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Abstract

Therapeutically validated oncoproteins in myeloproliferative neoplasms (MPN) include BCR-ABL1 and rearranged PDGFR proteins. The
latter are products of intra- (e.g. FIP1L1-PDGFRA) or inter-chromosomal (e.g. ETV6-PDGFRB) gene fusions. BCR-ABL1 is associated
with chronic myelogenous leukaemia (CML) and mutant PDGFR with an MPN phenotype characterized by eosinophilia and in addition,
in case of FIP1L1-PDGFRA, bone marrow mastocytosis. These genotype–phenotype associations have been effectively exploited in the
development of highly accurate diagnostic assays and molecular targeted therapy. It is hoped that the same will happen in other MPN
with specific genetic alterations: polycythemia vera (JAK2 V617F and other JAK2 mutations), essential thrombocythemia (JAK2V617F
and MPL515 mutations), primary myelofibrosis (JAK2 V617F and MPL515 mutations), systemic mastocytosis (KITD816V and other KIT
mutations) and stem cell leukaemia/lymphoma (ZNF198-FGFR1 and other FGFR1 fusion genes). The current review discusses the above-
listed mutant molecules in the context of their value as drug targets.
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Introduction

Myeloid malignancies are stem cell-derived clonal disorders and
include three broad clinicopathologic categories: acute myeloid
leukaemia (AML), myelodysplastic syndrome (MDS) and myelo-
proliferative neoplasms (MPN). Such classification is however
operational and not precise; for example, some patients present
with histologic features that are reminiscent of both MPN and

MDS and are assigned the diagnosis of ‘MDS/MPN’ overlap [1].
The history of MPN dates back to 1951 when William Dameshek
coined the term ‘myeloproliferative disorders (MPD)’ as a clinico-
pathologic category that included chronic myelogenous leukaemia
(CML), polycythemia vera (PV), essential thrombocythemia (ET)
and primary myelofibrosis (PMF) [2, 3]. These ‘classic’ MPD are
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now included in an expanded category of ‘MPN’, according to the
World Health Organization (WHO) classification system, which also
includes systemic mastocytosis (SM) and chronic neutrophilic
(CNL) and eosinophilic (CEL) leukaemias (Table 1) [4]. Current
classification of chronic myeloid neoplasms is semi-molecular
although primarily based on myeloid cell morphology and presence
or absence of effective haematopoiesis; Fig. 1 illustrates the histo-
logical hallmarks that distinguish MDS, MPN and MDS/MPN.

Pathogenetic breakthroughs in MPN began in 1960 when the
Philadelphia (Ph) chromosome was described in CML [5, 6]. This
historic discovery later (1980–1990) led to the identification of
BCR-ABL1 as the disease-causing mutation in CML [7–9]. In 1993
and 1994, stem cell factor receptor (KIT) and platelet-derived
growth factor receptor-� (PDGFRB) mutations were associated
with SM (KIT D816V and KIT V560G) [10] and an MPN phenotype
characterized by eosinophilia and monocytosis (ETV6-PDGFRB)
[11]. In 1998, a fibroblast growth factor 1 (FGFR1) mutation was
described in stem cell leukaemia/lymphoma (SCLL; ZNF198-
FGFR1). In 2003, FIP1L1-PDGFRA, a karyotypically occult
platelet-derived growth factor receptor-� (PDGFRA) mutation,
was described in association with an MPN phenotype character-
ized by eosinophilia and mastocytosis [12]. The molecular patho-
genesis of BCR-ABL1-negative classic MPN remained elusive
until early 2005 [13–16] when several groups reported a Janus
kinase 2 (JAK2) gain-of-function (GOF) mutation (JAK2V617F) in
PV, ET and PMF. In 2006, a GOF thrombopoietin receptor (MPL)
mutation (MPLW515L) was reported in JAK2V617F-negative
PMF [17]. In 2007, other JAK2 mutations (exon 12 mutations) in
JAK2V617F-negative patients with PV were described [18].

Additional MPL and JAK2 exon 12 mutations have since been
added to the list [19–21].

The above-listed revelations in putative disease-causing or dis-
ease-promoting genetic changes have ignited much interest in the
development of molecular targeted therapy in MPN. Proof-of-
principle in this regard has already been accomplished with the
use of imatinib mesylate (IM) in CML [22] and PDGFR-rearranged
MPN [12, 23]. On the other hand, therapeutic targeting of
KITD816V or mutant FGFR1 has not been as successful whereas
phase I/II clinical trials evaluating anti-JAK2 drugs are currently
ongoing. In this review, I will provide a clinically relevant overview
of mutant molecules of interest in adult MPN and discuss the 
current state of affairs in regards to targeted therapy.

BCR-ABL1

The stage for the discovery of BCR-ABL1 in CML was set in 1960
when Peter Nowell and David Hungerford described the Ph 
chromosome [5]. In 1967, Philip Fialkow and colleagues applied
polymorphisms in the X-linked glucose-6-phosphate dehydroge-
nase (G-6-PD) locus to establish CML as a stem cell-derived
clonal disorder [24]. In 1972, Janet Rowley clarified the constitu-
tion of the Ph chromosome as a reciprocal translocation between
chromosomes 9 and 22; t(9;22)(q34;q11) [25].

In 1982, the human homologue (ABL1; 225 kb total gene size)
of v-abl was mapped to chromosome 9 [26] and shown to be
involved in the Ph translocation [27]. In 1984, the chromosome
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Fig. 1 Histological hallmarks
that distinguish myelodysplastic
syndrome (MDS) from myelo-
proliferative neoplasm (MPN)
and MDS/MPN. CML, chronic
myelogenous leukaemia; PV,
polycythemia vera; ET, essential
thrombocythemia; MF, primary
myelofibrosis; CEL, chronic
eosinophilic leukaemia; HES,
hypereosinophilic syndrome;
SM, systemic mastocytosis;
CNL, chronic neutrophilic
leukaemia; MPN-U, MPN,
unclassifiable; CMML, chronic
myelomonocytic leukaemia;
JMML, juvenile myelomono-
cytic leukaemia; MDS/MPN-U,
MDS/MPN, unclassifiable.
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22 breakpoint was mapped to a 5.8 kb area and named the ‘break-
point cluster region (bcr)’, which is part of the BCR gene (135 kb
total gene size) [28, 29]. In 1990, retroviral infection of
haematopoietic stem cells with BCR-ABL was shown to induce
CML-like disease in mice [7–9].

ABL1

ABL1 is a cytoplasmic protein tyrosine kinase (PTK) that plays a
role in non-erythroid myelopoiesis [30], cytoskeletal rearrange-
ment and inhibition of cell migration [31]. Wild-type ABL1 exists
in two isoforms that can localize to both the cytoplasm and
nucleus, influencing cell proliferation/survival and apoptosis
[32–34]. ABL1 contains both an SH2 and an SH3 (autoregulatory)
domain in addition to the catalytic kinase domain and undergoes
a treatment-relevant conformational change when activated by
phosphorylation of the activation loop tyrosine residues [35].

BCR-ABL1

The chromosome 9 breakpoints in CML involve a large, ~200 kb
region within the ABL1 alternative first exons (1a and 1b), but invari-
ably result in fusion genes that incorporate ABL1 exon 2 [36]. In con-
trast, the breakpoints on chromosome 22 are clustered within three
much smaller regions of the BCR gene [37]; the major breakpoint
cluster region (M-bcr; a 5.8 kb region spanning exons 12–16 and
resulting in a p210 fusion protein) [28], the minor breakpoint cluster
region (m-bcr; upstream of M-bcr and involving the first intron and
resulting in a p190 fusion protein) [38, 39] and �-bcr involving
intron 19 that is downstream of M-bcr and resulting in a p230 fusion
protein [40]. By far the most frequent chromosome 22 breakpoint in
CML is M-bcr and the other two, in the context of CML, are extremely
rare. There are usually two junction variants of M-bcr; b2a2 and
b3a2, without any documented clinical relevance [41].

BCR-ABL1 gets transcribed as a chimeric mRNA (8.5-kb) as
opposed to the normal ABL1 mRNA (a 6- or 7-kb) [42] and sub-
sequently translated to an activated BCR-ABL1 gene product
(most commonly 210-kD) instead of the normal ABL1 gene prod-
uct (145-kD) [43]. BCR-ABL1 localizes to the cytoskeleton and
displays an up-regulated tyrosine kinase activity [44] that leads to
the recruitment of downstream effectors of cell proliferation and
cell survival and consequently leukaemogenesis, as has been
demonstrated in cell lines, primary cells and mouse transplant or
transgenic models [7, 8, 45–47]. BCR-ABL1 signal transduction
involves several adapter molecules (e.g. GRB2, GAB2, CRKL, etc.)
and signalling pathways (e.g. Ras, PI3K, JAK-STAT, etc.) that are
all thought to contribute to the pathogenesis of CML [35, 48, 49].

Anti-BCR-ABL1 targeted therapy in CML

In 1996, Brian Druker and his colleagues described the in vitro,
anti-BCR-ABL1 activity of imatinib mesylate (IM) [22], a 
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Table 1 Classification of chronic myeloid neoplasms modified from
the 2008 World Health Organization classification scheme [313]

1. Myelodysplastic syndromes (MDS)

1.1. Refractory cytopenia (RC) with uni-lineage dysplasia (RCUD)

1.1.1. Refractory anaemia (RA)

1.1.2. RA with ring sideroblasts (RARS)

1.1.3. Refractory neutropenia

1.1.4. Refractory thrombocytopenia

1.2. RC with multi-lineage dysplasia (RCMD)

1.3. RA with excess blasts (RAEB)

1.4. MDS with isolated del(5q)

1.5. MDS, unclassifiable

1.6. Childhood MDS

2. Myeloproliferative neoplasms (MPN)

2.1. Classic

2.1.1. Chronic myelogenous leukaemia, BCR-ABL1 positive
(CML)

2.1.2. Polycythemia vera (PV)

2.1.3. Essential thrombocythemia (ET)

2.1.4. Primary myelofibrosis (PMF)

2.2. Non-classic

2.2.1. Chronic neutrophilic leukaemia

2.2.2. Chronic eosinophilic leukaemia, not otherwise specified
(CEL-NOS)

2.2.3. Mastocytosis

2.2.4. MPN, unclassifiable

3. MDS/MPN

3.1. Chronic myelomonocytic leukaemia (CMML)

3.2. Juvenile myelomonocytic leukaemia (JMML)

3.3. Atypical chronic myeloid leukaemia, BCR-ABL1-negative
(aCML)

3.4. MDS/MPN, unclassifiable

3.4.1. Provisional entity: RARS and thrombocytosis (RARS-T)

4. Myeloid and/or lymphoid neoplasms with eosinophilia and abnor-
malities of,

4.1. PDGFRA

4.2. PDGFRB

4.3. FGFR1 (8p11 myeloproliferative syndrome; a.k.a. stem cell
leukaemia/lymphoma)
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2-phenylaminopyrimidine class kinase inhibitor that targets ABL1
[50], PDGFR [51], ARG [52] and KIT [53]; the mechanism of
action involves competitive inhibition of the ATP binding site of the
kinase [54]. Consequently, orally administered IM has been shown
to be effective in the treatment of neoplastic diseases with muta-
tions involving the aforementioned kinases: CML [55–61], 
Ph-positive acute lymphoblastic leukaemia (ALL) [56, 62], gas-
trointestinal stromal tumours (known to harbour KIT or PDGFR
mutations) [63, 64] and PDGFR-rearranged MPN [12, 23, 65–69].

In newly diagnosed patients with chronic phase CML (CP-
CML), IM is now recommended as the initial treatment of choice
[70]. In the International Randomized Study of Interferon and
STI571 (IRIS), interferon alpha/cytarabine combination was com-
pared with IM in 1106 newly diagnosed CP-CML patients. The
results of this trial were recently updated in 2006 [71]. IM was
found to be superior to combination chemotherapy in terms of
both response rates and progression-free survival; the 553
patients initially assigned to IM therapy had been followed for at
least 5 years and the best observed rates for complete haemato-
logical and cytogenetic remissions were 97% and 82%, respec-
tively. Five-year survival was 89%.

Imatinib resistance and second-generation 
anti-BCR-ABL1 kinase inhibitors

IM is not as effective in advanced phase CML as it is in CP-CML
[56]. Furthermore, approximately 20% of CP-CML patients either
fail treatment, for one reason or another, or transform into
advanced phase disease. IM-resistance has operationally been
classified into primary (not achieving complete cytogenetic remis-
sion) and secondary (loss of response). In each instance, several
underlying mechanisms have been implicated and include altered
BCR-ABL1/IM cellular concentration ratio due to increased BCR-
ABL1 expression or abnormal cellular drug transport, activation of
alternative signal pathways, inherent IM-resistance by BCR-ABL1
leukaemia stem cells and emergence of IM-resistant BCR-ABL1
mutations. The latter is by far the most frequent and best under-
stood mechanism of IM resistance.

The crystal structure of IM bound to the ABL1 indicates that
the drug stabilizes the oncoprotein in an enzymatically inactive
conformation [54]. BCR-ABL1 mutations induce IM resistance by
hindering drug-oncoprotein binding at critical contact points or
prevent the formation of inactive structural conformation that is
required for IM activity [72]. At present, more than 50 BCR-ABL1
mutations have been described and most affect the ABL1 kinase
domain; in general four categories of mutations are identified and
seven mutations account for two-thirds of the cases (G250, Y253,
E255, T315, M351, F359, H396): phosphate-binding loop (e.g.
E255, Y253, Q252, G250; affecting ATP binding site); IM binding
site (e.g. T315); catalytic domain (e.g. F359); and activation loop
(e.g. H396; forcing an active conformation and thus making IM
unable to bind) [73]. Not all these mutations are IM-insensitive
and some (e.g. T315, E255, Y253) are more resistant than others
(e.g. M244, G250, Q252, F317, E355, F359, V379, H396) [74].

The development of second generation kinase inhibitors and bet-
ter understanding of mutant ABL1 conformation dynamics have had
some success in addressing the aforementioned challenges of IM
resistance [75–80]. New drugs include more potent ABL1 inhibitors
such as nilotinib, dual ABL1/Src inhibitors such as dasatinib and
bosutinib, dual ABL1/Lyn inhibitors such as INNO-406, ABL1-
substrate binding inhibitors (i.e. non-ATP competitive) such as
ONO12380. Most but not all (e.g. T315) ABL1 mutations are sensi-
tive to one or more of the above listed new drugs whose value as sal-
vage therapy for IM-refractory disease is being validated [75–80].
Finally, there is more and more discussion about IM-resistant BCR-
ABL1-positive leukaemia stem cells and their dependence on both
altered BCR-ABL1 expression and other signalling pathways [81].
Whether or not going after such quiescent leukaemia stem cells is
therapeutically essential, in patients achieving complete molecular
remissions with currently available drugs, remains to be seen.

Other ABL1 mutations

In the context of myeloid malignancies, ETV6 is the only currently
known non-BCR fusion partner for ABL1 although other ABL1
fusion proteins have been described in acute lymphoblastic
leukaemia (ALL) [82]. ETV6-ABL1, which corresponds to
t(9;12)(q34;p13), has been associated with ALL [83–86], AML
(with transient response to IM) [87–89] and atypical CML (with
minor response to imatinib) [85, 90–92]. Like BCR-ABL1, ETV6-
ABL1 encodes for an activated and transforming ABL1 [87, 93].
The PNT oligomerization motif of ETV6 is thought to activate the
ABL1 kinase by a similar mechanism to the BCR coiled coil
oligomerization domain in the context of the BCR-ABL1.

JAK2 and MPL mutations

Like ABL1, JAK2 is a cytoplasmic PTK and mutant JAK2, like
mutant ABL1, has now been associated with classic MPN. JAK2 is
a member of the Janus family of kinases that were incidentally dis-
covered around 1989 and set aside as ‘just another kinase’ [94].
Their name was later modified to Janus kinases (JAKs) [95] after
the Roman god with two faces because they contain two symmet-
rical kinase-like domains; the C-terminal JAK homology 1 (JH1)
domain possesses tyrosine kinase function while the immediately
adjacent JH2 domain is enzymatically inert but is believed to reg-
ulate the activity of JH1. The possible role of JAK2 mutations in
haematological malignancy was first suspected after the observa-
tion that a dominant mutation in HOP, a JAK homologue in
Drosophila, induced leukaemia-like defects [96].

Janus kinases

There are four JAKs (JAK1, JAK2, JAK3 and tyrosine kinase 2) and
they all contain seven JH domains organized into four regions;
kinase (JH1), pseudo-kinase (JH2), FERM (the N-terminal JH7,
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JH6, JH5, and part of JH4) and SH2-like (JH3 and part of JH4)
[97]. In human beings, JAK1 is located on chromosome 1p31.3,
JAK2 on 9p24, JAK3 on 19p13.1 and TYK2 on 19p13.2. At pres-
ent, human cancer-relevant JAK mutations have been described
for JAK1 (T-ALL, AML, breast cancer, lung cancer) [98–101],
JAK3 (AMKL cell lines and primary cells, breast cancer, gastric
cancer) [98, 102] and JAK2 (MPN primarily and other myeloid
malignancies infrequently, trisomy 21 associated ALL) [13–16,
103–105]. However, other than JAK2 mutations in MPN and JAK1
mutations in T-ALL, the other associations are rare.

JAK2 fusion mutations
GOF JAK2 fusion mutations have been associated with T or pre-B
ALL, T-cell lymphoma, AML and MPN-U; these include ETV6-JAK2,
t(9;12)(p24;p13), PCM1-JAK2, t(8;9)(p22;p24), BCR-JAK2,
t(9;22)(p24;q11.2) and SSBP2-JAK2, t(5;9)(q14.1;p24.1) (Table 2)
[106–114]. PCM1 displays multiple coiled-coil motifs and it is
believed that these are preserved and function as a dimerization
domain in PCM1-JAK2. In ETV-6-JAK2, the chimeric protein
includes the Helix-Loop-Helix oligomerization domain of ETV6
fused to the kinase domain of JAK2 and the fusion oncogene
induces both T and B cell lymphoid neoplasms in transgenic mice
[106, 107, 115, 116]. In a more recent study, expression of ETV-6-
JAK2 in human cord blood cells resulted in Epo-independent ery-
throid differentiation in vitro and induction of myelofibrosis in an 
in vivo xenotransplantation model [117]. In BCR-JAK2, the fusion
protein includes the coiled-coil dimerization domain of BCR and the
JAK2 kinase domain [112]. The patient in this particular instance
had MPN-U and did not respond to imatinib. Another patient with
BCR-JAK2 had AML [114]. The BCR-JAK2 fusion in this instance
had a different BCR breakpoint, although it was similar to that of
BCR-ABL1. The most recently described JAK2 fusion partner,
SSBP2, is located at 5q14.1 and the associated phenotype was
pre-B ALL [118]. The NH2 terminus of the SSBP2 protein contains
a LisH motif that is believed to function as the dimerization domain.

JAK2V617F
JAK2 V617F is an exon 14 G to T somatic mutation. The nucleotide
change at position 1849 results in the substitution of valine to
phenylalanine at codon 617. JAK2 V617F was first described in
2005 in patients with PV, ET and PMF [13–16]. Subsequently, the
mutation has also described in other myeloid neoplasms [103,
119]. As of the time of this writing, JAK2V617F has not been
reported in lymphoid disorders [120–123], solid tumour
[124–126] or secondary myeloproliferation [127, 128]. In general,
mutational frequency is estimated at over 95% in PV, 50% in ET
or PMF, 20% in certain other MPNs including refractory anaemia
with ringed sideroblasts and thrombocytosis (RARS-T) and less
than 5% in AML or MDS [104, 129–131].

JAK2 V617F induces a PV-like phenotype in murine transplant
models: erythrocytosis but not thrombocytosis, low serum Epo
level, splenomegaly, extramedullary haematopoiesis, granulocyto-
sis, megakaryocytic hyperplasia and ultimately bone marrow

fibrosis and anaemia [14, 132, 133]. However, in a recent study of
JAK2 V617F transgenic mice, manipulation of mutant gene expres-
sion resulted in either an ET (lower expression compared to wild-
type allele) or PV phenotype with (equal expression) or without
(higher expression) thrombocytosis [134]. Such mutant allele
burden-dependent phenotypic variation in transgenic mice was
also demonstrated by another study [135].

Current information regarding mutant allele burden in human
beings with MPN partially recapitulates what was seen in the
above-mentioned experiments with transgenic mice. In other
words, mutant allele burden in patients with ET is significantly
lower than that seen in patients with either PV or PMF [136–140].
At least in PV, a higher allele burden is the result of JAK2V617F
homozygosity, which is accomplished by mitotic recombination
[13, 16, 141]. Some have suggested that such homologous
recombination and genomic instability in general is facilitated by
JAK2 V617F [142]. However, the interaction between JAK2 V617F
homozygosity and mutant allele burden, in terms of phenotypic
determination, is currently not clear [143, 144].

In human beings, JAK2 V617F occurs at a primitive stem cell
level and is chronologically an early event [145–147]. Some but
not all [148] studies have suggested JAK2V617F clonal involve-
ment of NK [149], T [150] and B [150] lymphocytes. Regardless,
there is evidence to suggest that JAK2V617F may not be the ini-
tial clonogenic event in either PV or other MPNs and that its pres-
ence might not be mandatory for endogenous colony formation
[151–153]. The demonstration of JAK2V617F-negative leukaemia
clones arising in JAK2V617F-positive MPN patients lends further
support in this regard [154, 155]. In the latter instance, both
mutation positive and negative cells were shown to share the
same cytogenetic abnormality and thus probably arose from a
common ancestral clone [154]. On the other hand, JAK2V617F or
other JAK2 mutations might be a necessary component of the PV
phenotype, because they are detected in all patients with the dis-
ease [20]. Furthermore, recent studies suggest that germline
genetic variation [156] and/or the occurrence of other concomi-
tant mutations [19] might explain why the same mutation is pres-
ent in apparently different disease phenotypes.

Other reported JAK2 exon 14 mutations include D620E (PV,
MPN, unclassifiable), E627E (MPN, unclassifiable), K607N (AML),
L611S (B-ALL), JAK2DeltaIREED (DS-associated B-ALL), C616Y
(PV), V617F from c.1848_1849delinsCT (post-ET MF) and
V617F/C618R from c.1849–1852GTCT � TTTC (PV) [125,
157–163]. In addition, an activating JAK2T875N was described in
an AMKL cell line [164]. There is no doubt that the list of such
mutations will grow with time and, interestingly, some of the new
mutations identified in PV co-existed with JAK2V617F.

JAK2 exon 12 mutations
In 2007, a set of JAK2 exon 12 mutations were described in
JAK2V617F-negative patients with PV in whom erythrocytosis was
the predominant feature [165]. Because of the latter feature, some
of the cases were assigned the diagnosis of ‘idiopathic’ erythrocy-
tosis although their serum Epo level was almost always below the
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reference range and EECs were demonstrated in every instance
when tested. The majority of the cases (10 of 11) in the original
report [165] were found to harbour one of four exon 12 JAK2
mutant alleles: N542-E543del (4 cases), F537-K539delinsL 
(3 cases), K539L (2 cases), H538QK539L (1 case). All four exon 12
mutant alleles induced cytokine-independent/hypersensitive pro-
liferation in erythropoietin receptor-expressing cell lines and con-
stitutive activation of JAK-STAT signalling [165]. In addition,
JAK2K539L induced a PV phenotype in a mouse transplant model.
Also, in this first report, the four newly described JAK2 exon 12
mutations, which include both in-frame deletions and tandem
point mutations, appeared to be specific to either PV or ‘idiopathic’
erythrocytosis. Unlike the case with PV-associated JAK2V617F,
exon 12 JAK2 mutations were heterozygous but associated with
stronger abnormal JAK2 activation.

Many other studies have now confirmed the observations from
the above-mentioned study [20, 166–170] and in the process,
most [20, 166, 167] but not all [168, 170] of the studies 
suggested that exon 12 mutations occurred in virtually all
JAK2V617F-negative PV cases (i.e. approximately 3% of all PV
cases). Furthermore, several other exon 12 mutation variants 
were added to the list including R541-E543delinsK,
I540–E543delinsMK, V536–I546dup11, F537–I546dup10�547L
and E543–D544del [167–169]. Among all currently described
exon 12 mutations, the most frequent was N542–E543del com-
prising 17 of 52 cases reported at the time of the latest report
[168]. In general, many JAK2 exon 12 mutation-positive patients
present with apparently ‘isolated’ erythrocytosis but because of
their association with subnormal serum Epo level and the pres-
ence of EECs, they fulfil the 2008 WHO diagnostic criteria for PV
[171]. Finally, information presented at the 2007 American Society
of Hematology (ASH) meeting suggested that JAK2 exon 12 muta-
tions, as is the case with JAK2V617F, might clonally involve 
both B and NK lymphocytes [172] and also occur in ET and ‘idio-
pathic’ abdominal vein thrombosis [173, 174]. Obviously, more
studies are needed to fully appreciate the phenotypic spectrum of
these mutations.

JAK2 mutations associated with trisomy 21 associated acute
lymphoblastic leukaemia
A recent report in Lancet described somatically acquired GOF
JAK2 mutations (JAK2R683G/S/K; exon 16 and mostly heterozy-
gous) in 16 of 88 (18%) patients with Down’s syndrome-associ-
ated B-ALL but only 1 of 216 patients with sporadic ALL [105].
The latter patient had an isochromosome 21q. The mutations
caused constitutive JAK-STAT activation and cytokine-independ-
ent growth of BaF3 cells that was inhibited by JAK inhibitor I.
Overall prognosis did not appear to be affected.

MPL mutations
MPL (myeloproliferative leukaemia virus oncogene homologue)
belongs to the haematopoietin receptor superfamily and enables
its ligand, thrombopoietin (Tpo), to facilitate both global

haematopoiesis (early expansion of differentiating clones) and
megakaryocyte growth and differentiation [175–177]. The gene
for MPL maps to chromosome 1p34 and contains 12 exons [178].
Germline MPL mutations have been associated with either familial
thrombocytosis (GOF transmembrane domain mutation; S505N)
[179] or congenital amegakaryocytic thrombocytopenia (LOF
mutations) that often progresses to aplastic anaemia [180–182].
In addition, an MPL single nucleotide polymorphism (G1238T)
that results in a K39N substitution is found in approximately 7%
of African Americans [183]. Such patients display higher platelet
counts and lower MPL expression, when compared to patients
without the specific MPL polymorphism [183].

In 2006, a somatic GOF MPLW515L mutation (a G to T transi-
tion at nucleotide 1544 resulting in a tryptophan to leucine substi-
tution at codon 515 of the transmembrane region) was described
in JAK2V617F-negative PMF [17]. Subsequently, an additional
MPL mutation involving the same 515 codon (MPLW515K) was
incidentally discovered during screening for MPLW515L and the
prevalence of both mutations was determined at approximately
5% in PMF and 1% in ET [184]. More recent studies have identi-
fied other somatic MPL mutations including MPLW515S and
MPLS505N (mentioned above in association with familial throm-
bocytosis) and higher prevalence rates: approximately 4% in ET
(9% in JAK2V617F-negative cases) and up to 11% in PMF
[185–188]. Most recently, using SNP-array karyotyping, biallelic
MPLW515L mutation and uniparental disomy 1p was demon-
strated in some patients with RARS-T, thus providing a mecha-
nism of homozygosity similar to that of JAK2V617F [189].

As is the case with JAK2V617F, MPL515 mutations are early,
stem cell-derived events involving both myeloid and lymphoid
progenitors [190–192] and MPLW515L has been shown to trans-
form cell lines in terms of both cytokine-independent growth and
Tpo hypersensitivity, activate JAK-STAT/ERK/Akt and induce 
PMF-like disease in mice that is characterized by a rapid fatal
course, marked thrombocytosis, leukocytosis, hepatosplenomegaly
and bone marrow fibrosis [17]. Interestingly, some patients dis-
play multiple MPL mutations and others a minor JAK2V617F
cloner together with an MPL mutation [187, 193]. Again, these
observations support the secondary nature of such mutations
and underscore the complexity of pathogenetic mechanisms in
MPNs. Finally, preliminary information suggests that MPL
mutations favour megakaryocytic/myeloid as opposed to the
erythroid skewed proliferation/differentiation seen with JAK2
mutations [151, 191].

Clinical and prognostic correlates of JAK2 
and MPL mutations
Virtually all patients with PV carry a JAK2 mutation (97% with
JAK2V617F and the rest with JAK2 exon 12 mutations) [20]. In
PV, JAK2V617F ‘homozygous’ as opposed to ‘heterozygous’ state
has been associated with a higher haemoglobin level, higher
leukocyte count, lower platelet count and presence of pruritus
[139, 194]. A somewhat similar set of correlations were made for
higher mutant allele burden in PV, measured by quantitative
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assays [137, 140, 195]. The small number of patients with JAK2
exon 12 mutations are more likely to present with isolated erythro-
cytosis but there is substantial phenotypic overlap with
JAK2 V617F-positive PV [18, 168].

In ET, the presence of JAK2V617F has been associated with
advanced age, higher haemoglobin level, increased leukocyte
count and decreased platelet count [136, 196–198]. In mutation-
positive patients with ET, JAK2V617F allele burden has been
directly correlated with leukocyte count, platelet count and the
presence of palpable splenomegaly [136, 139, 140]. Similarly in
PMF, the presence of JAK2V617F has been associated with an
older age at diagnosis and higher leukocyte count [199]. In addi-
tion, JAK2V617F ‘homozygous’ PMF patients displayed an even
higher incidence of leukocytosis, marked splenomegaly and pruri-
tus [200]. Both PMF and ET patients with MPL mutations were
found to be older and more anaemic than their MPL mutation-neg-
ative counterparts [186, 188].

JAK2 or MPL mutations in MPNs might not have prognostic
relevance. In ET, overall or leukaemia-free survival was not
affected by either the presence of JAK2V617F or its allele burden
[136, 196]; the impact on the risk of thrombosis or fibrotic trans-
formation is less clear [136, 139, 196, 201]. Equally unclear is the
prognostic relevance of JAK2V617F allele burden in PV where a
higher mutant allele burden is implicated by some but not by oth-
ers as an adverse prognostic factor for fibrotic transformation,
thrombosis and need for chemotherapy [137, 139, 194, 195]. In
PMF, JAK2V617F presence was associated with inferior survival in
one but not in another study [199, 202]. Similarly divergent
results were reported in terms of leukaemic transformation rate
and need for chemotherapy or splenectomy [200, 203]. The most
recent study on the subject matter revealed shortened overall and
leukaemia-free survival in PMF patients with lower as opposed to
higher quartile JAK2V617F allele burden [203].

Anti-JAK2 small molecule therapy
A number of anti-JAK2 drugs have undergone preclinical testing
and some have already been introduced into clinical trials [204].
Amongst them, some are JAK2 selective ATP-mimetic small mol-
ecules: e.g. TG101209, TG101348, INCB018424, XL019, CEP701
and SB1518 [205–208]. TG101209, an orally available small mol-
ecule JAK2-selective kinase inhibitor, is one of the first com-
pounds to undergo extensive preclinical testing [209]. The drug’s
anti-JAK2 kinase activity was estimated at an IC50 of 6 nM, com-
pared to 169 nM for JAK3 [209]. In HEL cells (homozygous for
JAK2 V617F) and other JAK2 V617F-transduced cell lines,
TG101209 induced apoptosis and inhibited phosphorylation of
JAK2V617F, STAT5 and STAT3 (IC50 of approximately 600 nM)
[209]. At similar or lesser drug concentrations, the drug also
inhibited colony growth of primary cells from JAK2V617F-positive
PV patients and MPLW515L-positve PMF patients [209].
Furthermore, the growth inhibitory effect of TG101209 was rela-
tively selective to mutated-colonies. TG101348, a drug that is very
similar to TG101209, was also shown to display similar in vitro as
well as in vivo anti-PV and anti-MPN activity in the context of 

exon 12, exon 14 JAK2 and MPL mutations [205, 210–212]. 
In a murine model of polycythemia vera, oral TG101348 
therapy resulted in significant reduction of haematocrit, leuko-
cyte count, extramedullary haematopoiesis, myelofibrosis and
JAK2V617F-expressing clones [211]. TG101348, but not TG101209,
is currently undergoing phase I/II clinical trial in PMF and 
post-PV/ET MF.

Several other potent JAK2 inhibitors have also been reported to
have in vitro or in vivo (i.e. mouse models) activity against
JAK2V617F-driven cell proliferation and signal transduction.
Among them, INCB018424, XL019, CEP-701 and SB1518 are cur-
rently undergoing clinical trials in patients with advanced stages of
PMF or post-PV/ET MF (INCB018424, XL019, CEP701), PV
(XL019, CEP701), JAK2V617F-positive ET (CEP701) and acute
and chronic haematologic malignancies (SB1518) [206–208, 213,
214]. All of these drugs display potent JAK2 inhibitory activity but
their in vitro JAK2 selectivity, in the context of the JAK family of
kinases, is different. For example, JAK3 is spared by TG101348,
XL019 and INCB018424 but not by CEP701. Similarly, JAK1 is
spared by TG101348 and XL019 but not by INCB018424.

Preliminary results regarding INCB018424 in PMF and post-
PV/ET MF are encouraging in terms of the drug’s toxicity profile
and its activity against splenomegaly and constitutional symptoms
[213]. More follow-up is required to determine the drug’s effect on
anaemia, leukoerythroblastosis, myelofibrosis, cytogenetic abnor-
malities or JAK2V617F allele burden. Results regarding other
JAK2 inhibitors are too early to comment on. Nevertheless, the
expected anti-inflammatory cytokine effect of this class of drugs is
expected to be a confounding variable in terms of both toxicity and
efficacy assessment.

KIT mutations

In 1993, Furitsu and colleagues described a mutant KIT allele with
two-point mutations as being responsible for the ligand-independ-
ent constitutive activation of KIT in a human mast cell leukaemia
cell line (HMC-1); one mutation was located at the JM region at
codon 560 and nucleotides 1699–1701 (V560G; GTT→GGT) and
the other at the kinase domain at codon 816 and nucleotides
2467–2469 (D816V; GAC→GTC) [10]. One year later (1994),
Tsujimura et al. reported a kinase domain point mutation at
nucleotide 2468 (GC to TA) resulting in an amino acid substitution
at codon 814 (KITD814Y), in a murine mastocytoma cell line, 
P-815 [215]. In both instances, either the mutations themselves
[215] or their corresponding murine constructs (V559G and
D814V) [10] were shown to produce constitutive activation of KIT
signalling in cell lines.

Nagata and colleagues were the first to describe one of the
aforementioned mutations (KITD816V) in blood mononuclear
cells from patients with SM and an associated non-mast cell
myeloid neoplasm but not in those with indolent or aggressive
SM, solitary mastocytoma or chronic myelomonocytic leukaemia
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[216]. However, subsequent studies have shown the presence of
KITD816V or other KIT mutations (KITD820G, KITV560G,
KITD816Y, KITE839K, KITD816F, KITF522C, etc.) in other cate-
gories of mast cell disease (MCD) including indolent and aggres-
sive SM [217–222]. It is currently touted that all patients with
MCD carry a KIT mutation but its laboratory detection might be
hampered by the use of non-informative cell source or inadequate
assay sensitivity [223, 224]. JM KIT mutations have also been
described in canine mastocytomas [225].

KIT

KIT is located at chromosome 4q12 and encodes KIT, a class III
receptor tyrosine kinase [226, 227]. The type III class also
includes PDGFR, CSF-1 and Flt3 and is characterized by an 
extracellular component of five immunoglobulin-like domains, a
trans-membrane segment, a juxtamembrane (JM) domain and a
cytoplasmic kinase domain with a 70–100 amino acid kinase
insert near its centre [228]. Normally, KIT is activated when bound
to its ligand, the stem cell factor (SCF), which is encoded by SCF
on chromosome 12q22 [229–231]. KIT (CD117) is notably
expressed by mast cells, haematopoietic stem cells, germ cells,
melanocytes and Cajal cells of the gastrointestinal tract and is
therefore functionally relevant for mast cell development,
haematopoiesis, gametogenesis and melanogenesis [232]. KIT
signalling and the corresponding cellular response depends on the
specific cell type involved and the putative downstream effectors
include PI3K-Akt, Src family of kinases, Ras-Erk, phospholipase
C�, MAPK and JAK-STAT [233].

Mutant KIT

Activating KIT mutations have been described in a spectrum of
haematologic (e.g. mastocytosis, acute leukaemia) and non-
haematologic (e.g. gastrointestinal stromal cell tumour, germ cell
tumour) malignancies [232]. Among these, SM is considered an
MPN by virtue of its clonal derivation from the haematopoietic
stem cell [234–236]. Observations from several laboratory stud-
ies support the oncogenic role of KIT mutations. For example, in
murine experiments, D814Y has been shown to induce ligand-
independent mast cell growth in vitro, tumourigenicity in vivo, and
mast cell differentiation [237]. Similarly, retroviral infection of
haematopoietic progenitors with mouse KITD814Y and KITV559G
mutants induces autonomous myeloid and mast cell colony for-
mation as well acute leukaemia in murine transplant models [238].
Furthermore, transgenic mice expressing KITD816V restricted to
their mast cells display an SM phenotype that closely resembles
the clinically heterogeneous disease in man [239]. This is in con-
trast to another report [240] that suggested a differentiating but
not transforming potential for the mutation, which nevertheless
probably participates in enhancing mast cell chemotaxis [241] and
clustering [236]. Mutant Kit signalling might involve both PI3K
[242] and Src [243] participation although utilization of pathway

molecules might be different between the wild-type and mutant
protein [244].

Systemic mastocytosis

The 2008 World Health Organization (WHO) classification system
for myeloid malignancies considers SM as a myeloproliferative
neoplasm (MPN) [4]. WHO-defined SM should be distinguished
from PDGFR-mutated (FIP1L1-PDGFRA, PRKG2-PDGFRB)
myeloid malignancy associated with bone marrow mastocytosis
and either eosinophilia or basophilia [69, 245]. The latter but not
the former are effectively treated by IM. SM is sometimes associ-
ated with a clonally related second myeloid neoplasm, which is not
surprising considering its origin as a stem cell disease with multi-
lineage clonal involvement.

Targeted therapy in systemic mastocytosis

Although several drugs have shown in vitro anti-KIT activity
[246–249], the immediately most relevant, in terms of clinical
development, include the tyrosine kinase inhibitors IM, nilotinib,
dasatinib and PKC412. During in vitro experiments involving both
cell lines and primary cells from patients with SM, IM inhibited
wild-type KIT and KIT mutants with trans-membrane (F522C) and
juxta-membrane (V559G and V560G) but not kinase (D816V or
D814V) domain mutations [222, 250, 251]. Similarly, not all juxta-
membrane mutations are sensitive to IM (e.g. V559I) [252].
Consistent with these in vitro observation, IM therapy is ineffec-
tive in SM associated with KITD816V [253] whereas others have
shown activity in MCD associated with the trans-membrane
KITF522C mutation [222]. In contrast to the experience from my
own institution, Droogendijk et al. treated 11 patients with D816V-
positive SM with 400 mg/day of IM and found some ‘clinical
improvement’ in some patients [254].

Nilotinib is more potent than IM in its in vitro anti-BCR-ABL
activity but is similarly ineffective against KITD816V [255]. Other
studies have, however, shown a more promising activity of nilo-
tinib against kinase domain KIT mutations [256]. In contrast,
dasatinib has shown potent anti-KIT activity in mast cell and
leukaemia cell lines with different KIT mutants including those
with D816V [257, 258]. In the largest study of dasatinib therapy in
SM [259], the drug was given at a starting dose of 70 mg PO bid
to 33 SM patients: 18 indolent, 9 aggressive and 6 with associated
non-mast cell myeloid neoplasm. Two (6%) patients, both of
whom were D816V-negative, achieved complete remission. Nine
(27%) patients experienced symptomatic improvement. The
results of another case report series of four patients with SM
treated with dasatinib were equally unimpressive [260].

PKC412 has shown in vitro activity against transformed and
primary cells with kinase domain KIT mutants (D816Y and D816V)
[261, 262]. In a preliminary report, transient improvement in liver
function test abnormalities, peripheral blood mast cell percentage
and plasma histamine levels were seen in a patient with SM
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treated with PKC412 [263]. Similarly, oral PKC412 (100 mg bid)
was administered to 15 SM patients (60% with detectable
KITD816V) with evidence of clinical activity in 11 (73%) patients
including increase in haemoglobin (n � 1) and reduction of
ascites (n � 2) or pleural effusion (n � 2). In four patients, the
bone marrow mast cell burden was reported to have decreased
from 50–60% to 10–15% range.

PDGFR mutations

Both platelet-derived growth factor receptors � (PDGFRA located
on chromosome 4q12) and � (PDGFRB located on chromosome
5q31-q32) are involved in MPN-relevant activating mutations.
Clinical phenotype in both instances includes prominent blood
eosinophilia and excellent response to IM therapy.

PDGFRA mutations

In regards to PDGFRA mutations, the most intensively studied has
been the FIP1L1-PDGFRA, a karyotypically occult del(4)(q12), that
was described in 2003 as an imatinib-sensitive activating mutation
[12]. Subsequent studies have demonstrated the stem cell origin
of the particular mutation [264, 265] and functional studies have
demonstrated transforming properties in cell lines and the induc-
tion of MPD in mice [266, 267]. Cloning of the FIP1L1-PDGFRA
fusion gene identified a novel molecular mechanism for generat-
ing this constitutively active fusion tyrosine kinase, wherein a
~800 kb interstitial deletion within 4q12 fuses the 5’ portion of
FIP1L1 to the 3’ portion of PDGFRA [12]. Molecular studies have
shown that the breakpoint in FIP1L1 is relatively promiscuous,
whereas the PDGFRA breakpoint is restricted to exon 12 that
encodes part of the protein–protein interaction module with two
fully conserved tryptophans (WW domain) containing the JM
region with resultant disruption of its autoinhibitory activity [268].
Further biochemical analysis has shown that, in contrast with
most tyrosine kinase fusions associated with human cancers, the
FIP1L1 encoded sequences are dispensable for transformation,
and there is no requirement for a dimerization motif; disruption of
the autoinhibitory juxtamembrane motif as an invariant conse-
quence of disruption of exon 12 is the basis for constitutive acti-
vation of PDGFRA kinase activity [269].

FIP1L1-PDGFRA occurs in a very small subset of patients who
present with the phenotypic features of either SM or HES but the
presence of the mutation reliably predicts complete haematologic
and molecular response to imatinib therapy [67, 69, 270]. FIP1L1-
PDGFRA mutation (T674I) that is homologous to the resistance-
inducing, ‘gatekeeper’ T315I mutation in BCR-ABL has been
described [12, 271, 272] and in vitro salvage with other kinase
inhibitors including PKC412 [266] and sorafenib [273] has been
demonstrated whereas such activity has not been conclusively
shown for nilotinib [274, 275].

PDGFRA activation associated with CEL has also been described
with karyotypically apparent fusion mutations including KIF5B-
PDGFRA, t(4:10)(q12;p11) [276], BCR-PDGFRA, t(4;22)(q12;q11)
[277] and CDK5RAP2-PDGFRA, ins(9;4)(q33;q12q25) [278]. In the
former instance, the breakpoints involved exon 3 of the kinesin 
family member 5B and exon 12 of PDGFRA resulting in an in-frame
fusion. The patient achieved complete haematological and molecu-
lar remission with imatinib therapy [276]. BCR-PDGFRA represents
an in-frame fusion with BCR breakpoints in intron 7/exon 12/exon
1/exon 17 and PDGFRA breakpoint in exon 12/exon 13 and is also
sensitive to imatinib therapy [277, 279, 280]. CDK5RAP2-PDGFRA
also represents an imatinib-sensitive in-frame fusion involving exon
13 of CDK5RAP2 and intron 9/exon 12 of PDGFRA [278]. As is the
case with FIP1L1-PDGFRA, currently known PDGFRA breakpoints
are noted to be tightly clustered in the JM region, which once again
highlights a key regulatory role for this domain.

PDGFRB mutations

The association between eosinophilic myeloid malignancies and
PDGFRB rearrangement was first characterized and published in
1994 where fusion of the tyrosine kinase encoding region of
PDGFRB to the ets- like gene, ETV6 (ETV6-PDGFRB,
t(5;12)(q33;p13) was demonstrated [11]. The fusion protein was
transforming to cell lines and resulted in constitutive activation of
PDGFRB signalling [281]. Since then, several other PDGFRB
fusion transcripts with similar disease phenotypes have been
described [282–290], cell line transformation [287–289] and
MPD-induction in mice has been demonstrated [287], and ima-
tinib therapy was effective when employed [23, 283, 284, 286,
290]. Additional evidence regarding the oncogenicity of activated
PDGFRB comes from experiments with mice where either ETV6-
PDGFRB or H4-PDGFRB induced lymphoblastic lymphoma [289,
291]. In most of these mutations, PDGFRB is fused to the N-
terminal segment of a partner protein that encodes for one or
more oligomerization domains.

FGFR1 mutations

There are at least four members of the FGFR protein family
(FGFR1, FGFR2, FGFR3 and FGFR4) with additional variants
resulting from alternative splicing. Structurally, FGFRs feature
extracellular, trans-membrane, juxta-membrane and kinase
domains. FGFRs are functionally important in embryonal develop-
ment and tissue integrity and germline FGFR mutations result in
various birth defects including achondroplasia/hypochondroplasia
(FGFR3), Crouzon syndrome (FGFR2) and Kallmann syndrome
(FGFR1). Somatic FGFR3 mutations have been described in
benign skin tumours, urothelial cancer and multiple myeloma and
FGFR2 mutations in endometrial carcinoma. In the context of
myeloid malignancies, somatic FGFR1 mutations have been
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specifically associated with SCLL (also known as the 8p11 myelo-
proliferative syndrome).

SCLL is an extremely rare disease usually characterized by a
mixed myeloid and lymphoid phenotype. The typical presentation
is one of aggressive lymphoblastic lymphoma (usually T cell),
eosinophilia, monocytosis and other blood and bone marrow evi-
dence of clonal myeloproliferation. The disease rapidly progresses

into acute leukaemia (usually myeloid). The hallmark of SCLL is a
cytogenetic translocation between chromosome 8p11 and a spec-
trum of partner chromosomes as outlined in Table 2; these
translocations result in fusion oncogenes that always involve exon
9 of FGFR1, located on 8p11 (Table 2) [292–307].

In SCLL, FGFR1 mutation is present in both myeloid and lym-
phoid lineage cells and some of the associated fusion genes have
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Table 2 Mutations of putative pathogenetic relevance in myeloproliferative neoplasms

JAK2 MPL PDGFRA PDGFRB FGFR1

(phenotype) (phenotype) (phenotype) (phenotype) (phenotype)

JAK2V617F (PV, ET, PMF) MPLW515L/K (PMF, ET) FIP1L1-PDGFRA
del(14q12) (CEL with mas-
tocytosis)

ETV6-PDGFRB
t(5;12)(q33;p13) (CMML
with eosinophilia)

ZNF 198-FGFR1
t(8;13)(p11;q12) (SCLL)

JAK2 Exon 12 mutations
F537-K539delinsL
H538QK539L K539L
N542-E543del (PV)

BCR-PDGFRA
t(4;22)(q12;q11) (CEL,
MPN-U)

RABAPTIN-5-PDGFRB
t(5;17)(q33;p13) (CMML)
HCMOGT-1-PDGFRB
t(5;17)(q33;p11.2) (JMML
with eosinophilia)

FOP-FGFR1
t(6;8)(q27;p11) (SCLL)

ETV6-JAK2
t(9;12)(p24;p13) (AML,
MPN-U)

KIF5B-PDGFRA
t(4;10)(q12;p11) (CEL)

CEV14-PDGFRB
t(5;14)(q33;q32) (AML
with eosinophilia) NIN-
PDGFRB t(5;14)(q33;q24)
(MPN with eosinophilia)
KIAA1509-PDGFRB
t(5;14)(q31;q32) (CMML
with eosinophilia)

FGFR1OP2-PDGFRA
ins(12;8)(p11;p11p22)
(SCLL)

BCR-JAK2
t(9;22)(p24;q11.2) (MPN-
U, AML)

CDK5RAP2-PDGFRA
ins(9;4)(q33;q12q25)
(CEL)

TP53BP1-PDGFRB
t(5;15)(q33;q22) (MPN-U
with eosinophilia)

TIF1-FGFR1
t(7;8)(q34;p11) (SCLL)

PCM1-JAK2
t(8;9)(p22;p24) (AML,
MPN-U)

PDE4DIP-PDGFRB
t(1;5)(q23;q33) (MPN-U
with eosinophilia)

MYO18A-FGFR1
t(8;17)(p11;q23) (SCLL)

SSBP2-JAK2
t(5;9)(q14.1;p24.1) (pre-B
ALL) 

HIP1-PDGFRB
t(5;7)(q33;q11.2) (CMML
with eosinophilia)

HERV-K-FGFR1
t(8;19)(p12;q13.3) (SCLL)

H4-PDGFRB
t(5;10)(q33;q22) (MPN-U)

BCR-FGFR1
t(8;22)(p11;q11) (CML-like
MPN)

CEP110-FGFR1
t(8;9)(p12;q33) (SCLL)

CPSF6-FGFR1
t(8;12)(p11;q15) (SCLL)

PV, polycythemia vera; ET, essential thrombocythemia; PMF, primary myelofibrosis; AML, acute myeloid leukaemia; MPN-U, unclassified MPN; 
CEL-SM, chronic eosinophilic leukaemia associated with systemic mastocytosis; CMML, chronic myelomonocytic leukaemia; JMML, juvenile
myelomonocytic leukaemia; SCLL, stem cell leukaemia-lymphoma syndrome.
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been shown transform cell lines [301, 308–310] and induce SCLL
(ZNF198-FGFR1) [311] or CML (BCR-FGFR1) [310] like disease
in mice. Consistent with this laboratory observation, some
patients with BCR-FGFR1 mutation manifest a more indolent,
compared to SCLL, disease phenotype [301]. The mechanism of
FGFR1 activation in SCLL is similar, in most cases, to that seen
with PDGFRB-associated CEL; the tyrosine kinase domain of
FGFR1 is juxtaposed to a dimerization domain from the partner
gene, although oligomerization motifs are not always identified in
the partner gene [307].

SCLL is refractory to usual chemotherapy and some (e.g.
PKC412) but not other (e.g. imatinib) kinase inhibitors have been
shown to inhibit in vitro kinase activity as well as cell proliferation
induced by ZNF198-FGFR1 [301, 312]. Haematopoietic stem cell

expression of ZNF198-FGFR1 in mice induces an MPN phenotype
as well as activation of the downstream effector molecules PLC-�,
STAT5 and phosphatidylinositol 3-kinase/AKT [312]. PKC412 
(N-benzoyl-staurosporine) is a small molecule tyrosine kinase
inhibitor with activity against FLT3, protein kinase C, CDC2 and
receptors for PDGF, FGF and VEGF. The drug has been shown to
inhibit ZNF198-FGFR1 kinase and downstream effector activity,
reduce proliferation of ZNF198-FGFR1 transformed cell lines and
favourably affect survival of mice with ZNF198-FGFR1-induced
MPN [312]. Whether or not the drug will work in human beings
with SCLL is not currently clear although one PKC412-treated
patient experienced an improvement in leukocytosis, lym-
phadenopathy and splenomegaly over 6 months before receiving
allogeneic stem cell transplant [312].
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