additional 
work to be conducted. Finding potential treatment 
targets specific for PH-LHD requires a better un-
derstanding of the underlying mechanisms associ-
ated with PH-LHD.

Compared with PAH, the underlying patho-
physiology and histopathological associations with 
PH-LHD are limited and not yet understood. Small 
exploratory studies have added to our understand-
ing of underlying mechanisms in PH-LHD (Figure 1, 
Table  2). In 108 patients with PH-LHD, global pul-
monary vascular remodeling with severe medial and 
intimal thickening of the veins similar to patients with 
pulmonary veno-occlusive disease was identified.110 
The severity of PH, based on PASP from echocardi-
ography and transpulmonary gradient and PVR from 
RHC, was strongly correlated with the degree of 
pulmonary venous remodeling.110 Extensive venous 
remodeling in pulmonary veno-occlusive disease 
can increase the transcapillary hydrostatic pressure 
gradient and lead to alveolar edema precipitated by 
increases in pulmonary arterial blood flow attribut-
able to PAH-targeted vasodilators.111 These findings 
could explain the predisposition of patients with 
HF to worsening pulmonary edema in response to 
pulmonary vasodilators that is similar to pulmonary 
veno-occlusive disease. The findings also provide 
the pathobiology of pulmonary venous remodel-
ing as a potential treatment target for PH-LHD.110 
A mouse model of aortic constriction-induced left 
HF and advanced PH exhibited increased wet and 
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dry lung weights that were not associated with pul-
monary edema, but with pulmonary fibrosis and re-
modeling.25 The extensive increase in the proportion 
of muscularized lung vessels was seen with myo-
fibroblast proliferation and leukocyte infiltration.25 
In addition to pulmonary fibrosis, right ventricular 
fibrosis in PH-HFpEF has been associated with 
worsening right ventricular diastolic volume and 
right ventricular free wall strain.112 This indicates an 
inadequate structural and functional remodeling of 
the right ventricle.112 However, right ventricular fibro-
sis was not associated with total pulmonary resis-
tance as it was in PAH.112 This suggests that the 
diffuse right ventricular fibrosis in PH-HFpEF may 
be out of proportion to the right ventricular afterload 
seen in this disease. This observation offers a dis-
tinct pathophysiology for PH-HFpEF compared with 
PAH.112

Oxidative stress has also been associated with 
cardiovascular diseases and, in some experimental 
models, reactive oxygen species have been associ-
ated with PH and right ventricular remodeling.121–123 
Increased levels of reactive oxygen species leads to 
higher calcium influx resulting in smooth muscle con-
traction and subsequent increase in PASP.124 In addi-
tion, decreasing oxidative stress has been shown to 
lower PASP and improve right ventricular dysfunction 
in animal models.125,126 Ghasemzadeh et al investi-
gated the relationship between oxidative stress and 
PH in humans.113 Cysteine is one of the major amino-
thiol compounds available in the plasma that reacts 
with oxidants to form cystine, which can be quantified 
and used as a measure of oxidative stress.127,128 In 347 
patients with HFrEF and HFpEF who underwent echo-
cardiography, increased plasma cystine levels were 
associated with increased PASP even in a subgroup 

Figure 1.  Underlying mechanisms and potential treatment targets for pulmonary hypertension in left heart disease.
A, Gene expression changes or genetic polymorphisms, resulting in altered protein function, have been associated with pulmonary 
hypertension (PH) in left heart disease (LHD) prompting a new approach in understanding the possible mechanisms of its development 
by studying the function of the affected proteins. B, Metabolic syndrome has been suggested as a predisposing factor for PH in LHD. 
It can result in macrophage accumulation and increased interleukin-6 levels, implicating inflammation as a potential treatment target. 
Oxidative stress has been proposed to contribute to the development of right ventricular remodeling and PH in LHD with reactive 
oxygen species potentially serving as disease progression biomarkers and/or therapeutic targets. C, The degree of pulmonary 
vascular remodeling, attributable to fibrosis and myofibroblast proliferation and leukocyte infiltration, has been correlated with the 
severity of PH development in LHD quantified by increased pulmonary hemodynamics. D, Right ventricular fibrosis in pulmonary 
hypertension in heart failure with preserved ejection fraction has been associated with worsening right ventricular diastolic volume 
and right ventricular free wall strain and has offered a distinct mechanism and treatment target compared with other forms of PH. 
mPAP indicates mean pulmonary artery pressure; PH-HFpEF, pulmonary hypertension in heart failure with preserved ejection fraction; 
PH-LHD, pulmonary hypertension in left heart disease; and SNP, single nucleotide polymorphism.
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analysis of patients with HFpEF.113 Future studies in-
vestigating the role of plasma cystine in the prediction 
of PH or as a monitoring tool for the progression of the 
disease are needed. Also, the use of cysteine levels to 
follow-up PH treatment or the benefit of targeting cys-
teine levels to treat oxidative stress and potentially PH 
warrants further research.

In a small cohort of patients with PH, PH-LHD was 
strongly associated with metabolic syndrome com-
pared with PAH, suggesting that metabolic syndrome 
is a predisposing factor for PH in patients with LHD.114 
To better understand the underlying mechanism, a 
new rat model of LHD was developed in which met-
abolic syndrome was shown to exacerbate PH mea-
sured by both echocardiography and RHC.115 PH was 
also associated with macrophage accumulation, in-
creased interleukin-6 and activation of the signal trans-
ducer and activator of transcription 3 in the lungs of the 
rat model and of patients with PH-LHD.115 Reduction 
of interleukin-6 levels, by treatment with antibodies 
or metformin, reduced inflammation and pulmonary 

artery smooth muscle cell proliferation in vitro and in 
vivo and reversed pulmonary vascular remodeling in 
the rat model, implicating inflammation as a plausi-
ble mechanism behind metabolic syndrome-induced 
PH-LHD.115

Circulating biomarkers also have the potential to 
reveal underlying pathophysiology, improve pheno-
typic classification, or possibly identify potential treat-
ments. One study has shown that pulmonary artery 
wedge blood levels of endothelin-1 were elevated in 
patients with HFpEF-CpcPH compared with patients 
with IpcPH or HFpEF without PH.116 In addition, levels 
of endothelin-1 in wedge blood strongly correlated with 
PVR and were not exclusively defined by left ventricular 
filling pressures.116 This study reiterates the notion that 
CpcPH could have a distinct pathophysiology from 
IcpPH and that endothelin receptor blockage may pro-
vide benefit in this population.116

Genetic approaches can prompt or can complement 
physiological analyses in understanding the pathobiol-
ogy of complex human diseases.129,130 Specific genetic 

Figure 2.  Potential genetic polymorphisms associated with pulmonary hypertension in 
left heart disease.
Red boxes represent exons and blue boxes represent the promoter region. A, Single nucleotide 
polymorphism within the gene encoding for the endothelial nitric oxide synthase enzyme has 
been shown to be associated with lower nitric oxide levels in humans and worse pulmonary 
hemodynamics in patients with pulmonary hypertension in left heart disease. B, Repeat length 
polymorphism in the promoter region of the serotonin receptor gene was associated with 
overexpression of the serotonin transporter and elevated pulmonary artery pressure in patients 
with heart failure. 5-HTT indicates serotonin receptor gene; eNOS, endothelial nitric oxide 
synthase gene; and PH-LHD, pulmonary hypertension in left heart disease.
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associations with PH-LHD have not been established 
yet,1 but different hypotheses are being studied. A sin-
gle nucleotide polymorphism within the gene encoding 
for the endothelial nitric oxide synthase enzyme has 
been shown to be associated with transpulmonary 
gradient in 2 independent cohorts of patients with 
PH-LHD (Figure 2A).117 The genetic variation was also 
associated with diastolic pressure gradient, PVR, and 
mPAP in a combined analysis of both cohorts.117 This 
association was not present in a separate cohort of 
patients with PAH nor in patients with PH attributable 
to lung disease, suggesting a specific linkage with 
PH-LHD.117,131 This finding does have a biological plau-
sibility since this specific polymorphism has been as-
sociated with lower nitric oxide levels in humans and 
endothelium-derived nitric oxide plays a major role in 
vascular tone regulation.132 Clinically, this mutation has 
also been associated with dilated cardiomyopathy and 
with poorer survival in patients with HFrEF.133,134 The 
possibility that low nitric oxide levels could contribute 
to the development of PH in LHD could explain the fail-
ure of nitric oxide stimulating drugs, suggesting that 
the problem could lie in the ability to produce nitric 
oxide leading to the hypothesis that supplying exoge-
nous nitric oxide may be more beneficial than stimulat-
ing its synthesis.

Another biologically plausible association was 
demonstrated between the repeat length polymor-
phism in the promoter region of the serotonin trans-
porter gene and elevated PAP in patients with HF 
(Figure  2B).118 This polymorphism was associated 
with overexpression of the serotonin transporter and 
consequent serotonin uptake by pulmonary smooth 
muscle cells leading to an imbalance between vaso-
constriction and vasodilation and contributing to the 
proliferation of pulmonary artery smooth muscle cells. 
This polymorphism was also significantly more prev-
alent in patients with idiopathic PAH compared with 
control participants.135 This mechanism could also ex-
plain the susceptibility of patients with HF to develop 
PH. The evidence for serotonin and serotonin recep-
tors in cardiovascular diseases is that they can affect 
the cardiovascular system in a compensatory or in a 
detrimental way, through vasodilation or vasoconstric-
tion and through inotropic or arrhythmic effects.136,137 
Consequently, the cardiovascular response to sero-
tonin agonists or antagonists has been conflicting and 
research into serotonin and its receptors in cardiovas-
cular diseases is still ongoing and has generated mul-
tiple hypotheses that still need answering.

In a transcriptome-wide analysis, we recently found 
that the inhibitors of DNA binding (ID)1 and 2 genes 
were upregulated in the peripheral blood mononuclear 
cells of patients with CpcPH compared with patients 
with HF without PH.119 The ID gene family has been 
previously associated with PAH and all 4 members of 

the ID protein family (ID1‒4) are functional inhibitors of 
the basic helix–loop–helix transcription factors which 
confers them the ability to regulate cell fate determi-
nation, differentiation, and proliferation in multiple 
tissues including the vasculature.138–142 In a gene set 
enrichment analysis, the cell cycle and oxidative phos-
phorylation pathways were significantly upregulated in 
patients with CpcPH compared with patients without 
PH.119 ID expression is regulated by bone morphoge-
netic proteins, and mutations in bone morphogenetic 
protein receptors type II occur in a majority of patients 
with familial PAH.143,144 In pulmonary artery smooth 
muscle cells of mouse models and patients with PAH 
carrying these mutations, gene expression changes of 
ID genes have been demonstrated.145 Therefore, the in-
volvement of these genes and associated pathways in 
the development of PH-LHD warrants further research 
to determine their potential use as therapeutic targets.

In another study comparing patients with IpcPH 
or CpcPH to patients with PAH, CpcPH and IpcPH 
had similar clinical presentations of left ventricular 
dysfunction.27 In contrast, 141 genes were differen-
tially expressed among patients with PAH and CpcPH 
when compared with IpcPH.27 Increased expression 
of these genes in the lungs along with biologic pro-
cesses relevant to vascular remodeling similar to PAH 
pathophysiology were observed in CpcPH.27 Patients 
with CpcPH may have a genetic predisposition to pul-
monary vascular disease in LHD and may be a distinct 
PH phenotype.

While no genome-wide association study has been 
reported yet in humans with PH-LHD, one was con-
ducted in a high-fat diet-‒induced mouse model of 
PH-LHD.120 The goal of the study was to identify genes 
associated with increased right ventricular systolic 
pressure indicating a susceptibility to develop PH-
LHD.120 Following a network-based scoring analysis on 
the significantly associated genetic variants, the epi-
dermal growth factor receptor gene as the most likely 
to be associated with right ventricular systolic pres-
sure changes.120 These findings also correlated with 
increased expression of the gene in the lungs of the 
mouse model of PH-LHD.120 Therefore, studying the 
epidermal growth factor receptor gene could enhance 
our understanding of the underlying mechanisms be-
hind PH-LHD and the gene could potentially serve as a 
therapeutic target for this disease.

FUTURE DIRECTIONS
PH in LHD is the most common form of PH and 
brings a poor prognosis by increasing the morbidity 
and mortality risk of this patient population. Despite 
apparent similarities with PAH, the current guidelines 
do not recommend PAH-targeted drugs for PH-LHD. 



J Am Heart Assoc. 2021;10:e020633. DOI: 10.1161/JAHA.120.020633� 15

Lteif et al� Therapeutic Challenges and Novel Targets in PH-LHD

This is because of the failure of previous clinical tri-
als in proving their safety and/or efficacy in the set-
ting of PH-LHD. It is imperative to further improve our 
understanding of the pathophysiology and underlying 
mechanisms of PH-LHD to develop specific thera-
pies for this disease and by doing so, establish an 
evidence-based approach for the management of 
patients with HF developing PH. To understand these 
mechanisms, it is necessary to identify biological 
pathways or genetic factors associated with PH-LHD. 
After establishing newer approaches, clinical trials 
focusing on outcomes such as mortality, hospitaliza-
tions, and quality of life would be necessary to corre-
late physiological recovery with clinical improvement.
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